Vertical Differentiation Characteristics and Environmental Regulatory Mechanisms of Microbial Biomass Carbon and Nitrogen in Coastal Wetland Sediments from the Northern Yellow Sea
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sample Collection
2.3. Sample Determination
2.3.1. MBC and MBN Analysis
2.3.2. TC and TN Analysis
2.3.3. BD and MC Analysis
2.3.4. EC and pH Analysis
2.4. Statistical Analysis
3. Results
3.1. Vertical Distribution Characteristics of Sediment Physicochemical Properties
3.2. Relationships Between Environmental Factors and Sediment Carbon–Nitrogen Contents
3.3. Driving Effects of Environmental Factors on Microbial Biomass Carbon and Nitrogen
4. Discussion
4.1. Vertical Distribution Characteristics of Carbon and Nitrogen
4.2. Environmental Driving Mechanisms of Microbial Biomass Carbon and Nitrogen
5. Conclusions
5.1. Key Inflection Points of the Vertical Variations in MBC and MBN in Northern Yellow Sea Coastal Wetlands
5.2. Driving Factors of MBC and MBN in Northern Yellow Sea Coastal Wetlands
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ward, N.D.; Megonigal, J.P.; Bond-Lamberty, B.; Bailey, V.L.; Butman, D.; Canuel, E.A.; Diefenderfer, H.; Ganju, N.K.; Goñi, M.A.; Graham, E.B.; et al. Representing the function and sensitivity of coastal interfaces in Earth system models. Nat. Commun. 2020, 11, 2458. [Google Scholar] [CrossRef]
- Wang, F.; Sanders, C.J.; Santos, I.R.; Tang, J.; Schuerch, M.; Kirwan, M.L.; Kopp, R.E.; Zhu, K.; Li, X.; Yuan, J.; et al. Global blue carbon accumulation in tidal wetlands increases with climate change. Natl. Sci. Rev. 2021, 8, nwaa296. [Google Scholar] [CrossRef]
- Mathis, M.; Lacroix, F.; Hagemann, S.; Nielsen, D.M.; Ilyina, T.; Schrum, C. Enhanced CO2 uptake of the coastal ocean is dominated by biological carbon fixation. Nat. Clim. Change 2024, 14, 373–379. [Google Scholar] [CrossRef]
- Wang, F.; Lu, X.; Sanders, C.J.; Tang, J. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nat. Commun. 2019, 10, 5434. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Ge, T.; Zhu, Z.; Ye, R.; Peñuelas, J.; Li, Y.; Lynn, T.M.; Jones, D.L.; Wu, J.; Kuzyakov, Y. Paddy soils have a much higher microbial biomass content than upland soils: A review of the origin, mechanisms, and drivers. Agric. Ecosyst. Environ. 2022, 326, 107798. [Google Scholar] [CrossRef]
- Niu, Y.; An, Z.; Gao, D.; Chen, F.; Zhou, J.; Liu, B.; Qi, L.; Wu, L.; Lin, Z.; Yin, G.; et al. Tidal dynamics regulates potential coupling of carbon-nitrogen-sulfur cycling microbes in intertidal flats. Sci. Total Environ. 2023, 899, 165663. [Google Scholar] [CrossRef] [PubMed]
- Talling, P.J.; Hage, S.; Baker, M.L.; Bianchi, T.S.; Hilton, R.G.; Maier, K.L. The global turbidity current pump and its implications for organic carbon cycling. Annu. Rev. Mar. Sci. 2024, 16, 105–133. [Google Scholar] [CrossRef]
- Berhe, A.A.; Barnes, R.T.; Six, J.; Marín-Spiotta, E. Role of soil erosion in biogeochemical cycling of essential elements: Carbon, nitrogen, and phosphorus. Annu. Rev. Earth Planet. Sci. 2018, 46, 521–548. [Google Scholar] [CrossRef]
- Liu, L.; Sun, F.; Zhao, H.; Mi, H.; He, S.; Chen, Y.; Liu, Y.; Lan, H.; Zhang, M.; Wang, Z. Compositional changes of sedimentary microbes in the Yangtze River Estuary and their roles in the biochemical cycle. Sci. Total Environ. 2021, 760, 143383. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Yi, Y.; Wang, X.; Santos, C.A.G.; Liu, Q. A review of reservoir carbon Cycling: Key Processes, influencing factors and research methods. Ecol. Indic. 2024, 166, 112511. [Google Scholar] [CrossRef]
- Holden, J.; Burt, T.P. Hydrological studies on blanket peat: The significance of the acrotelm-catotelm model. J. Ecol. 2003, 91, 86–102. [Google Scholar] [CrossRef]
- Beer, J.; Lee, K.; Whiticar, M.; Blodau, C. Geochemical controls on anaerobic organic matter decomposition in a northern peatland. Limnol. Oceanogr. 2008, 53, 1393–1407. [Google Scholar] [CrossRef]
- Degermendzhy, A.G.; Zadereev, E.S.; Rogozin, D.Y.; Prokopkin, I.G.; Barkhatov, Y.V.; Tolomeev, A.P.; Khromechek, E.B.; Janse, J.H.; Mooij, W.M.; Gulati, R.D. Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia). Aquat. Ecol. 2010, 44, 619–632. [Google Scholar] [CrossRef]
- Kazmi, S.S.U.H.; Tayyab, M.; Pastorino, P.; Barcelò, D.; Khan, S.; Yaseen, Z.M. Vertical variations and environmental heterogeneity drove the symphony of periphytic protozoan fauna in marine ecosystems. Sci. Total Environ. 2024, 932, 173115. [Google Scholar] [CrossRef]
- Sun, R.; Han, G. A comprehensive review of multi-scale mechanisms of soil carbon mineralization: From micro processes to macro ecosystems. Geogr. Res. Bull. 2024, 3, 471–498. [Google Scholar]
- Lin, X.; Hetharua, B.; Lin, L.; Xu, H.; Zheng, T.; He, Z.; Tian, Y. Mangrove sediment microbiome: Adaptive microbial assemblages and their routed biogeochemical processes in Yunxiao mangrove national nature reserve, China. Microb. Ecol. 2019, 78, 57–69. [Google Scholar] [CrossRef]
- Yu, X.; Yang, X.; Wu, Y.; Peng, Y.; Yang, T.; Xiao, F.; Zhong, Q.; Xu, K.; Shu, L.; He, Q.; et al. Sonneratia apetala introduction alters methane cycling microbial communities and increases methane emissions in mangrove ecosystems. Soil Biol. Biochem. 2020, 144, 107775. [Google Scholar] [CrossRef]
- Yang, P.; Shu, Q.; Liu, Q.; Hu, Z.; Zhang, S.; Ma, Y. Distribution and factors influencing organic and inorganic carbon in surface sediments of tidal flats in northern Jiangsu, China. Ecol. Indic. 2021, 126, 107633. [Google Scholar] [CrossRef]
- Zhang, A.; Lv, W.; Shu, Q.; Chen, Z.; Du, Y.; Ye, H.; Xu, L.; Liu, S. Distribution Characteristics and Main Influencing Factors of Organic Carbon in Sediments of Spartina alterniflora Wetlands along the Northern Jiangsu Coast, China. Land 2024, 13, 741. [Google Scholar] [CrossRef]
- Chen, G.; Cheng, S.; Liu, J.; Cong, M.; Gao, X.; Wang, H.; Shi, F. Physical-chemical Properties of Soil, C and N of Three Typical Communities in Tianjin Coastal Wetland. Bull. Bot. Res. 2015, 35, 406–411. [Google Scholar]
- Gong, S.; Feng, Z.; Qu, A.; Sun, J.; Xu, X.; Lai, Y.; Kong, Y. Effects of land-use types on the temporal dynamics of soil active carbon and nitrogen in the rocky mountainous of North China. Soil Sci. Plant Nutr. 2022, 68, 72–80. [Google Scholar] [CrossRef]
- Okolo, C.C.; Dippold, M.A.; Gebresamuel, G.; Zenebe, A.; Haile, M.; Bore, E. Assessing the sustainability of land use management of northern Ethiopian drylands by various indicators for soil health. Ecol. Indic. 2020, 112, 106092. [Google Scholar] [CrossRef]
- Howes, B.L.; Goehringer, D.D. Porewater drainage and dissolved organic carbon and nutrient losses through the intertidal creekbanks of a New England salt marsh. Mar. Ecol. Prog. Ser. 1994, 114, 289–301. [Google Scholar] [CrossRef]
- Mudd, S.M.; Howell, S.M.; Morris, J.T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuar. Coast. Shelf Sci. 2009, 82, 377–389. [Google Scholar] [CrossRef]
- Cai, Y.-J.; Liu, Z.-A.; Zhang, S.; Liu, H.; Nicol, G.W.; Chen, Z. Microbial community structure is stratified at the millimeter-scale across the soil–water interface. ISME Commun. 2022, 2, 53. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Yu, X.; Gu, H.; Liu, F.; Fan, Y.; Wang, C.; He, Q.; Tian, Y.; Peng, Y.; Shu, L.; et al. Vertically stratified methane, nitrogen and sulphur cycling and coupling mechanisms in mangrove sediment microbiomes. Microbiome 2023, 11, 71. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Witt, C.; Gaunt, J.L.; Galicia, C.C.; Ottow, J.C.G.; Neue, H.-U. A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biol. Fertil. Soils 2000, 30, 510–519. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Brookes, P.C.; Powlson, D.S. Measuring soil microbial biomass. Soil Biol. Biochem. 2004, 36, 5–7. [Google Scholar] [CrossRef]
- Zhou, Z.; Hua, J.; Xue, J. Polyethylene microplastic and soil nitrogen dynamics: Unraveling the links between functional genes, microbial communities, and transformation processes. J. Hazard. Mater. 2023, 458, 131857. [Google Scholar] [CrossRef]
- Yang, P.; Hu, Z.; Shu, Q. Factors affecting soil organic carbon content between natural and reclaimed sites in Rudong Coast, Jiangsu Province, China. J. Mar. Sci. Eng. 2021, 9, 1453. [Google Scholar] [CrossRef]
- Zhang, C.; Nie, S.; Liang, J.; Zeng, G.; Wu, H.; Hua, S.; Liu, J.; Yuan, Y.; Xiao, H.; Deng, L.; et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Sci. Total Environ. 2016, 557, 785–790. [Google Scholar] [CrossRef]
- Ward, B.B.; Devol, A.H.; Rich, J.J.; Chang, B.X.; Bulow, S.E.; Naik, H.; Pratihary, A.; Jayakumar, A. Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 2009, 461, 78–81. [Google Scholar] [CrossRef]
- Wang, F.; Chen, S.; Wang, Y.; Zhang, Y.; Hu, C.; Liu, B. Long-term nitrogen fertilization elevates the activity and abundance of nitrifying and denitrifying microbial communities in an upland soil: Implications for nitrogen loss from intensive agricultural systems. Front. Microbiol. 2018, 9, 2424. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zhou, N.; Cai, Y.; Guo, M.; Sheng, D.; Liu, Y. Ecological Stoichiometry of Carbon, Nitrogen and Phosphorus in Deep Sediments within the Critical Zone of South Dongting Lake Wetland, China. J. Soil Sci. Plant Nut. 2024, 24, 6389–6403. [Google Scholar] [CrossRef]
- Guo, X.; Jiang, Y. Spatial characteristics of ecological stoichiometry and their driving factors in farmland soils in Poyang Lake Plain, Southeast China. J. Soil Sediments 2019, 19, 263–274. [Google Scholar] [CrossRef]
- Sun, S.; Song, Z.; Chen, B.; Wang, Y.; Ran, X.; Fang, Y.; Van Zwieten, L.; Hartley, I.P.; Wang, Y.; Li, Q.; et al. Current and future potential soil organic carbon stocks of vegetated coastal ecosystems and their controls in the Bohai Rim Region, China. Catena 2023, 225, 107023. [Google Scholar] [CrossRef]
- Li, J.; Sang, C.; Yang, J.; Qu, L.; Xia, Z.; Sun, H.; Jiang, P.; Wang, X.; He, H.; Wang, C. Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biol. Biochem. 2021, 156, 108207. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Yao, X.; Ding, W.; Zhang, Y.; Jeppesen, E.; Zhang, Y.; Podgorski, D.C.; Chen, C.; Ding, Y.; et al. Response of chromophoric dissolved organic matter dynamics to tidal oscillations and anthropogenic disturbances in a large subtropical estuary. Sci. Total Environ. 2019, 662, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhou, X.; Lu, X.; Xu, Y.; Wei, Z.; Ruan, A. Grain size distribution drives microbial communities vertically assemble in nascent lake sediments. Environ. Res. 2023, 227, 115828. [Google Scholar] [CrossRef]
- Fang, Z.; Yu, H.; Jiao, F.; Huang, J. Microbial Metabolic Limitation in Response to Phosphorus Enrichment: Implications for Carbon Sequestration in a Nitrogen-Enriched Desert Steppe. Land Degrad. Dev. 2025, 36, 2405–2419. [Google Scholar] [CrossRef]
- Ayiti, O.E.; Babalola, O.O. Factors influencing soil nitrification process and the effect on environment and health. Front. Sustain. Food Syst. 2022, 6, 821994. [Google Scholar] [CrossRef]
- Kumawat, C.; Kumar, A.; Parshad, J.; Sharma, S.S.; Patra, A.; Dogra, P.; Yadav, G.K.; Dadhich, S.K.; Verma, R.; Kumawat, G.L. Microbial diversity and adaptation under salt-affected soils: A review. Sustainability 2022, 14, 9280. [Google Scholar] [CrossRef]
- Luo, Z.; Zhong, Q.; Han, X.; Hu, R.; Liu, X.; Xu, W.; Wu, Y.; Huang, W.; Zhou, Z.; Zhuang, W.; et al. Depth-dependent variability of biological nitrogen fixation and diazotrophic communities in mangrove sediments. Microbiome 2021, 9, 212. [Google Scholar] [CrossRef] [PubMed]
Layers | All Layers 0−100 cm | |||||
---|---|---|---|---|---|---|
0−20 cm | 20−40 cm | 40−60 cm | 60−80 cm | 80−100 cm | ||
BD (g/cm3) | 1.12 ± 0.04 | 0.91 ± 0.02 | 0.88 ± 0.02 | 0.93 ± 0.02 | 1.08 ± 0.03 | 0.98 ± 0.02 |
MC (%) | 30.37 ± 0.71 | 30.59 ± 0.97 | 36.76 ± 1.99 | 36.23 ± 1.90 | 27.69 ± 0.87 | 32.33 ± 0.80 |
pH | 7.83 ± 0.04 | 8.05 ± 0.05 | 7.89 ± 0.04 | 7.91 ± 0.04 | 7.82 ± 0.05 | 7.90 ± 0.02 |
EC (μS/cm) | 3226.30 ± 177.94 | 3487.04 ± 177.38 | 4129.63 ± 302.00 | 4211.11 ± 243.20 | 4564.44 ± 233.76 | 3923.70 ± 123.54 |
TN (g/kg) | 0.51 ± 0.04 | 0.51 ± 0.05 | 0.40 ± 0.04 | 0.32 ± 0.02 | 0.24 ± 0.03 | 0.40 ± 0.02 |
TC (g/kg) | 4.17 ± 0.32 | 5.15 ± 0.24 | 6.49 ± 0.73 | 4.09 ± 0.40 | 2.63 ± 0.26 | 4.50 ± 0.27 |
SD | R2 | p-Value | Redundancy Analysis Coefficient | |||||
---|---|---|---|---|---|---|---|---|
BD | MC | pH | EC | TN | TC | |||
0–20 cm | 0.811 | 0.386 | −0.105 | 0.109 | 0.280 | −0.013 | −0.025 | −0.710 |
20–40 cm | 0.832 | 0.367 | −0.474 | −1.029 | 0.336 | −0.251 | −0.043 | 1.150 |
40–60 cm | 0.780 | 0.421 | −0.256 | 0.241 | −0.202 | 0.096 | −0.845 | 0.066 |
60–80 cm | 0.700 | 0.653 | 0.081 | −0.177 | 0.322 | 0.124 | 0.040 | −0.060 |
80–100 cm | 0.887 | 0.172 | 1.351 | −0.044 | −0.032 | −0.382 | −1.072 | −0.557 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xu, H.; Zhou, J. Vertical Differentiation Characteristics and Environmental Regulatory Mechanisms of Microbial Biomass Carbon and Nitrogen in Coastal Wetland Sediments from the Northern Yellow Sea. Sustainability 2025, 17, 8082. https://doi.org/10.3390/su17178082
Zhang Y, Xu H, Zhou J. Vertical Differentiation Characteristics and Environmental Regulatory Mechanisms of Microbial Biomass Carbon and Nitrogen in Coastal Wetland Sediments from the Northern Yellow Sea. Sustainability. 2025; 17(17):8082. https://doi.org/10.3390/su17178082
Chicago/Turabian StyleZhang, Yue, Haiting Xu, and Jian Zhou. 2025. "Vertical Differentiation Characteristics and Environmental Regulatory Mechanisms of Microbial Biomass Carbon and Nitrogen in Coastal Wetland Sediments from the Northern Yellow Sea" Sustainability 17, no. 17: 8082. https://doi.org/10.3390/su17178082
APA StyleZhang, Y., Xu, H., & Zhou, J. (2025). Vertical Differentiation Characteristics and Environmental Regulatory Mechanisms of Microbial Biomass Carbon and Nitrogen in Coastal Wetland Sediments from the Northern Yellow Sea. Sustainability, 17(17), 8082. https://doi.org/10.3390/su17178082