Future Trends in Ultra-Precision Machining

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "D:Materials and Processing".

Deadline for manuscript submissions: 28 February 2026 | Viewed by 2445

Special Issue Editors


E-Mail Website
Guest Editor Assistant
State Key Laboratory of Ultra-Precision Machining Technology, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
Interests: ultra-precision machining; nanoscale material removal mechanism; molecular dynamics simulation; laser-assisted machining
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
Interests: intelligent manufacturing; sustainable manufacturing; precision machining
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

Ultra-precision machining is a multi-disciplinary research area, which forms the backbone and support of today’s innovative technology industries, including optoelectronics, aerospace, optics, and biomedical engineering. With the rapid development of these industries, surface quality requirements of manufacturing products become more and more stringent. In order to make the surface finishing adapt to this new situation, the exploration of new mechanisms and technologies has become a great interest of research. This Special Issue aims to publish original research and review articles in the field of " Future Trends in Ultra-Precision Machining". Papers on new theories, techniques, and applications in the fields of ultra-precision machining are welcome. Suitable topics include but are not limited to new mechanisms of processes involving material removal, the scientific development of new processes, surface topography measurement, and novel concepts in ultra-precision machining supported by modelling and experiments. We also welcome scholars in related fields to contribute their latest research results to this Special Issue.

Dr. Changlin Liu
Guest Editor Assistant

Prof. Dr. Yanbin Zhang
Dr. Xiaoliang Liang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ultra-precision machining
  • material removal mechanism
  • optical material
  • surface topography

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 7655 KB  
Article
Enhancing the Machinability of Sapphire via Ion Implantation and Laser-Assisted Diamond Machining
by Jinyang Ke, Honglei Mo, Ke Ling, Jianning Chu, Xiao Chen and Jianfeng Xu
Micromachines 2025, 16(10), 1165; https://doi.org/10.3390/mi16101165 - 14 Oct 2025
Viewed by 441
Abstract
Sapphire crystals, owing to their outstanding mechanical and optical properties, which are widely used in advanced optics, microelectronic devices, and medical instruments. The manufacturing precision of sapphire optical components critically affects the performance of advanced optical systems. However, the extremely high hardness and [...] Read more.
Sapphire crystals, owing to their outstanding mechanical and optical properties, which are widely used in advanced optics, microelectronic devices, and medical instruments. The manufacturing precision of sapphire optical components critically affects the performance of advanced optical systems. However, the extremely high hardness and low fracture toughness of sapphire make it a typical hard-to-machine material, prone to brittle surface fractures and subsurface damage during material removal. Improving the machinability of sapphire remains a pressing challenge in advanced manufacturing. In this study, surface modification and enhanced ductility of C-plane sapphire were achieved via ion implantation, and the machinability of the modified sapphire was further improved through laser-assisted diamond machining (LADM). Monte Carlo simulations were employed to investigate the interaction mechanisms between incident ions and the target material. Based on the simulation results, phosphorus ion implantation experiments were conducted, and transmission electron microscopy observation was used to characterize the microstructural evolution of the modified layer, while the optical properties of the samples before and after modification were analyzed. Finally, groove cutting experiments verified the enhancement in ductile machinability of the modified sapphire under LADM. At a laser power of 16 W, the ductile–brittle transition depth of the modified sapphire increased to 450.67 nm, representing a 51.57% improvement over conventional cutting. The findings of this study provide valuable insights for improving the ductile machining performance of hard and brittle materials. Full article
(This article belongs to the Special Issue Future Trends in Ultra-Precision Machining)
Show Figures

Figure 1

16 pages, 5065 KB  
Article
Surface Integrity of Glass-Ceramics by Laser-Assisted Diamond Cutting
by Jiawei Li, Fang Ji and Feifei Xu
Micromachines 2025, 16(9), 1054; https://doi.org/10.3390/mi16091054 - 16 Sep 2025
Viewed by 561
Abstract
Glass-ceramic optical components are extensively employed in advanced optical systems. The high-hardness and low-fracture toughness of glass-ceramics make it prone to cracks and subsurface damage during conventional cutting. The laser-assisted diamond cutting method can significantly improve the nano-cutting performance of glass-ceramics by locally [...] Read more.
Glass-ceramic optical components are extensively employed in advanced optical systems. The high-hardness and low-fracture toughness of glass-ceramics make it prone to cracks and subsurface damage during conventional cutting. The laser-assisted diamond cutting method can significantly improve the nano-cutting performance of glass-ceramics by locally heating and softening the material. However, its dynamic removal mechanisms remain unclear. The coupling mechanisms between the laser thermal field and the mechanical response of the material require further investigation. This study aims to reveal the dynamic removal mechanisms of glass-ceramics under laser-assisted nanoscale cutting conditions through numerical simulations and systematic experiments. It includes a systematic analysis of the effects of laser heating on chip morphology, temperature fields, stress fields, and cutting forces using a laser-assisted nano-cutting model. Additionally, through nanoscale taper cutting experiments, this study quantifies the enhancement effect of laser power on the critical depth of no observed surface cracks (NOSC). Finally, subsurface integrity results elucidate the mechanisms through which laser assistance inhibits crack propagation. The findings will provide theoretical support for optimizing laser-assisted cutting parameters and achieving high-quality machining of glass-ceramics. Full article
(This article belongs to the Special Issue Future Trends in Ultra-Precision Machining)
Show Figures

Figure 1

13 pages, 14630 KB  
Article
Atomic Insight into the Nano-Grinding Mechanism of Reaction-Bonded Silicon Carbide: Effect of Abrasive Size
by Honglei Mo, Xie Chen, Cui Luo and Xiaojiang Cai
Micromachines 2025, 16(9), 1049; https://doi.org/10.3390/mi16091049 - 15 Sep 2025
Viewed by 513
Abstract
Reaction-bonded silicon carbide (RB-SiC) is a high-performance ceramic material known for its excellent mechanical, thermal, and chemical properties. It contains phases with different mechanical properties, which introduce complex machining mechanisms. In the present work, molecular dynamics (MD) simulation was conducted to investigate the [...] Read more.
Reaction-bonded silicon carbide (RB-SiC) is a high-performance ceramic material known for its excellent mechanical, thermal, and chemical properties. It contains phases with different mechanical properties, which introduce complex machining mechanisms. In the present work, molecular dynamics (MD) simulation was conducted to investigate the effect of abrasive size on the nano-grinding mechanism of RB-SiC. The surface morphology and subsurface deformation mechanism were investigated. The simulation results suggest that when a small abrasive is used, the surface swelling of SiC is primarily generated by the bending and tearing of SiC at the interfaces. As the abrasive radius increases, the surface swelling is mainly formed by Si atoms, which is identified as elastic recovery. Meanwhile, the material removal rate gradually decreases, and the depth of plastic deformation is obviously increased. Stocking of Si is more apparent at the interface, and obvious sliding of SiC grains is observed, forming edge cracks at the margin of the workpiece. In the subsurface workpiece, the high-pressure phase transition (HPPT) of Si is promoted, and the squeeze of disordered Si is obvious with more dislocations formed when larger abrasive is used. Full article
(This article belongs to the Special Issue Future Trends in Ultra-Precision Machining)
Show Figures

Figure 1

Back to TopTop