Recent Advances in the Characterization of Subsurface Damage in Optical Materials
Abstract
1. Introduction
2. Mechanism of Subsurface Damage Formation
3. Characterization Methods of SSD
3.1. Destructive Methods
3.1.1. Mechanical Test Methods
3.1.2. Polishing Methods
3.1.3. Bonded-Interface Methods
3.1.4. Ball-Machining Methods
3.1.5. Chemical Etching
3.2. Non-Destructive Methods
3.2.1. Numerical Predictive Methods
3.2.2. Optics-Based Methods
3.2.3. Chemical-Based Methods
3.2.4. Other Methods
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Wu, K.; Lim, J.; Song, H.J.; Klimov, V.I. Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators. Nat. Energy 2016, 1, 16157–16166. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, M.; Jang, M.; Choi, Y.; Choi, W.; Kang, S.; Choi, W. Deep optical imaging within complex scattering media. Nat. Rev. Phys. 2020, 2, 141–158. [Google Scholar] [CrossRef]
- Rogers, E.T.F.; Lindberg, J.; Roy, T.; Savo, S.; Chad, J.E.; Dennis, M.R.; Zheludev, N.I. A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 2012, 11, 432–435. [Google Scholar] [CrossRef]
- Wu, Z.; Li, G.; Jia, Y.; Lv, Q.; Deng, S.; Jin, Y. Investigation on morphology and chemistry of the Beilby layer on polished fused silica. Ceram. Int. 2023, 49, 17116–17122. [Google Scholar] [CrossRef]
- Noda, S.; Fujita, M.; Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photonics 2007, 1, 449–458. [Google Scholar] [CrossRef]
- Zaky, Z.A.; Ahmed, A.M.; Shalaby, A.S.; Aly, A.H. Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimization. Sci. Rep. 2020, 10, 9736–9756. [Google Scholar] [CrossRef]
- Hirose, K.; Liang, Y.; Kurosaka, Y.; Watanabe, A.; Sugiyama, T.; Noda, S. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics 2014, 8, 406–411. [Google Scholar] [CrossRef]
- Karpov, M.; Pfeiffer, M.H.P.; Guo, H.; Weng, W.; Liu, J.; Kippenberg, T.J. Dynamics of soliton crystals in optical microresonators. Nat. Phys. 2019, 15, 1071–1077. [Google Scholar] [CrossRef]
- Yin, F.; Liu, L.; Zhu, M.; Lv, J.; Guan, X.; Zhang, J.; Lin, N.; Fu, X.; Jia, Z.; Tao, X. Transparent Lead-Free Ferroelectric (K, Na) NbO3 single crystal with giant second harmonic generation and wide mid-infrared transparency window. Adv. Opt. Mater. 2022, 10, 2201721–2201728. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, J.; Kuriyagawa, T. Manufacturing technologies toward extreme precision. Int. J. Extrem. Manuf. 2019, 1, 022001–022023. [Google Scholar] [CrossRef]
- Yin, J.; Bai, Q.; Zhang, B. Methods for detection of subsurface damage: A Review. Chin. J. Mech. Eng. 2018, 31, 41. [Google Scholar] [CrossRef]
- Shamray, S.; Azarhoushang, B.; Paknejad, M.; Buechle, A. Ductile-brittle transition mechanisms in micro-grinding of silicon nitride. Ceram. Int. 2022, 48, 34987–34998. [Google Scholar] [CrossRef]
- Nguyen, V.; Fang, T. Phase transformation and subsurface damage formation in the ultrafine machining process of a diamond substrate through atomistic simulation. Sci. Rep. 2021, 11, 17795. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Meng, F.; Liu, D.; Huang, S.; Cui, J.; Wang, J.; Wen, W. Origin and evolution of a crack in silicon induced by a single grain grinding. J. Manufact. Process. 2022, 75, 617–626. [Google Scholar] [CrossRef]
- Heidari, M.; Yan, J. Ultraprecision surface flattening of porous silicon by diamond turning. Precis. Eng. 2017, 49, 262–277. [Google Scholar] [CrossRef]
- Lawn, B.R.; Evans, A.G. A model for crack initiation in elastic/plastic indentation fields. J. Mater. Sci. 1977, 12, 2195–2199. [Google Scholar] [CrossRef]
- Ahn, Y.; Cho, N.G.; Lee, S.H.; Lee, D. Lateral crack in abrasive wear of brittle materials. JSME Int. J. Series A Solid Mech. Mater. Eng. 2003, 46, 140–144. [Google Scholar] [CrossRef]
- Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D. Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots. Appl. Optics 2007, 46, 5500–5515. [Google Scholar] [CrossRef] [PubMed]
- Suratwala, T.I. Materials Science and Technology of Optical Fabrication; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Lee, Y. Evaluating subsurface damage in optical glasses. J. Eur. Opt. Soc.-Rapid. 2011, 6, 11001–11016. [Google Scholar] [CrossRef]
- Suratwala, T.I.; Wong, L.; Miller, P.; Feit, M.D.; Menapace, J.; Steele, R.; Davis, P.; Walmer, D. Sub-surface mechanical damage distributions during grinding of fused silica. J. Non-Cryst. Solids 2006, 352, 5601–5617. [Google Scholar] [CrossRef]
- Wang, W.; Yao, P.; Wang, J.; Huang, C.; Zhu, H.; Liu, H.; Zou, B.; Liu, Y. Controlled material removal mode and depth of micro cracks in precision grinding of fused silica-A theoretical model and experimental verification. Ceram. Int. 2017, 43, 11596–11609. [Google Scholar] [CrossRef]
- Su, Y.; Lin, B.; Cao, Z. Prediction and verification analysis of grinding force in the single grain grinding process of fused silica glass. Int. J. Adv. Manuf. Technol. 2018, 96, 597–606. [Google Scholar] [CrossRef]
- Jing, X.; Maiti, S.; Subhash, G. A new analytical model for estimation of scratch-induced damage in brittle solid. J. Am. Ceram. Soc. 2007, 90, 885–892. [Google Scholar] [CrossRef]
- Gu, W.; Yao, Z.; Li, K. Evaluation of subsurface crack depth during scratch test for optical glass BK7. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2011, 225, 2767–2774. [Google Scholar] [CrossRef]
- Suratwala, T.I.; Steele, W.A.; Wong, L.L.; Tham, G.C.; Destino, J.F.; Miller, P.E.; Ray, N.J.; Menapace, J.A.; Feigenbaum, E.; Shen, N.; et al. Subsurface mechanical damage correlations after grinding of various optical materials. Opt. Eng. 2019, 58, 092604–092614. [Google Scholar] [CrossRef]
- Suratwala, T.; Steele, R.; Feit, M.D.; Wong, L.; Miller, P.; Menapace, J.; Davis, P. Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing. J. Non-Cryst. Solids. 2008, 354, 2023–2037. [Google Scholar] [CrossRef]
- Suratwala, T.; Steele, R.; Wong, L.; Miller, P.; Feigenbaum, E.; Shen, N.; Ray, N.; Feit, M. Towards predicting removal rate and surface roughness during grinding of optical materials. Appl. Opt. 2019, 58, 2490–2499. [Google Scholar] [CrossRef]
- Yang, F.; Fei, P. Microindentation of ground silicon wafers. Semicond. Sci. Technol. 2004, 19, 1165–1168. [Google Scholar] [CrossRef]
- Yang, F. Effect of subsurface damage on indentation behavior of ground ULE™ glass. J. Non-Cryst. Solids. 2005, 351, 3861–3865. [Google Scholar] [CrossRef]
- Ma, B.; Shen, Z.; He, P.; Sha, F.; Wang, C.; Wang, B.; Ji, Y.; Liu, H.; Li, W.; Wang, Z. Evaluation and analysis of polished fused silica subsurface quality by the nanoindenter technique. Appl. Opt. 2011, 50, 279–286. [Google Scholar] [CrossRef]
- Wang, H.; Ma, Y.; Peng, G.; Hang, W.; Jiang, W.; Chen, H.; Wang, C.; Yuan, J.; Zhang, T. Evaluation of subsurface damage layer of BK7 glass via cross-sectional surface nanoindentation. Precis. Eng. 2021, 67, 293–300. [Google Scholar] [CrossRef]
- Guo, X.; Huang, J.; Yuan, S.; Chen, C.; Jin, Z.; Kang, R.; Guo, D. Effect of surface hydroxylation on ultra-precision machining of quartz glass. Appl. Sur. Sci. 2020, 501, 144170–144178. [Google Scholar] [CrossRef]
- He, H.; Hahn, S.H.; Yu, J.; Qiao, Q.; Duin, A.C.T.; Kim, S.H. Friction-induced subsurface densification of glass at contact stress far below indentation damage threshold. Acta Mater. 2020, 189, 166–173. [Google Scholar] [CrossRef]
- Guo, X.; Zhai, C.; Kang, R.; Jin, Z. The mechanical properties of the scratched surface for silica glass by molecular dynamics simulation. J. Non-Cryst. Solids. 2015, 420, 1–6. [Google Scholar] [CrossRef]
- Januchta, K.; Smedskjaer, M.M. Indentation deformation in oxide glasses: Quantification, structural changes, and relation to cracking. J. Non-Cryst. Solids X 2019, 1, 100007–100027. [Google Scholar] [CrossRef]
- Chowdhurya, S.C.; WiseabRaja, E.A.; Gillespie, G.W. Effects of surface crack on the mechanical properties of silica: A molecular dynamics simulation study. Eng. Fract. Mech. 2019, 207, 99–108. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.; Dey, A.; Mukhopadhyay, A.K. Novel combined scratch and nanoindentation experiments on soda-lime-silica glass. Int. J. Appl. Glass Sci. 2012, 3, 163–179. [Google Scholar] [CrossRef]
- Tonshoff, H.K.; Karpuschewski, B.; Hartmann, M.; Spengler, C. Grinding-and-slicing technique as an advanced technology for silicon wafer slicing. Mach. Sci. Technol. 1997, 1, 33–47. [Google Scholar] [CrossRef]
- Zhang, B.; Howes, T.D. Material-removal mechanisms in grinding ceramics. CIRP Ann. 1994, 43, 305–308. [Google Scholar] [CrossRef]
- Tonnellier, X.; Shore, P.; Luo, X.; Morantz, P.; Baldwin, A.; Evans, R.; Walker, D. Wheel wear and surface/subsurface qualities when precision grinding optical materials. Proc. SPIE 2006, 6273, 627308–627317. [Google Scholar] [CrossRef]
- Neauport, J.; Ambard, C.; Cormont, P.; Darbois, N.; Destribats, J.; Luitot, C.; Rondeau, O. Subsurface damage measurement of ground fused silica parts by HF etching techniques. Opt. Express 2009, 17, 20448–20504. [Google Scholar] [CrossRef]
- Randi, J.A.; Lambropoulos, J.C.; Jacobs, S.D. Subsurface damage in some single crystalline optical materials. Appl. Opt. 2005, 44, 2241–2249. [Google Scholar] [CrossRef] [PubMed]
- Mulhearn, T.O. The deformation of metals by Vickers-type pyramidal indenters. J. Mech. Phys. Solids. 1959, 7, 85–88. [Google Scholar] [CrossRef]
- Perveen, A.; Rahman, M.; Wong, Y.S. Analysis of surface and subsurface damage of micro-ground BK7 glass using on machine fabricated PCD micro-tool. Int. J. Abras. Technol. 2012, 5, 72–92. [Google Scholar] [CrossRef]
- Xu, H.H.; Jahanmir, S. Simple technique for observing subsurface damage in machining of ceramics. J. Am. Ceram. Soc. 1994, 77, 1388–1390. [Google Scholar] [CrossRef]
- Guiberteau, F.; Padture, N.P.; Lawn, B.R. Effect of grain size on Hertzian contact damage in alumina. J. Am. Ceram. Soc. 1994, 77, 1825–1831. [Google Scholar] [CrossRef]
- Helbawi, H.; Zhang, L.C.; Zarudi, I. Difference in subsurface damage in indented specimens with and without bonding layer. Int. J. Mech. Sci. 2001, 43, 1107–1121. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.; Dey, A.; Mandal, A.K.; Dey, N.; Roy, S.; Mukhopadhyay, A.K. Effect of scratching speed on deformation of soda-lime-silica glass. Appl. Phys. A 2012, 107, 685–690. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.; Dey, A.; Manda, A.K.; Dey, N.; Mukhopadhyay, A.K. New observations on scratch deformations of soda lime silica glass. J. Non-Cryst. Solids 2012, 358, 1897–1907. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.; Dey, A.; Roy, S.; Mukhopadhyay, A.K. Effect of load in scratch experiments on soda lime silica glass. J. Non-Cryst. Solids 2012, 358, 1091–1103. [Google Scholar] [CrossRef]
- Ye, J.; Yu, J.; He, H.; Zhang, Y. Effect of water on wear of phosphate laser glass and BK7 glass. Wear 2017, 376–377, 393–402. [Google Scholar] [CrossRef]
- He, H.; Yu, J.; Ye, J.; Zhang, Y. On the effect of tribo-corrosion on reciprocating scratch behaviors of phosphate laser glass. Int. J. Appl. Glass. Sci. 2018, 9, 352–363. [Google Scholar] [CrossRef]
- Feng, J.; Wan, Z.; Wang, W.; Ding, X.; Tang, Y. Crack behaviors of optical glass BK7 during scratch tests under different tool apex angles. Wear 2019, 430–431, 299–308. [Google Scholar] [CrossRef]
- Wu, H.Z.; Roberts, S.G.; Möbus, G.; Inkson, B.J. Subsurface damage analysis by TEM and 3D FIB crack mapping in alumina and alumina/5vol.% SiC nanocomposites. Acta Mater. 2003, 5, 149–163. [Google Scholar] [CrossRef]
- Korytár, D.; Zápražný, Z.; Ferrari, C.; Frigeri, C.; Jergel, M.; Maťko, I.; Kečkeš, J. Cross-sectional TEM study of subsurface damage in SPDT machining of germanium optics. Appl. Opt. 2018, 57, 1940–1943. [Google Scholar] [CrossRef]
- Budnitzki, M.; Kuna, M. Experimental and numerical investigations on stress induced phase transitions in silicon. Int. J. Solids Struct. 2017, 106–107, 294–304. [Google Scholar] [CrossRef]
- Li, M.; Karpuschewski, B.; Ohmori, H.; Riemer, O.; Wang, Y.; Dong, T. Adaptive shearing-gradient thickening polishing (AS-GTP) and subsurface damage inhibition. Int. J. Mach. Tools Manuf. 2021, 160, 103651–103664. [Google Scholar] [CrossRef]
- Stach, E.A.; Radmilovic, V. Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser. Appl. Phys. Lett. 2003, 83, 4420–4422. [Google Scholar] [CrossRef]
- Li, C.; Zhang, F.; Wang, X.; Rao, X. Investigation on surface/subsurface deformation mechanism and mechanical properties of GGG single crystal induced by nanoindentation. Appl. Opt. 2018, 57, 3661–3668. [Google Scholar] [CrossRef]
- Zhang, B.; Histoshi, T.; Masanori, Y. Study on surface cracking of alumina scratched by single-point diamonds. J. Mater. Sci. 1988, 23, 3214–3224. [Google Scholar] [CrossRef]
- Zhou, Y.; Funkenbusch, P.D.; Quesnel, D.J.; Golini, D.; Lindquist, A. Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses. J. Am. Ceram. Soc. 1994, 77, 3277–3280. [Google Scholar] [CrossRef]
- Shu, Y.; Duan, W.; Jiao, C. SSD evolution model in HF etching of fused silica optics. Optik 2019, 181, 372–377. [Google Scholar] [CrossRef]
- Acker, J.; Langner, T.; Meinel, B.; Sieber, T. Saw damage as an etch mask for the acidic texturization of multicrystalline silicon wafer. Mater. Sci. Semicond. Proc. 2018, 74, 238–278. [Google Scholar] [CrossRef]
- Rietig, A.; Langner, T.; Acker, J. A revised model of silicon oxidation during the dissolution of silicon in HF/HNO3 mixtures. Phys. Chem. Chem. Phys. 2019, 21, 22002–22013. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Yu, B.; Zhang, P.; Feng, C.; Chen, P.; Deng, L.; Gao, J.; Chen, S.; Jiang, S.; Qian, L. Rapid identification of ultrathin amorphous damage on monocrystalline silicon surface. Phys. Chem. Chem. Phys. 2020, 22, 12987–12995. [Google Scholar] [CrossRef]
- Wong, L.; Suratwala, T.; Feit, M.D.; Miller, P.E.; Steele, R. The effect of HF/NH4F etching on the morphology of surface fractures on fused silica. J. Non-Cryst. Solids 2009, 355, 797–810. [Google Scholar] [CrossRef]
- Spierings, G. Wet chemical etching of silicate-glasses in hydrofluoric acid based solutions. J. Mater. Sci. 1993, 28, 6261–6273. [Google Scholar] [CrossRef]
- Gong, S.; Zhu, X.; Sun, Y.; Tang, B.; Su, Z. Experimental research on surface characteristics and subsurface damage behavior of monocrystal sapphire induced by helical micro abrasive tools. Ceram. Int. 2022, 48, 21459–21472. [Google Scholar] [CrossRef]
- Li, J.; Gao, P.; Zhu, Y.; Li, B.; Sun, Y.; Zuo, D. Research on subsurface damage after abrasives and fixed-abrasive lapping of K9 glass. Key Eng. Mater. 2011, 487, 253–256. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Dai, Y.; Li, S.; Zhou, X. Rapid detection of subsurface damage of optical materials in lapping process and its influence regularity. Opt. Precis. Eng. 2008, 16, 16–21. [Google Scholar] [CrossRef]
- Sabia, R.; Stevens, H.J.; Varner, J.R. Pitting of a glass-ceramic during polishing with cerium oxide. J. Non-Cryst. Solids 1999, 249, 123–130. [Google Scholar] [CrossRef]
- Ma, B.; Shen, Z.; He, P.; Ji, Y.; Sang, T.; Liu, H.; Liu, D.; Wang, Z. Detection of subsurface defects of fused silica optics by confocal scattering microscopy. Chin. Opt. Lett. 2010, 8, 296–299. [Google Scholar] [CrossRef]
- Lambropoulos, J.C. From abrasive size to subsurface damage in grinding. In Optical Fabrication and Testing; Optica Publishing Group: Washington, DC, USA, 2000; Volume 8, pp. 1–2. [Google Scholar] [CrossRef]
- Zhang, B.; Howes, T.D. Subsurface evaluation of ground ceramics. CIRP Ann. 1995, 44, 263–266. [Google Scholar] [CrossRef]
- Hed, P.P.; Edwards, D.F. Optical glass fabrication technology. 2: Relationship between surface roughness and subsurface damage. Appl. Opt. 1987, 26, 4677–4680. [Google Scholar] [CrossRef] [PubMed]
- Neauport, J.; Destribats, J.; Maunier, C.; Ambard, C.; Cormont, P.; Pintault, B.; Rondeau, O. Loose abrasive slurries for optical glass lapping. Appl. Opt. 2010, 4, 5736–5745. [Google Scholar] [CrossRef]
- Lambropoulos, J.C.; Li, Y.; Funkenbusch, P.D.; Ruckman, J.L. Noncontact estimate of grinding-induced subsurface damage. Proc. SPIE 1999, 3782, 41–50. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Wu, Y. Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes. J. Mater. Process. Technol. 2008, 205, 34–41. [Google Scholar] [CrossRef]
- Li, H.; Yu, T.; Zhu, L.; Wang, W. Evaluation of grinding-induced subsurface damage in optical glass BK7. J. Mater. Process. Technol. 2016, 229, 785–794. [Google Scholar] [CrossRef]
- Lakhdari, F.; Bouzid, D.; Belkhir, N.; Herold, V. Surface and subsurface damage in Zerodur® glass ceramic during ultrasonic assisted grinding. Int. J. Adv. Manuf. Technol. 2017, 90, 1993–2000. [Google Scholar] [CrossRef]
- Lawn, B.; Wilshaw, R. Indentation fracture: Principles and applications. J. Mater. Sci. 1975, 10, 1049–1081. [Google Scholar] [CrossRef]
- Qi, H.; Shi, L.; Teng, Q.; Hong, T.; Tangwarodomnukun, V.; Liu, G.; Li, H. Subsurface damage evaluation in the single abrasive scratching of BK7 glass by considering coupling effect of strain rate and temperature. Ceram. Int. 2022, 48, 8661–8670. [Google Scholar] [CrossRef]
- Yin, S.; Xiao, H. Model of grinding-induced line/area roughness and subsurface damage in brittle material based on genetic algorithm and deep neural network. Proc. SPIE 2022, 12166, 121664D1–121664D6. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Vishwakarma, M.; Soni, A. Advances and researches on nondestructive testing: A review. Mater. Today Proc. 2018, 5, 3690–3698. [Google Scholar] [CrossRef]
- Gholizadeh, S. A review of non-destructive testing methods of composite materials. Procedia Struct. Integr. 2016, 1, 50–57. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, C.; Liu, X.; Wu, Y.; Li, Z.; Li, R.; He, W. A review of subsurface damage detection methods for optical components. AIP. Adv. 2023, 13, 060702. [Google Scholar] [CrossRef]
- Cao, H.; Peng, X.; Shi, F.; Tian, Y.; Kong, L.; Chen, M.; Hao, Q. Advances in subsurface defect detection techniques for fused silica optical components A literature review. J. Mat. Res. Technol. 2025, 35, 809–835. [Google Scholar] [CrossRef]
- Temple, P.A. Total internal reflection microscopy: A surface inspection technique. Appl. Opt. 1981, 20, 2656–2664. [Google Scholar] [CrossRef]
- Cui, H.; Liu, S.; Zhao, Y.; Liu, J.; He, J. Research of Scratch Visibility in (Subsurface) Damage Detection Based on Total Internal Reflection Microscopy. In Pacific Rim Laser Damage 2014: Optical Materials for High-Power Lasers; SPIE: Bellingham, DC, USA, 2014. [Google Scholar] [CrossRef]
- van der Bijl, R.J.M.; Fähnle, O.W.; van Brug, H.; Braat, J.J.M. In-process monitoring of grinding and polishing of optical surfaces. Appl. Opt. 2000, 39, 3300–3303. [Google Scholar] [CrossRef]
- Liao, Z.M.; Cohen, S.J.; Taylor, J.R. Total internal reflection microscopy (TIRM) as a nondestructive subsurface damage assessment tool. Proc. SPIE 1994, 2428, 43–53. [Google Scholar] [CrossRef]
- Xu, L.; Ni, K.; Zhu, R.; Liu, X.; Liu, S.; Zhang, B.; Shao, J. Enhanced internal reflection microscopy for subsurface damage inspection. In Pacific Rim Laser Damage 2016: Optical Materials for High-Power Lasers; SPIE: Bellingham, DC, USA, 2016; Volume 99830, pp. 99830Z1–99830Z9. [Google Scholar] [CrossRef]
- Ni, K.; Cheng, X.; Huang, B.; Liu, S.; Shao, J.; Wu, Z.; Chen, J.; Huang, M. Quantitative evaluation of subsurface damage by improved total internal reflection microscopy. Appl. Sci. 2019, 9, 1819. [Google Scholar] [CrossRef]
- Winn, A.J.; Yeomans, J.A. A study of microhardness indentation fracture in alumina using confocal scanning laser microscopy. Philos. Mag. 1996, 74, 1253–1263. [Google Scholar] [CrossRef]
- Bertussi, B.; Cormont, P.; Palmier, S.; Legros, P.; Rullier, J. Initiation of laser-induced damage sites in fused silica optical components. Opt. Exp. 2009, 17, 11469–11479. [Google Scholar] [CrossRef]
- Zhang, J.M.; Sun, J.G.; Pei, Z.J. Application of laser scattering on detection of subsurface damage in silicon wafers. In Proceedings of the ASME 2003, International Mechanical Engineering Congress and Exposition, Washington, DC, USA, 15–21 November 2003; pp. 15–24. [Google Scholar] [CrossRef]
- Fine, K.R.; Garbe, R.; Gip, T. Non-destructive real-time direct measurement of subsurface damage. In Proceedings of the Defense and Security. International Society for Optics and Photonics, Orlando, FL, USA, 28 March–1 April 2005; pp. 105–110. [Google Scholar] [CrossRef]
- Sun, H.; Wang, S.; Bai, J.; Zhang, J.; Huang, J.; Zhou, X.; Liu, D.; Liu, C. Confocal laser scanning and 3D reconstruction methods for the subsurface damage of polished optics. Opt. Lasers Eng. 2021, 136, 106315–106322. [Google Scholar] [CrossRef]
- Williams, W.B.; Mullany, B.A.; Parker, W.C.; Moyer, J.; Randles, M.H. Using quantum dots to tag subsurface damage in lapped and polished glass samples. Appl. Opt. 2009, 48, 5155–5163. [Google Scholar] [CrossRef]
- Williams, W.; Mullany, B.; Parker, W.; Moyer, P.; Randles, M. Using quantum dots to evaluate subsurface damage depths and formation mechanisms in glass. CIRP Ann.-Manuf. Technol. 2010, 59, 569–572. [Google Scholar] [CrossRef]
- Kanematsu, W. Visualization of subsurface damage in silicon nitride from grinding by a plasma etching and dye impregnation method. J. Am. Ceram. Soc. 2006, 89, 2564–2570. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, Y.; Deng, Q.; Zhao, L.; Hu, S. Contrast enhancement of microsphere-assisted super-resolution imaging in dark-field microscopy. Appl. Phys. Exp. 2017, 10, 082501–082505. [Google Scholar] [CrossRef]
- Liu, J.; Hua, Z.; Liu, C. Compact dark-field confocal microscopy based on an annular beam with orbital angular momentum. Opt. Lett. 2021, 46, 5591–5594. [Google Scholar] [CrossRef]
- Zhang, K.; Li, L.; Liu, Q. Dark-field structured illumination microscopy for highly sensitive detection of 3D defects in optical materials. Opt. Laser Eng. 2023, 161, 107340. [Google Scholar] [CrossRef]
- Sun, H.; Wang, S.; Hu, X.; Liu, H.; Zhou, X.; Cheng, X.; Sun, F.; Liu, Y.; Liu, D. Detection of surface defects and subsurface defects of polished optics with multisensor image fusion. PhotoniX 2022, 3, 6. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C.; Zou, C.; Zhao, Y.; Liu, J. High signal-to-noise ratio and high contrast dark-field confocal imaging of subsurface defectsts. Opt. Commun. 2023, 528, 129052–129060. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Liu, C.; Wang, Y. 3D dark-field confocal microscopy for subsurface defects detection. Opt. Lett. 2020, 45, 660–663. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, J.; Liu, C. High-resolution dark-field confocal microscopy based on radially polarized illumination. Opt. Exp. 2022, 30, 11066–11078. [Google Scholar] [CrossRef]
- You, X.; Wang, Y.; Leach, R.; Gu, K.; Shi, Y.; Zhang, S.; Liu, J. Width determination for deep grooves based on a variable point spread function imaging model. Appl. Opt. 2020, 59, 3560–3567. [Google Scholar] [CrossRef]
- Tuchin, V.V.; Wang, R.K.; Tuchin, V.V. Optical coherence tomography: Light scattering and imaging enhancement. In Handbook of Coherent Domain Optical Methods; Springer: New York, NY, USA, 2013; pp. 665–742. [Google Scholar] [CrossRef]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef]
- Frank, S.; Seiler, M.; Bliedtner, J. Three-dimensional evaluation of subsurface damage in optical glasses with ground and polished surfaces using FF-OCT. Appl. Opt. 2021, 60, 2118–2126. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, W. Detecting subsurface damage within glasses with polarization-sensitive optical coherence tomography. Opt. Laser Technol. 2024, 177, 111146–111153. [Google Scholar] [CrossRef]
- Wang, L.; Fu, R.; Xu, C.; Xu, M. Methods and applications of full-field optical coherence tomography a review. J. Biomed. Opt. 2022, 27, 050901–050927. [Google Scholar] [CrossRef]
- Frank, S.; Reichenbächer, M.; Seiler, M.; Thelemann, D.; Arnold, T.; Bliedtner, J. Revealing subsurface damage morphology and patternsin areal ultrashort pulse laser machining of glass. Lasers Manuf. Mater. Process. 2024, 11, 631–648. [Google Scholar] [CrossRef]
- Bashkansky, M.; Battle, P.R.; Duncan, M.D.; Kahn, M.; Reintjes, J. Subsurface defect detection in ceramics using an optical gated scatter reflectometer. J. Am. Ceram. Soc. 1996, 79, 1397–1400. [Google Scholar] [CrossRef]
- Bashkansky, M.; Duncan, M.D.; Kahn, M.; Lewis, D.; Reintjes, J. Subsurface defect detection in ceramics by high-speed high-resolution optical coherent tomography. Opt. Lett. 1997, 22, 61–63. [Google Scholar] [CrossRef]
- Sergeeva, M.; Khrenikov, K.; Hellmuth, T.; Boerret, R. Sub surface damage measurements based on short coherent interferometry. J. Eur. Opt. Soc. Rapid 2010, 5, 10003–10008. [Google Scholar] [CrossRef]
- Dufour, M.L.; Lamouche, G.; Vergnole, S.; Gauthier, B.; Padioleau, C.; Hewko, M.; Lévesque, S.; Bartulovic, V. Surface inspection of hard-to-reach industrial partsusing low-coherence interferometry. Proc. SPIE 2006, 6343, Z1–Z7. [Google Scholar] [CrossRef]
- Chen, J.; Dong, J.; Wu, Z. Development of a “turn-key” system for weak absorption measurement and analysis. In Pacific Rim Laser Damage 2013: Optical Materials for High Power Lasers; SPIE: Bellingham, DC, USA, 2013; Volume 8786, pp. M1–M7. [Google Scholar]
- Bertussi, B.; Natoli, J.Y.; Commandre, M.; Rullier, J.L.; Bonneau, F.; Combis, P.; Bouchut, P. Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film. Opt. Commun. 2005, 254, 299–309. [Google Scholar] [CrossRef]
- Li, B.; Hou, C.; Tian, C.; Guo, J.; Xiang, X.; Jiang, X.; Wang, H.; Liao, W.; Yuan, X.; Jiang, X.; et al. Layer by layer exposure of subsurface defects and laser-induced damage mechanism of fused silica. Appl. Surf. Sci. 2020, 508, 145186–145195. [Google Scholar] [CrossRef]
- Liu, H.; Wang, F.; Huang, J.; Meng, J.; Ma, Y.; Lian, Y.; Sun, L.; Ye, X.; Geng, F.; Jiang, X.; et al. Experimental study of 355 nm laser damage ignited by Fe and Ce impurities on fused silica surface. Opt. Mater. 2019, 95, 109231–109237. [Google Scholar] [CrossRef]
- Leidinger, M.; Fieberg, S.; Waasem, N.; Kuhnemann, F.; Buse, K.; Breunig, I. Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range. Opt. Exp. 2015, 23, 21690–21705. [Google Scholar] [CrossRef] [PubMed]
- Skvortsov, L.A. Laser photothermal spectroscopy of light-induced absorption. Quantum Electron. 2013, 43, 1–13. [Google Scholar] [CrossRef]
- Liu, H.; Huang, J.; Wang, F.; Zhou, X.; Ye, X.; Zhou, X.; Sun, L.; Jiang, X.; Zhan, S.; Zheng, W. Subsurface defects of fused silica optics and laser induced damage at 351 nm. Opt. Exp. 2013, 21, 12204–12217. [Google Scholar] [CrossRef]
- Liu, H.; Ye, X.; Zhou, X.; Huang, J.; Wang, F.; Zhou, X.; Wu, W.; Jiang, X.; Sui, Z.; Zheng, W. Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process. Opt. Mater. 2014, 36, 855–860. [Google Scholar] [CrossRef]
- Sun, L.; Jin, H.; Ye, X.; Liu, H.; Wang, F.; Jiang, X.; Wu, W.; Zheng, W. Surface modification and etch process optimization of fused silica during reaction CHF3–Ar plasma etching. Optik 2016, 127, 206–211. [Google Scholar] [CrossRef]
- Waasem, N.; Fieberg, S.; Hauser, J.; Gomes, G.; Haertle, D.; Kuhnemann, F.; Buse, K. Photoacoustic absorption spectrometer for highly transparent dielectrics with parts-per-million sensitivity. Rev. Sci. Instrum. 2013, 84, 023109–023117. [Google Scholar] [CrossRef]
- Shi, Z.; Sun, L.; Shao, T.; Liu, H.; Huang, J.; Ye, X.; Wang, F.; Zheng, W. Statistically correlating laser-induced damage performance with photothermal absorption for fused silica optics in a high-power laser system. Photonics 2022, 9, 137. [Google Scholar] [CrossRef]
- Zhong, Y.; Dai, Y.; Shi, F.; Song, C.; Tian, Y.; Lin, Z.; Zhang, W.; Shen, Y. Effects of ion beam etching on the nanoscale damage precursor evolution of fused silica. Materials 2020, 13, 1294. [Google Scholar] [CrossRef]
- Zhong, Y.; Dai, Y.; Tian, Y.; Shi, F. Effect on nanoscale damage precursors of fused silica with wet etching in KOH solutions. Opt. Mater. Exp. 2021, 11, 884–894. [Google Scholar] [CrossRef]
- Huang, J.; Wang, F.; Li, W.; Sun, L.; Shi, Z.; Zhou, X.; Jiang, X.; Yang, L.; Zheng, W. Assessing the UV-pulse-laser-induced damage density of fused silica optics using photo-thermal absorption distribution probability curves. Opt. Lett. 2022, 47, 653–656. [Google Scholar] [CrossRef]
- Fieberg, S.; Waasem, N.; Kühnemann, F.; Buse, K. Sensitive absorption measurements in bulk material and coatings using a photothermal and a photoacoustic spectrometer. Proc. SPIE 2014, 8964, 896410–8964108. [Google Scholar] [CrossRef]
- Yan, C.; Liu, B.; Li, X.; Liu, C.; Ju, X. Photothermal spectroscopy study of fused silica irradiated by a 355 nm wavelength and 6.8 ns pulse duration laser. Opt. Mater. Exp. 2019, 9, 3439–3451. [Google Scholar] [CrossRef]
- Sun, L.; Liu, H.; Huang, J.; Ye, X.; Xia, H.; Li, Q.; Jiang, X.; Wu, W.; Yang, L.; Zheng, W. Reaction ion etching process for improving laser damage resistance of fused silica optical surface. Opt. Exp. 2016, 24, 199–211. [Google Scholar] [CrossRef]
- Shao, T.; Shi, Z.; Sun, L.; Ye, X.; Huang, J.; Li, B.; Yang, L.; Zheng, W. Role of each step in the combined treatment of reactive ion etching and dynamic chemical etching for improving the laser-induced damage resistance of fused silica. Opt. Exp. 2021, 29, 12365–12380. [Google Scholar] [CrossRef]
- Köhler, R.; Gerhard, C. XPS analysis of metallic trace contaminations on fused silica surfaces induced by classical optics manufacturing. Opt. Mater. Exp. 2021, 11, 3844–3853. [Google Scholar] [CrossRef]
- Xu, M.; Dai, Y.; Zhou, L.; Shi, F.; Wan, W.; Xi, X.; Sui, T. Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering. Opt. Mater. 2016, 58, 151–157. [Google Scholar] [CrossRef]
- Wang, L.; Seyeux, A.; Marcus, P. Thermal stability of the passive film formed on 316L stainless steel surface studied by ToF-SIMS. Corr. Sci. 2020, 165, 108395–108410. [Google Scholar] [CrossRef]
- Sun, L.; Shao, T.; Zhou, X.; Li, F.; Chen, S.; Li, W.; Ye, X.; Huang, J.; Li, B.; Yang, L.; et al. KOH-based shallow etching for exposing subsurface damage and increasing laser damage resistance of fused silica optical surface. Opt. Mater. 2020, 108, 110249–110260. [Google Scholar] [CrossRef]
- Zhang, Q.; Wen, S.; Feng, Q.; Wang, H. Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation. Int. J. Miner. Metall. Mater. 2022, 29, 1150–1160. [Google Scholar] [CrossRef]
- Yan, J. Laser micro-Raman spectroscopy of single-point diamond machined silicon substrates. J. Appl. Phys. 2004, 95, 2094–2101. [Google Scholar] [CrossRef]
- Dutta, S.; Saxena, G.; Jindal, K.; Pala, R.; Gupta, V.; Chatterjee, R. Comparison of residual stress in deep boron diffused silicon (100), (110) and (111) wafers. Mater. Lett. 2013, 100, 44–46. [Google Scholar] [CrossRef]
- Mester, L.; Govyadinov, A.A.; Chen, S.; Goikoetxea, M.; Hillenbrand, R. Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat. Commun. 2020, 11, 3359–3369. [Google Scholar] [CrossRef]
- He, H.; Chen, Z.; Lin, Y.; Hahn, S.H.; Yu, J.; van Duin, A.C.T.; Gokus, T.D.; Rotkin, S.V.; Kim, S.H. Subsurface structural change of silica upon nanoscale physical contact: Chemical plasticity beyond topographic elasticity. Acta Mater. 2021, 208, 116694–116702. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Y.; Zhou, P.; Huang, N.; Guo, D. Near-field microscopy inspection of nano scratch defects on the monocrystalline silicon surface. Precis. Eng. 2019, 56, 506–512. [Google Scholar] [CrossRef]
- Rats, D.; Stebut, J.V.; Augereau, F. High frequency scanning acoustic microscopy: A novel non-destructive surface analytical tool for assessment of coating-specific elastic moduli and tomographic study of subsurface defects. Thin Solid Films 1999, 355–356, 347–352. [Google Scholar] [CrossRef]
- Korkh, Y.V.; Burkhanov, A.M.; Rinkevich, A.B. Scanning acoustic microscope for visualization of microflaws in solids. Russ. J. Nondestruct. Test. 2009, 45, 677–684. [Google Scholar] [CrossRef]
- Wang, T.; Ye, W.; Tong, Y.; Jiang, N.; Liu, L. Residual stress measurement and analysis of siliceous slate-containing quartz veins. Int. J. Miner. Met. Mater. 2023, 30, 2310–2320. [Google Scholar] [CrossRef]
- Lambert, J.; Chambers, A.R.; Sinclair, I.; Spearing, S.M. 3D damage characterisation and the role of voids in the fatigue of wind turbine blade materials. Compos. Sci. Technol. 2012, 2, 337–343. [Google Scholar] [CrossRef]
Methods | Resolution | Measurand | Advantages | Disadvantages |
---|---|---|---|---|
Mechanical-based methods | nm and μm, depending on testing conditions | Elastic modulus, hardness, … | Simple and easy to operate | Measurement errors are relatively high; cannot provide global distribution of SSD |
Polishing-based methods | nm/μm, depending on observation methods | SSD topography | Simple and easy to operate | Measurement errors are relatively high; cannot provide global distribution of SSD |
Bonded-interface methods | nm/μm, depending on observation methods | SSD topography | Direct observation of SSD | Not applicable to hard and brittle materials |
Ball-machining methods | nm/μm, depending on observation methods | SSD topography | Direct observation of SSD | Measurement errors are relatively high |
Chemical etching | nm/μm depths, depending on observation methods | SSD topography | Easy to operate with low cost | Measurement errors are relatively high; chemicals detrimental to humans and environments |
Numerical predictive methods | nm/μm depths | SSD depth | Simple, rapid, and low cost | Unable to predict 3D configuration and SSD distribution; poor universality |
TRIM | <20 μm longitudinal resolution | Scattering light from SSD | Global scanning and in-process detection | Hard to measure SSD depth quantitatively; high requirement for surface condition, suitable for polished samples |
CLSM | Lateral and longitudinal resolution of 3D images can reach 0.1 μm and 50 nm, respectively | Light emitted from SSD | Global scanning and applicable to 3D configuration of SSD | High requirement for surface condition, suitable for polished samples; can be influenced by surface scattering |
OCT | Lateral and longitudinal resolution can reach 4 μm and 10 nm, respectively | Light interference signal from SSD | Global scanning and applicable to 3D configuration of SSD | Cannot detect low light-scattering materials; difficult to process images; can be influenced by surface scattering |
DFCM | Longitudinal resolution of 3D images can reach 60 nm | Scattering light from SSD | Global scanning and applicable to 3D configuration of SSD | High requirement for surface condition, suitable for polished samples, such as large or curved optical components |
PCI | Spatial resolution < 1 μm | Refractive index | High sensitivity (<10 ppb), non-contact | High requirement for surface condition, suitable for polished samples |
XPS | Spatial resolution can reach 1 nm | Chemical composition | High sensitivity | Sample size is small; high requirement for surface condition, suitable for polished samples |
ToF-SIMS | Spatial resolution can reach 1 nm | Chemical composition | High sensitivity, global scanning, and applicable to 3D configuration of SSD composition | Sample size is small; high requirement for surface condition, suitable for polished samples |
IR | ~1 μm, can reach ~10 nm for nano-FTIR | Chemical structure | Chemical identification, non-contact | High requirement for surface condition, suitable for polished samples |
Raman | ~1 μm | Chemical structure | Chemical identification, non-contact | High requirement for surface condition, suitable for polished samples |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, L.; He, H.; Wang, F.; Sun, L.; Yu, J. Recent Advances in the Characterization of Subsurface Damage in Optical Materials. Materials 2025, 18, 3883. https://doi.org/10.3390/ma18163883
Ou L, He H, Wang F, Sun L, Yu J. Recent Advances in the Characterization of Subsurface Damage in Optical Materials. Materials. 2025; 18(16):3883. https://doi.org/10.3390/ma18163883
Chicago/Turabian StyleOu, Liwei, Hongtu He, Fang Wang, Laixi Sun, and Jiaxin Yu. 2025. "Recent Advances in the Characterization of Subsurface Damage in Optical Materials" Materials 18, no. 16: 3883. https://doi.org/10.3390/ma18163883
APA StyleOu, L., He, H., Wang, F., Sun, L., & Yu, J. (2025). Recent Advances in the Characterization of Subsurface Damage in Optical Materials. Materials, 18(16), 3883. https://doi.org/10.3390/ma18163883