Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (145)

Search Parameters:
Keywords = surface (Rayleigh) waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3454 KB  
Article
Study on Non-Contact Defect Detection Using the Laser Ultrasonic Method for Friction Stir-Welded Cu–Al Dissimilar Material Joints
by Kazufumi Nomura, Shogo Ishifuro and Satoru Asai
Appl. Sci. 2026, 16(2), 688; https://doi.org/10.3390/app16020688 - 9 Jan 2026
Viewed by 270
Abstract
Ensuring friction stir welding (FSW) joint quality typically relies on ultrasonic testing (UT) and radiographic testing (RT), but achieving complete coverage is challenging, and echo-based defect discrimination becomes difficult in dissimilar joints. Laser ultrasonics is a promising non-contact technique that remotely assesses weld [...] Read more.
Ensuring friction stir welding (FSW) joint quality typically relies on ultrasonic testing (UT) and radiographic testing (RT), but achieving complete coverage is challenging, and echo-based defect discrimination becomes difficult in dissimilar joints. Laser ultrasonics is a promising non-contact technique that remotely assesses weld quality and provides high spatial resolution at the generation and detection points. This study establishes a laser-ultrasonic method for defect detection in dissimilar Cu–Al FSW joints. Slit-like artificial defects (0.1–2.5 mm deep in 5 mm thick plates) were introduced at the Al-side interface of specimens fabricated with an Al-offset tool. Experiments and numerical simulations were used to evaluate wave modes and irradiation configurations, focusing on intensity-attenuation ratios of specific wave types, including longitudinal and Rayleigh waves. On the non-slit surface, attenuation of reflected longitudinal waves enabled detection of defects ≥0.5 mm deep. On the slit surface, Rayleigh-wave attenuation allowed identification of defects as shallow as 0.1 mm, although slit-side irradiation may be less practical during joining. These results demonstrate that defect identification in dissimilar materials can be achieved by evaluating wave-intensity attenuation rather than relying solely on the presence of reflected echoes, suggesting potential for implementing laser ultrasonics in in-process monitoring of FSW joints. Full article
(This article belongs to the Special Issue Industrial Applications of Laser Ultrasonics)
Show Figures

Figure 1

19 pages, 6064 KB  
Article
Distributed Acoustic Sensing of Urban Telecommunication Cables for Subsurface Tomography
by Yanzhe Zhang, Cai Liu, Jing Li and Qi Lu
Appl. Sci. 2025, 15(24), 13145; https://doi.org/10.3390/app152413145 - 14 Dec 2025
Viewed by 358
Abstract
With the continuous development of cities and the increasing utilization of underground space, ambient noise seismic imaging has become an essential approach for exploring and monitoring the urban subsurface. The integration of Distributed Acoustic Sensing (DAS) with ambient noise imaging offers a more [...] Read more.
With the continuous development of cities and the increasing utilization of underground space, ambient noise seismic imaging has become an essential approach for exploring and monitoring the urban subsurface. The integration of Distributed Acoustic Sensing (DAS) with ambient noise imaging offers a more convenient and effective solution for investigating shallow subsurface structures in urban environments. To overcome the limitations of conventional ambient noise seismic nodes, which are costly and incapable of achieving high-density data acquisition, this work makes use of existing urban telecommunication fibers to record ambient noise and perform sliding-window cross-correlation on it. Then the Phase-Weighted Stack (PWS) technique is applied to enhance the quality and stability of the cross-correlation signals, and fundamental-mode Rayleigh wave dispersion curves are extracted from the cross-correlation functions through the High-Resolution Linear Radon Transform (HRLRT). In the inversion stage, an adaptive regularization strategy based on automatic L-curve corner detection is introduced, which, in combination with the Preconditioned Steepest Descent (PSD) method, enables efficient and automated dispersion inversion, resulting in a well-resolved near-surface S-wave velocity structure. The results indicate that the proposed workflow can extract useful surface-wave dispersion information under typical urban noise conditions, achieving a feasible level of subsurface velocity imaging and providing a practical technical means for urban underground space exploration and utilization. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

22 pages, 8740 KB  
Article
Application of Multi-Station High-Frequency Microtremor Surface Wave Exploration in Coastal Engineering Research: A Case Study of Dongzhou Peninsula in Fujian Province
by Fei Cheng, Daicheng Peng, Daohuang Yang and Jiangping Liu
J. Mar. Sci. Eng. 2025, 13(12), 2364; https://doi.org/10.3390/jmse13122364 - 12 Dec 2025
Viewed by 390
Abstract
This study proposes a multi-station high-frequency microtremor surface-wave exploration method for high-resolution characterization of shallow subsurface structures in coastal engineering environments. Three representative layered geological models were established, and Rayleigh-wave theoretical dispersion curves were calculated using a fast vector transfer algorithm to analyze [...] Read more.
This study proposes a multi-station high-frequency microtremor surface-wave exploration method for high-resolution characterization of shallow subsurface structures in coastal engineering environments. Three representative layered geological models were established, and Rayleigh-wave theoretical dispersion curves were calculated using a fast vector transfer algorithm to analyze dispersion characteristics associated with different stratigraphic conditions. Five array geometries were then employed to acquire high-frequency ambient-noise data, and dispersion curves were extracted using the Extended Spatial Autocorrelation (ESPAC) method. Comparative analysis revealed that the rectangular, triangular, and circular arrays provided the most stable and accurate dispersion imaging, with mismatch errors below 0.5%, and their inverted S-wave velocity structures closely matched theoretical models. Field application on the Dongzhou Peninsula in Fujian Province further demonstrated the effectiveness of the proposed method. The inverted shear-wave (S-wave) velocity profiles from three survey lines successfully delineated the original and reclaimed coastlines, showing strong agreement with known geological boundaries. These results demonstrate that the proposed approach provides a non-invasive, cost-effective, and high-resolution tool for evaluating geological conditions in coastal engineering settings. It shows substantial potential for broader application in coastal site characterization and marine engineering development. Full article
(This article belongs to the Special Issue Advances in Marine Geomechanics and Geotechnics)
Show Figures

Figure 1

15 pages, 2237 KB  
Article
First Full-Scale 2D Field Experiment on Semi-Embedded Rubber Column Metamaterials: Enhanced Attenuation of Love Waves and Mechanistic Insights
by Xinchao Zhang, Ning Zheng, Changyin Ji, Yulin Lu and Qingfan Shi
Materials 2025, 18(24), 5517; https://doi.org/10.3390/ma18245517 - 8 Dec 2025
Viewed by 372
Abstract
Despite recent numerical simulations and limited laboratory studies highlighting the potential of semi-embedded seismic metamaterials (SEM) in attenuating Rayleigh waves, their real-world effectiveness remains unverified, particularly for Love waves. Love waves pose significant destructive risks to slender structures but have rarely been the [...] Read more.
Despite recent numerical simulations and limited laboratory studies highlighting the potential of semi-embedded seismic metamaterials (SEM) in attenuating Rayleigh waves, their real-world effectiveness remains unverified, particularly for Love waves. Love waves pose significant destructive risks to slender structures but have rarely been the focus of research. To address this gap, we present the first full-scale 2D field experiment on an SEM composed of an array of semi-embedded rubber column resonators. The experimental results reveal a global bandgap spanning 25–37 Hz and a localized bandgap at 37–42 Hz. At the central frequency of the global bandgap (f0 = 31 Hz), the attenuation reaches −9.3 dB for Love waves and −5.3 dB for Rayleigh waves, with the mitigation of Love waves being notably pronounced. Furthermore, our theoretical and experimental analyses provide novel mechanistic insights: the primary energy dissipation in flexible rubber resonators arises from the resonance of their exposed above-ground sections, while the underground buried parts introduce damping that moderately reduces the efficiency of surface wave attenuation. This pioneering full-scale on-site validation bridges the critical gap between simulation-based predictions and practical seismic protection systems, providing valuable reference for the engineering application of SEM, especially for mitigating destructive waves. Full article
Show Figures

Graphical abstract

23 pages, 3133 KB  
Article
Rayleigh Bound States in the Continuum in Shallow Surface Relief Phononic Crystals
by Francesc Alzina
Crystals 2025, 15(12), 1030; https://doi.org/10.3390/cryst15121030 - 1 Dec 2025
Viewed by 373
Abstract
We present an investigation into the band structure of acoustic waves in surface phononic crystals (SPnC), which comprise a square lattice of shallow cylinders on a mechanically isotropic semi-infinite substrate, utilizing the finite element method (FEM). The introduction of crystal periodicity to the [...] Read more.
We present an investigation into the band structure of acoustic waves in surface phononic crystals (SPnC), which comprise a square lattice of shallow cylinders on a mechanically isotropic semi-infinite substrate, utilizing the finite element method (FEM). The introduction of crystal periodicity to the surface modifies Rayleigh modes from non-dispersive to dispersive, thereby enabling the transformation of these modes into radiative or leaky forms. This spatial dispersion may facilitate the emergence of bound states in the continuum (BIC) by providing conditions appropriate for closing the radiative channels. A symmetry-protected BIC appears at the Γ point only when the periodicity of the crystal extends in the two dimensions of the surface plane. The decoupling from the radiative channels is due to symmetry incompatibility. An accidental BIC emerges in both one- and two-dimensional SPnCs at finite wave vectors. The partial-wave model applied to the empty lattice approximation shows that the underlying mechanism giving rise to the emergence of the accidental BIC is related to the simultaneous fulfillment of the nullification condition of the transverse radiative channel amplitude and the dispersion equation. Furthermore, the presence of the accidental BIC is not compromised by structural alterations that preserve the crystal symmetry, with only its frequency being influenced. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

17 pages, 2813 KB  
Article
Acoustic Emission from GaN-on-Sapphire Structures
by Bartlomiej K. Paszkiewicz, Bogdan Paszkiewicz and Andrzej Dziedzic
Electronics 2025, 14(21), 4146; https://doi.org/10.3390/electronics14214146 - 23 Oct 2025
Viewed by 2222
Abstract
This paper presents a study on the propagation of acoustic waves in gallium nitride (GaN) layers deposited on sapphire substrate. The influence of GaN layer thickness and the configuration of interdigital transducers (IDTs) on the generation and propagation of different surface wave modes, [...] Read more.
This paper presents a study on the propagation of acoustic waves in gallium nitride (GaN) layers deposited on sapphire substrate. The influence of GaN layer thickness and the configuration of interdigital transducers (IDTs) on the generation and propagation of different surface wave modes, including Rayleigh, Sezawa, and Love waves, was analyzed. Experimental measurements in the 100 MHz–6 GHz range were complemented by numerical simulations using the finite element method (FEM). The results demonstrated a strong dependence of wave characteristics on technological parameters, particularly the quality of the GaN–sapphire interface. The data obtained can be utilized for optimizing the design of acoustic sensors, resonators, and RF filters. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

5 pages, 2408 KB  
Abstract
Dispersion Velocity Profiles: Experimental Study with Artificial Void Simulating Different Void Ratios in Cold Joints
by Hong-Yao Cai, Chia-Chi Cheng and Yung-Chiang Lin
Proceedings 2025, 129(1), 63; https://doi.org/10.3390/proceedings2025129063 - 15 Sep 2025
Viewed by 452
Abstract
This study evaluates the bonding condition of concrete slabs with varying porosity levels (20% to 80%) at cold joint interfaces by analyzing surface wave dispersion velocity profiles. A dual-receiver setup was employed to compare the waveform and dispersion characteristics along the test lines [...] Read more.
This study evaluates the bonding condition of concrete slabs with varying porosity levels (20% to 80%) at cold joint interfaces by analyzing surface wave dispersion velocity profiles. A dual-receiver setup was employed to compare the waveform and dispersion characteristics along the test lines that crossed cold joints and those that did not. While wave velocity was reduced for lower wavelengths at lower void levels, more significant reductions were observed across the entire wavelength range at higher porosity levels. This demonstrates that Rayleigh wave dispersion can effectively assess cold joints generated by artificial voids with known void ratios. Full article
Show Figures

Figure 1

19 pages, 12279 KB  
Article
Numerical Study on Self-Pulsation Phenomenon in Liquid-Centered Swirl Coaxial Injector with Recess
by Jiwon Lee, Hadong Jung and Kyubok Ahn
Aerospace 2025, 12(9), 796; https://doi.org/10.3390/aerospace12090796 - 3 Sep 2025
Viewed by 805
Abstract
This study investigates self-pulsation phenomena in a liquid-centered swirl coaxial injector with a recess length of 4 mm, under varying liquid flow conditions, using numerical simulations. The simulations focused on analyzing spray patterns, pressure oscillations, and dominant frequency characteristics, and the results were [...] Read more.
This study investigates self-pulsation phenomena in a liquid-centered swirl coaxial injector with a recess length of 4 mm, under varying liquid flow conditions, using numerical simulations. The simulations focused on analyzing spray patterns, pressure oscillations, and dominant frequency characteristics, and the results were compared with previous experimental data. Self-pulsation, observed at liquid flow rates of 60%, 90%, and 100% of nominal values, generated distinctive periodic oscillations in the spray pattern, forming “neck” and “shoulder” breakup structures that resemble a Christmas tree. Surface waves induced by Kelvin-Helmholtz and Rayleigh-Taylor instabilities were identified at the gas-liquid interface, contributing to enhanced atomization and reduced spray breakup length. FFT analysis of the pressure oscillations highlighted a match in trends between simulation and experimental data, although variations in dominant frequency magnitudes arose due to the absence of manifold space in simulations, confining oscillations and slightly elevating dominant frequencies. Regional analysis revealed that interactions between the high-speed gas and liquid film in the recess region drive self-pulsation, leading to amplified pressure oscillations throughout the injector’s internal regions, including the gas annular passage, tangential hole, and gas core. These findings provide insights into the internal flow dynamics of swirl coaxial injectors and inform design optimizations to control instabilities in liquid rocket engines. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

13 pages, 2518 KB  
Article
A Biosensor Based on Commercial R-SAW for Rapid and Sensitive Detection of E. coli
by Li Lv, Zhuoer Xu, Yicheng Zhou, Jayne Wu, Xueyong Zhang and Haochen Qi
Chemosensors 2025, 13(8), 308; https://doi.org/10.3390/chemosensors13080308 - 14 Aug 2025
Cited by 2 | Viewed by 1474
Abstract
Escherichia coli (E. coli) is one of the most common strains that produce Shiga toxin, which can contaminate food and water, causing serious diseases and even endangering life. Therefore, the detection of E. coli is crucial for protecting public health. At [...] Read more.
Escherichia coli (E. coli) is one of the most common strains that produce Shiga toxin, which can contaminate food and water, causing serious diseases and even endangering life. Therefore, the detection of E. coli is crucial for protecting public health. At present, most traditional methods have disadvantages such as long detection cycles, high cost, and complex operations. This article proposed a novel commercial Rayleigh surface acoustic wave (R-SAW) biosensor for the detection of trace amounts of E. coli, which utilized the coordination reaction between carboxyl (-COOH) groups and aluminum ions (Al3+) to form the bio-enhanced probes, enabling the 5-terminal -COOH-modified aptamers to be preferentially enriched and directionally immobilized on the electrode surface. The biosensor could complete the detection within 100 s, with a linear detection range of 103–108 cells/mL, a limit of detection (LOD) as low as 732 cells/mL, and a selectivity ratio of 3270:1. This article conducted spiked detection on six types of food, indicating that the biosensor had the advantages of rapid speed, high sensitive, wide detection range, low LOD, strong specificity, and low cost, providing an economical and convenient solution for detecting trace amounts of E. coli in food. Full article
(This article belongs to the Section (Bio)chemical Sensing)
Show Figures

Figure 1

12 pages, 4723 KB  
Article
Investigating Rayleigh Wave Dispersion Across the Carpathian Orogen in Romania
by Andrei Mihai, Laura Petrescu, Iren-Adelina Moldovan and Mircea Radulian
Geosciences 2025, 15(6), 228; https://doi.org/10.3390/geosciences15060228 - 16 Jun 2025
Cited by 1 | Viewed by 658
Abstract
The Carpathian orogen represents a natural laboratory for the study of geodynamic interactions between lithospheres of different ages. The ancient Archean Cratons, such as the East European Craton, and Proterozoic platforms like the Scythian and Moesian platforms collided with the younger Tisza and [...] Read more.
The Carpathian orogen represents a natural laboratory for the study of geodynamic interactions between lithospheres of different ages. The ancient Archean Cratons, such as the East European Craton, and Proterozoic platforms like the Scythian and Moesian platforms collided with the younger Tisza and Dacia mega-units, resulting in the formation of the current architecture of the Carpathian Mountains. To better understand how the lithospheric structure on Romanian territory changes from the East European Craton to younger European microplates, we use earthquake data recorded at the permanent broadband seismic stations of the Romanian National Seismic Network (RSN). Applying the multiple filter technique, we examine the dispersion of Rayleigh wave group velocities for earthquakes located within a 4000 km radius of the epicenter. Travel time tomography, conducted through fast marching surface tomography, helps us to construct group velocity maps for periods between 30 and 80 s. Our findings highlight a low-velocity body in front of the Vrancea slab, indicating asthenospheric upwelling due to slab verticalization. Full article
Show Figures

Figure 1

28 pages, 4167 KB  
Article
Analytical Solution for Rayleigh Wave-Induced Dynamic Response of Shallow Grouted Tunnels in Saturated Soil
by Haifeng Huang, Mingyu Chang, Pengfa Zhou, Yang Luo, Chao Wang, Yusheng Shen, Kaixiang Fan and Bo Gao
Buildings 2025, 15(10), 1589; https://doi.org/10.3390/buildings15101589 - 8 May 2025
Cited by 1 | Viewed by 1159
Abstract
The dynamic interaction between shallow cylindrical tunnels with grouting reinforcement zones and saturated poroelastic medium under Rayleigh surface wave excitation is investigated. Employing the wave function expansion method within the framework of Biot theory, the analytical solution is derived in the frequency domain. [...] Read more.
The dynamic interaction between shallow cylindrical tunnels with grouting reinforcement zones and saturated poroelastic medium under Rayleigh surface wave excitation is investigated. Employing the wave function expansion method within the framework of Biot theory, the analytical solution is derived in the frequency domain. A comprehensive parametric analysis evaluates the influence of critical parameters—including input frequency, the stiffness and thickness ratios between the tunnel lining and grouting zone, as well as tunnel burial depth—on the dynamic behavior of the composite structure. The spatial distributions of dynamic stress concentration factors and pore pressure concentration factors obtained in this study may offer critical insights for optimizing seismic resilience design in tunnel engineering. Full article
(This article belongs to the Special Issue New Challenges of Underground Structures in Earthquake Engineering)
Show Figures

Figure 1

10 pages, 2833 KB  
Communication
Crust and Upper Mantle Structure of Mars Determined from Surface Wave Analysis
by Víctor Corchete
Appl. Sci. 2025, 15(9), 4732; https://doi.org/10.3390/app15094732 - 24 Apr 2025
Viewed by 995
Abstract
The crust and upper mantle structure of Mars is determined in the depth range of 0 to 100 km, by means of dispersion analysis and its inversion, which is performed for the surface waves present in the traces of the seismic event: S1094b. [...] Read more.
The crust and upper mantle structure of Mars is determined in the depth range of 0 to 100 km, by means of dispersion analysis and its inversion, which is performed for the surface waves present in the traces of the seismic event: S1094b. From these traces, Love and Rayleigh waves are measured in the period range of 4 to 40 s. This dispersion was calculated with a combination of digital filtering techniques, and later was inverted to obtain both models: isotropic (from 0 to 100 km depth) and anisotropic (from 0 to 15 km depth), which were calculated considering the hypothesis of the surface wave propagation in slightly anisotropic media. The seismic anisotropy determined from 0 to 5 km depth (7% of S-velocity variation and ξ ~ 1.1) could be associated with the presence of sediments or lava-flow layering, and wide damage zones surrounding the long-term fault networks. For greater depths, the observed anisotropy (17% of S-velocity variation and ξ ~ 1.4) could be due to the possible presence of volcanic materials and/or the layering of lava flows. Another cause for this anisotropy could be the presence of layered intrusions due to a single or multiple impacts, which could cause internal layering within the crust. Finally, the Moho depth is determined at 50 km as a gradual transition from crust to mantle S-velocities, through an intermediate value (3.90 km/s) determined from 50 to 60 km-depth. Full article
Show Figures

Figure 1

15 pages, 19228 KB  
Article
Method of Suppressing Rayleigh Waves Based on the Technology of Time-Domain Differential Detection
by Debing Zhu, Dazhou Zhang, Tianchun Yang, Rui Huang and Qiyan Zeng
Appl. Sci. 2025, 15(9), 4691; https://doi.org/10.3390/app15094691 - 23 Apr 2025
Viewed by 922
Abstract
Seismic exploration is widely used in shallow engineering applications, yet extracting reflected wave information remains challenging due to contamination from Rayleigh waves. To overcome this, we propose a common shot point time-domain differential method that leverages the distinct velocity contrast between slow Rayleigh [...] Read more.
Seismic exploration is widely used in shallow engineering applications, yet extracting reflected wave information remains challenging due to contamination from Rayleigh waves. To overcome this, we propose a common shot point time-domain differential method that leverages the distinct velocity contrast between slow Rayleigh waves and faster P-wave reflections. These waves exhibit lower velocity and minimal dispersion in the radiation direction under the same seismic source excitation. This study establishes two closely spaced track records termed “far main and near slave” along the direction of the measurement line to counteract this interference. This method employs the difference in travel time between Rayleigh waves and subsurface interface reflection waves for time-domain differential analysis. The interference is minimized while preserving the reflected wave signal by conducting slight amplitude compensation on the far-field Rayleigh wave signal and subtracting the master and slave records. The application of time-domain differential detection technology in shallow engineering seismic exploration and marble plate thickness detection experiments demonstrated that this method effectively eliminates the influence of Rayleigh surface waves and enhances the resolution of reflection signals from anomalous bodies. Additionally, this study examines the impact of boundaries on time-domain differential technology. Without relying on long array shot records, this approach provides a promising result for Rayleigh wave suppression and offers broad potential in elastic wave exploration. Full article
Show Figures

Figure 1

10 pages, 248 KB  
Article
Vibrations of an Elastic Half-Space
by Bogdan Felix Apostol
Geosciences 2025, 15(4), 144; https://doi.org/10.3390/geosciences15040144 - 9 Apr 2025
Cited by 3 | Viewed by 1061
Abstract
We report on the resolution of the vibration problem for a homogeneous and isotropic elastic half-space (the Lamb problem), with application to the seismic tensorial force. We assume a homogeneous and isotropic half-space with a localized force which produces vibrations. The solution is [...] Read more.
We report on the resolution of the vibration problem for a homogeneous and isotropic elastic half-space (the Lamb problem), with application to the seismic tensorial force. We assume a homogeneous and isotropic half-space with a localized force which produces vibrations. The solution is achieved by introducing vector plane-wave functions. Explicit results are given for an isotropic tensorial force and a half-space with free surface. The contribution of the Rayleigh surface waves to vibrations is analyzed in the special case of a temporal-impulse force, where the solution exhibits unphysical features, as expected: it extends over the entire free surface and time domain, with a (scissor-like) double-wall propagating both in the future and the past. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Natural Hazards)
13 pages, 3745 KB  
Communication
Seismo-Traveling Ionospheric Disturbances from the 2024 Hualien Earthquake: Altitude-Dependent Propagation Insights
by Zhiqiang Mao, Chieh-Hung Chen, Aisa Yisimayili, Jing Liu, Xuemin Zhang, Yang-Yi Sun, Yongxin Gao, Shengjia Zhang, Chuanqi Teng and Jianjun Zhao
Remote Sens. 2025, 17(7), 1241; https://doi.org/10.3390/rs17071241 - 31 Mar 2025
Cited by 1 | Viewed by 1433
Abstract
The propagation of seismo-traveling ionospheric disturbances (STIDs) is generally observed at one specific altitude layer. On 2 April 2024, a Mw 7.4 earthquake struck Hualien, which was the biggest earthquake since the 1999 Chi-Chi earthquake in the Taiwan region. In this study, a [...] Read more.
The propagation of seismo-traveling ionospheric disturbances (STIDs) is generally observed at one specific altitude layer. On 2 April 2024, a Mw 7.4 earthquake struck Hualien, which was the biggest earthquake since the 1999 Chi-Chi earthquake in the Taiwan region. In this study, a co-located vertical monitoring system combined with the observation of two horizontal layers in the ionosphere was utilized to study the STIDs associated with the Hualien earthquake. The vertical monitoring system can capture disturbances from the ground surface up to a height of ~350 km. In addition, changes in electric currents and the TEC (total electron content) at two horizontal layers, ~100 km and ~350 km, were monitored by permanent geomagnetic stations and a ground-based GNSS (global navigation satellite system) receivers network, respectively. The observations from this four-dimensional (4D) monitoring network show that the STIDs at a height of ~100 km associated with Rayleigh waves can propagate as far as 2000 km from the epicenter, while at an altitude of ~350 km, they can only propagate to about 1000 km. At an altitude of about 200 km, STIDs were also captured by a high-frequency Doppler sounder in a vertical monitoring system, which was consistent with the results in the geomagnetic field. The results from the 4D monitoring network suggest that the STIDs associated with Rayleigh waves exhibit different propagation ranges at various altitudes and prefer to propagate at low ionosphere layers. The vertical propagating waves typically only reach the bottom of the ionosphere and struggle to propagate to higher regions over long distances. Full article
Show Figures

Figure 1

Back to TopTop