Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (620)

Search Parameters:
Keywords = supramolecular materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
57 pages, 4375 KB  
Review
Phenanthrene-like Benzodichalcogenophenes: Synthesis, Electrochemical Behavior and Applications
by Valentina Pelliccioli, Serena Arnaboldi and Silvia Cauteruccio
Molecules 2026, 31(3), 425; https://doi.org/10.3390/molecules31030425 - 26 Jan 2026
Abstract
Benzodichalcogenophenes represent a valuable class of organic π-conjugated systems that have been investigated in a plethora of cutting-edge applications in the field of materials chemistry. Isomeric benzodifuran (BDF), benzodithiophene (BDT) and benzodiselenophene (BDS) analogs of phenanthrene, in [...] Read more.
Benzodichalcogenophenes represent a valuable class of organic π-conjugated systems that have been investigated in a plethora of cutting-edge applications in the field of materials chemistry. Isomeric benzodifuran (BDF), benzodithiophene (BDT) and benzodiselenophene (BDS) analogs of phenanthrene, in which the two heteroaromatic rings are ortho-fused onto a benzene ring, represent convenient frameworks as functional materials in organic electronics. The orientation of the two condensed heteroaromatic rings with respect to the central benzene ring provides diverse structural isomers, which significantly differ in degrees of curvature, electronic and electrochemical properties. Furthermore, tailored modification and functionalization strategies enable fine-tuning of their intrinsic properties, leading to unique systems. This review offers a comprehensive overview of synthetic methodologies for constructing isomeric BDF, BDT and BDS skeletons, alongside an analysis of their electrochemical properties as influenced by the nature of heteroatoms. Finally, the most relevant applications of these systems, ranging from optoelectronics, supramolecular chemistry, and emerging biological studies, are discussed, providing valuable insights for future research direction. Full article
(This article belongs to the Special Issue Organosulfur and Organoselenium Chemistry II)
13 pages, 3115 KB  
Article
BINOL-Based Zirconium Metal–Organic Cages: Self-Assembly, Guest Complexation, Aggregation-Induced Emission, and Circularly Polarized Luminescence
by Yawei Liu, Gen Li, Roy Lavendomme, En-Qing Gao and Dawei Zhang
Nanomaterials 2026, 16(2), 132; https://doi.org/10.3390/nano16020132 - 19 Jan 2026
Viewed by 291
Abstract
The development of nanoscale chiral materials with enhanced optical properties holds significant promise for advancing technologies in light-emitting devices and enantioselective sensing. Here, we report the self-assembly of chiral metal–organic cages from an axially chiral, AIE-active binaphthyl dicarboxylate ligand. This supramolecular architecture functions [...] Read more.
The development of nanoscale chiral materials with enhanced optical properties holds significant promise for advancing technologies in light-emitting devices and enantioselective sensing. Here, we report the self-assembly of chiral metal–organic cages from an axially chiral, AIE-active binaphthyl dicarboxylate ligand. This supramolecular architecture functions as a multifunctional platform, demonstrating a high affinity for anionic guests through synergistic electrostatic and hydrogen-bonding interactions. The rigid cage framework not only enhances the ligand’s intrinsic aggregation-induced emission (AIE) but also serves as a highly effective chiral amplifier. Notably, MOCs significantly boost the circularly polarized luminescence (CPL), achieving a luminescence dissymmetry factor (|glum|) of 1.2 × 10−3. This value represents an approximately five-fold enhancement over that of the unassembled ligand. The photophysical properties of this chiral supramolecular system provide a strategic blueprint for designing next-generation optical nanomaterials. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

28 pages, 8828 KB  
Article
Oil-Water Biphasic Metal-Organic Supramolecular Gel for Lost Circulation Control: Formulation Optimization, Gelation Mechanism, and Plugging Performance
by Qingwang Li, Songlei Li, Ye Zhang, Chaogang Chen, Xiaochuan Wu, Menglai Li, Shubiao Pan and Junfei Peng
Gels 2026, 12(1), 74; https://doi.org/10.3390/gels12010074 - 15 Jan 2026
Viewed by 161
Abstract
Lost circulation in oil-based drilling fluids (OBDFs) remains difficult to mitigate because particulate lost circulation materials depend on bridging/packing and gel systems for aqueous media often lack OBDF compatibility and controllable in situ sealing. A dual-precursor oil–water biphasic metal–organic supramolecular gel enables rapid [...] Read more.
Lost circulation in oil-based drilling fluids (OBDFs) remains difficult to mitigate because particulate lost circulation materials depend on bridging/packing and gel systems for aqueous media often lack OBDF compatibility and controllable in situ sealing. A dual-precursor oil–water biphasic metal–organic supramolecular gel enables rapid in situ sealing in OBDF loss zones. The optimized formulation uses an oil-phase to aqueous gelling-solution volume ratio of 10:3, with 2.0 wt% Span 85, 12.5 wt% TXP-4, and 5.0 wt% NaAlO2. Apparent-viscosity measurements and ATR–FTIR analysis were used to evaluate the effects of temperature, time, pH, and shear on MOSG gelation. Furthermore, the structural characteristics and performances of MOSGs were systematically investigated by combining microstructural characterization, thermogravimetric analysis, rheological tests, simulated fracture-plugging experiments, and anti-shear evaluations. The results indicate that elevated temperatures (30–70 °C) and mildly alkaline conditions in the aqueous gelling solution (pH ≈ 8.10–8.30) promote P–O–Al coordination and strengthen hydrogen bonding, thereby facilitating the formation of a three-dimensional network. In contrast, strong shear disrupts the nascent network and delays gelation. The optimized MOSGs rapidly exhibit pronounced viscoelasticity and thermal resistance (~193 °C); under high shear (380 rpm), the viscosity retention exceeds 60% and the viscosity recovery exceeds 70%. In plugging tests, MOSG forms a dense sealing layer, achieving a pressure-bearing gradient of 2.27 MPa/m in simulated permeable formations and markedly improving the fracture pressure-bearing capacity in simulated fractured formations. Full article
(This article belongs to the Topic Advanced Technology for Oil and Nature Gas Exploration)
Show Figures

Figure 1

16 pages, 7264 KB  
Article
Study on the Efficiency and Mechanism of a Novel Copper-Based Composite Material Activated by Supramolecular Self-Assembly for Degrading Reactive Red 3BS
by Jiangming Dai, Xinrong Wang, Bo Chen and Liang Chen
Nanomaterials 2026, 16(2), 111; https://doi.org/10.3390/nano16020111 - 15 Jan 2026
Viewed by 271
Abstract
To address the challenge of treating refractory organic dyes in textile wastewater, this study synthesized a novel copper-based composite material (designated MEL-Cu-6HNA) via a supramolecular self-assembly–pyrolysis pathway. Its core component consists of CuO/Cu2O(SO4), which was applied to efficiently degrade [...] Read more.
To address the challenge of treating refractory organic dyes in textile wastewater, this study synthesized a novel copper-based composite material (designated MEL-Cu-6HNA) via a supramolecular self-assembly–pyrolysis pathway. Its core component consists of CuO/Cu2O(SO4), which was applied to efficiently degrade the Reactive Red 3BS dye within a sodium bicarbonate-activated hydrogen peroxide (BAP) system. This material was applied to degrade the Reactive Red 3BS dye using a sodium bicarbonate-activated hydrogen peroxide system. The morphology, crystal structure, and surface chemistry of the material were systematically characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Electron paramagnetic resonance (EPR) was employed to identify reactive species generated during the reaction. The effects of dye concentration, H2O2 concentration, MEL-Cu-6HNA dosage, and coexisting substances in water on degradation efficiency were systematically investigated, with active species identified via EPR. This study marks the first application of the supramolecular self-assembled CuO/Cu2O(SO4)2 composite material MEL-Cu-6HNA, prepared via pyrolysis, in a sodium bicarbonate-activated hydrogen peroxide system. It achieved rapid and efficient decolorization of the recalcitrant Reactive Red 3BS dye. The three-dimensional sulfate framework and dual Cu2+ sites of the material significantly enhanced the degradation efficiency. MEL-Cu-6HNA achieved rapid and efficient decolorization of the recalcitrant Reactive Red 3BS in a sodium bicarbonate-activated hydrogen peroxide system. The material’s three-dimensional sulfate framework and dual Cu2+ sites significantly enhanced interfacial electron transfer and Cu2+/Cu+ cycling activation capacity. ·OH served as the primary reactive oxygen species (ROS), with SO42−, 1O2, and ·O2 contributing to sustained radical generation. This system achieved 95% decolorization within 30 min, demonstrating outstanding green treatment potential and providing a reliable theoretical basis and practical pathway for efficient, low-energy treatment of dyeing wastewater. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

17 pages, 6554 KB  
Article
Further Insights into the Crystal Engineering of High Explosives of 1:2 Salts of the s-Tetrazine Receptor-Picrate Anion Series
by Matteo Savastano, María Dolores López de la Torre, Marco Pagliai, Giovanna Poggi, Francesca Ridi, Carla Bazzicalupi, Manuel Melguizo and Antonio Bianchi
Crystals 2026, 16(1), 53; https://doi.org/10.3390/cryst16010053 - 12 Jan 2026
Viewed by 196
Abstract
Both s-tetrazine and picric acid are widely known compounds in the realm of high-energy materials. We had previously taken an interest—mostly supramolecular, i.e., directed at the elucidation of lone pair–π interactions—in the crystal packing of phases containing s-tetrazine-based cations and picrate anions. Herein [...] Read more.
Both s-tetrazine and picric acid are widely known compounds in the realm of high-energy materials. We had previously taken an interest—mostly supramolecular, i.e., directed at the elucidation of lone pair–π interactions—in the crystal packing of phases containing s-tetrazine-based cations and picrate anions. Herein we report two novel compounds of this family: H2L4(picr)2 and (H2L5)2(picr)4; the former is a polymorph of a previously reported compound of a homologous host series (3,6-bis(4-morpholinobutyl)-1,2,4,5-tetrazine), the latter a salt of the commercially available 3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine. The new phases were investigated via XRD: main interactions, crystal packing, and potential slip planes are discussed. Thermal analysis (DSC/TGA) was conducted for L5 and (H2L5)2(picr)4. Enthalpies of formation (thermochemical cycles/DFT) and in silico explosion parameters (EXPLO5) are reported for all compounds. Overall, the data herein reported improve the understanding of the correlation among supramolecular/packing details and the resulting explosive properties. Full article
(This article belongs to the Special Issue Co-Crystals and Polymorphic Transition in Energetic Materials)
Show Figures

Figure 1

15 pages, 2045 KB  
Article
PLA/MWNTs Conductive Polymer Composites as Stress Sensors—The Role of Supramolecular Ordering
by Łukasz Pietrzak and Michał Puchalski
Sensors 2026, 26(2), 414; https://doi.org/10.3390/s26020414 - 8 Jan 2026
Viewed by 196
Abstract
The incorporation of carbon nanostructures into polymer composites is of significant importance for the development of novel sensor materials, due to the excellent mechanical strength and variable electrical conductivity that these structures provide. It is evident that the significance of polylactide (PLA) and [...] Read more.
The incorporation of carbon nanostructures into polymer composites is of significant importance for the development of novel sensor materials, due to the excellent mechanical strength and variable electrical conductivity that these structures provide. It is evident that the significance of polylactide (PLA) and carbon nanotube (CNT) systems is attributable to two key factors. Firstly, these systems are notable for their environmental sustainability. Secondly, they exhibit enhanced functional properties. Despite the fact that a considerable number of studies have been conducted on conductive PLA/CNT composites, there has been limited research focusing on the supramolecular ordering of the polymer matrix and its impact on electromechanical properties. This factor, however, has been demonstrated in this study to significantly influence their response to applied stress and, consequently, their potential application as stress sensors. The present study has demonstrated that the precipitation method is an effective means of producing conductive PLA/MWNTs nanocomposites. This method is effective in ensuring the uniform dispersion of the filler in the polymer matrix, which creates an interesting prospect for mechanical sensors. It is evident that the durability of the nanocomposites is a key factor in ensuring the ordering of the supramolecular structure of the PLA matrix into the α form. The materials obtained were found to have a low percolation threshold of 0.2 wt.%. Furthermore, the practical application of these sensors, in the form of resistive strain sensors, was demonstrated for materials containing 5 wt.% of carbon nanotubes. The results presented here demonstrate that this methodology provides a novel perspective on the production of sensor materials, with the supramolecular ordering of the PLA matrix being a key factor. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

23 pages, 2568 KB  
Review
Ultra-Short Peptide Hydrogels as 3D Bioprinting Materials
by Davina In, Androulla N. Miliotou, Panoraia I. Siafaka and Yiannis Sarigiannis
Gels 2026, 12(1), 49; https://doi.org/10.3390/gels12010049 - 2 Jan 2026
Viewed by 675
Abstract
Ultra-short peptides (USPs; ≤7–8 amino acids) emerge as minimal self-assembling building blocks for hydrogel-based biomaterials. Their intrinsic biocompatibility, straightforward synthesis, and ease of tunability make them particularly attractive candidates for potential use in bioprinting. This review provides an overview of the properties of [...] Read more.
Ultra-short peptides (USPs; ≤7–8 amino acids) emerge as minimal self-assembling building blocks for hydrogel-based biomaterials. Their intrinsic biocompatibility, straightforward synthesis, and ease of tunability make them particularly attractive candidates for potential use in bioprinting. This review provides an overview of the properties of USPs along with their applications in three-dimensional (3D) bioprinting. We first discuss how peptide sequence, terminal and side-chain modifications, and environmental triggers govern USPs’ self-assembly into nanofibers and 3D networks and how these supramolecular features translate into key rheological properties such as shear-thinning, rapid gelation, and mechanical tunability. We then survey reported applications in tissue engineering, wound healing, and organotypic models, as well as emerging ultra-short peptide-based systems for drug delivery, biosensing, and imaging, highlighting examples where printed constructs support cell viability, differentiation, and matrix deposition. Attention is given to hybrid and multi-material formulations in which USPs provide bioactivity while complementary components contribute structural robustness or additional functionality. Finally, this review outlines the main challenges that currently limit widespread adoption, including achieving high print fidelity with cytocompatible crosslinking, controlling batch-to-batch variability, and addressing the scalability, cost, and sustainability of peptide manufacturing. We conclude by discussing future opportunities such as AI-assisted peptide design, adaptive and multi-material bioprinting workflows, and greener synthetic routes, which together may accelerate the translation of ultra-short peptide-based bioinks from proof-of-concept studies to clinically and industrially relevant platforms. Full article
(This article belongs to the Special Issue Hydrogel-Based Scaffolds with a Focus on Medical Use (3rd Edition))
Show Figures

Figure 1

33 pages, 4694 KB  
Review
Hydrogels as Reversible Adhesives: A Review on Sustainable Design Strategies and Future Prospects
by Monica Tonelli and Massimo Bonini
Colloids Interfaces 2025, 9(6), 84; https://doi.org/10.3390/colloids9060084 - 8 Dec 2025
Viewed by 1421
Abstract
Reversible adhesives enable temporary yet robust bonding between surfaces, allowing controlled detachment without structural or interfacial damage. This capability is gaining increasing recognition as a crucial requirement for sustainable technologies, where repairability, reusability, and minimal waste are key objectives. Among the diverse strategies [...] Read more.
Reversible adhesives enable temporary yet robust bonding between surfaces, allowing controlled detachment without structural or interfacial damage. This capability is gaining increasing recognition as a crucial requirement for sustainable technologies, where repairability, reusability, and minimal waste are key objectives. Among the diverse strategies explored for reversible adhesion (including supramolecular assemblies, bioinspired dry adhesives, and stimuli-responsive polymers), hydrogel-based systems have emerged as particularly versatile candidates due to their tunable mechanics, elasticity, and intrinsic biocompatibility. Recent studies highlight the use of renewable or biodegradable polymers to develop sustainable, water-rich hydrogel networks with controllable adhesive properties, minimizing environmental impact while maintaining performance. Despite these advances, significant challenges still hinder full implementation: biopolymer-based systems such as chitosan or starch often exhibit strong but poorly controllable adhesion, compromising reversibility and reusability. This review provides a comprehensive overview of strategies for developing hydrogel-based reversible adhesives, focusing on sustainable material selection, molecular design principles, and the underlying mechanisms of bonding and debonding. Furthermore, characterization methodologies, from conventional mechanical testing to surface-sensitive and dynamic techniques, are discussed in detail to establish structure–property–function relationships. Finally, emerging directions and application opportunities are outlined, offering a framework for the rational design of next-generation, sustainable adhesive systems. Full article
(This article belongs to the Section Application of Colloids and Interfacial Aspects)
Show Figures

Graphical abstract

20 pages, 4002 KB  
Article
Influence of Chitosan on Fish Gelatin Hydrogel: Rheological Properties and Microstructure
by Svetlana Derkach, Nikolay Voron’ko, Vlada Bordiyan, Tatyana Dyakina, Liudmila Petrova, Yuliya Kuchina, Daria Kolotova, Alena Nikiforova and Yuriy Zuev
Polysaccharides 2025, 6(4), 110; https://doi.org/10.3390/polysaccharides6040110 - 6 Dec 2025
Viewed by 514
Abstract
Hydrogels based on gelatin–chitosan mixtures have great potential for practical application in the development of new materials in food technology and biomedicine. This study examines the effect of chitosan on the gelling properties, rheological, and structural characteristics of fish gelatin type A hydrogels [...] Read more.
Hydrogels based on gelatin–chitosan mixtures have great potential for practical application in the development of new materials in food technology and biomedicine. This study examines the effect of chitosan on the gelling properties, rheological, and structural characteristics of fish gelatin type A hydrogels in the acidic pH range of 3.2–3.9. It was shown that an increase in the chitosan-to-gelatin mass ratio up to 0.15 resulted in a growth in the hydrogel thermal stability and an increase in the elastic modulus, hardness, and yield stress. The structural strength of the fish gelatin–chitosan hydrogel increased due to the strengthening of the binding zones in the fish gelatin gel network in the presence of chitosan. According to scanning electron microscopy, the supramolecular microstructure of the gels demonstrated a significant compaction upon the addition of chitosan to fish gelatin. UV and IR spectroscopy data, as well as changes in zeta potential, showed the formation of supramolecular complexes of fish gelatin with chitosan as a result of hydrophobic interactions between biomacromolecules and the establishment of hydrogen bonds; in this case, electrostatic interactions between macromolecules of fish gelatin and chitosan are practically absent in the acidic pH region. The ability to form supramolecular complexes of different compositions at different mass ratios of polysaccharide-to-fish gelatin makes it possible to obtain hydrogels with high gelling properties, strength, elasticity, and thermal stability comparable to hydrogels of mammalian gelatin. Full article
Show Figures

Graphical abstract

46 pages, 9422 KB  
Review
Macromolecular and Supramolecular Organization of Ionomers
by Ilsiya M. Davletbaeva and Oleg O. Sazonov
Polymers 2025, 17(23), 3188; https://doi.org/10.3390/polym17233188 - 29 Nov 2025
Viewed by 897
Abstract
Ionomers are promising materials because ionic interactions and their reversible clustering provide sensitivity to stimuli and facilitate energy dissipation, polymer miscibility, and ion transport. The existence of a wide variety of interacting ionic groups and their associated macromolecular structures provides the basis for [...] Read more.
Ionomers are promising materials because ionic interactions and their reversible clustering provide sensitivity to stimuli and facilitate energy dissipation, polymer miscibility, and ion transport. The existence of a wide variety of interacting ionic groups and their associated macromolecular structures provides the basis for considering the supramolecular organization of ionic polymeric materials as a factor determining the emergence of specific properties. The main structural elements of ionomers are ionic clusters, and the properties of ionomers are determined by their sizes and size distribution. Ionomers are attractive for use in composites, actuators, coatings, dyed textiles, adhesives, shape-memory and self-healing materials, water purification membranes, and ion-exchange membranes for fuel cells and batteries. This paper presents a review of the macromolecular structure and supramolecular organization of ionomers and their properties, depending on the basis of their ionic functionalization. The ionic functions of ionomers are determined primarily by the type of ion (cations or anions) that serves as the basis for their functionalization. Ionomers containing both anionic and cationic pendant ions are considered, with attention given to the influence of the nature of the counterions used on the properties of ionomers. Full article
(This article belongs to the Special Issue Polymeric Composites for Energy Storage)
Show Figures

Figure 1

41 pages, 4437 KB  
Review
Self-Healing Polymer-Based Coatings: Mechanisms and Applications Across Protective and Biofunctional Interfaces
by Aldo Cordoba, Fabiola A. Gutiérrez-Mejía, Gabriel Cepeda-Granados, Juan V. Cauich-Rodríguez and Karen Esquivel Escalante
Polymers 2025, 17(23), 3154; https://doi.org/10.3390/polym17233154 - 27 Nov 2025
Cited by 1 | Viewed by 2766
Abstract
Self-healing polymer-based coatings have emerged as a new generation of adaptive protective materials capable of restoring their structure and function after damage. This review provides a comprehensive analysis of current strategies enabling autonomous or externally triggered repair in polymeric films, including encapsulation, reversible [...] Read more.
Self-healing polymer-based coatings have emerged as a new generation of adaptive protective materials capable of restoring their structure and function after damage. This review provides a comprehensive analysis of current strategies enabling autonomous or externally triggered repair in polymeric films, including encapsulation, reversible chemistry, and microvascular network formation. Emphasis is placed on polymer–inorganic hybrid composites and vitrimeric systems, which integrate barrier protection with stimuli-responsive healing and recyclability. Comparative performance across different matrices—epoxy, polyurethane, silicone, and polyimine—is discussed in relation to corrosion protection and biomedical interfaces. The review also highlights how dynamic covalent and supramolecular interactions in hydrogels enable self-repair under physiological conditions. Recent advances demonstrate that tailoring interfacial compatibility, healing kinetics, and trigger specificity can achieve repeatable, multi-cycle recovery of both mechanical integrity and functional performance. A representative selection of published patents is also shown to illustrate recent technological advancements in the field. Finally, key challenges are identified in standardizing evaluation protocols, ensuring long-term stability, and scaling sustainable manufacturing. Collectively, these developments illustrate the growing maturity of self-healing polymer coatings as multifunctional materials bridging engineering, environmental, and biomedical applications. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

14 pages, 3662 KB  
Article
Optical Characterization of a Sensitive Lophine Layer for the Detection of Hydrogen Ions (H+)
by Pedro Marcos Velasco-Bolom, Jorge Luis Camas-Anzueto, Rocío Meza-Gordillo, Madaín Pérez-Patricio, Marcoantonio Ramírez-Morales, Gilberto Anzueto-Sánchez, Rubén Grajales-Coutiño and José Antonio Hoyo-Montaño
Optics 2025, 6(4), 58; https://doi.org/10.3390/opt6040058 - 19 Nov 2025
Viewed by 558
Abstract
The scientific community has been interested in lophine’s versatility and usage in various applications. Research has shown that humic acid is a material that exhibits interference with lophine. Humic molecules associate with each other in supramolecular conformations through weak hydrophobic interactions at alkaline [...] Read more.
The scientific community has been interested in lophine’s versatility and usage in various applications. Research has shown that humic acid is a material that exhibits interference with lophine. Humic molecules associate with each other in supramolecular conformations through weak hydrophobic interactions at alkaline or neutral pH and hydrogen bonds at low pH. This work presents the characterization of a sensitive lophine layer based on water’s hydrogen ions (pH). We conducted a spectroscopy study to analyze how the absorbance at different amounts of lophine depends on pH. This study demonstrates the hyperchromic behavior of imidazole at various pH values, which may be utilized in an intrinsic fiber optic pH sensor. The dynamic range of the fiber optic sensor was 5 to 11.3 pH units. The sensor was developed by coating a thinned fiber with a sensitive lophine layer. It achieves a sensitivity of 0.27 dB/pH and a response time of 5 s. Full article
(This article belongs to the Section Photonics and Optical Communications)
Show Figures

Figure 1

36 pages, 4531 KB  
Review
Fascinating Frontier, Nanoarchitectonics, as Method for Everything in Materials Science
by Katsuhiko Ariga
Materials 2025, 18(22), 5196; https://doi.org/10.3390/ma18225196 - 15 Nov 2025
Cited by 2 | Viewed by 851
Abstract
Methodological fusion of materials chemistry, which enables us to create materials, with nanotechnology, which enables us to control nanostructures, could enable us to create advanced functional materials with well controlled nanostructures. Positioned as a post-nanotechnology concept, nanoarchitectonics will enable this purpose. This review [...] Read more.
Methodological fusion of materials chemistry, which enables us to create materials, with nanotechnology, which enables us to control nanostructures, could enable us to create advanced functional materials with well controlled nanostructures. Positioned as a post-nanotechnology concept, nanoarchitectonics will enable this purpose. This review paper highlights the broad scope of applications of the new concept of nanoarchitectonics, selecting and discussing recent papers that contain the term ‘nanoarchitectonics’ in their titles. Topics include controls of dopant atoms in solid electrolytes, transforming the framework of carbon materials, single-atom catalysts, nanorobots and microrobots, functional nanoparticles, nanotubular materials, 2D-organic nanosheets and MXene nanosheets, nanosheet assemblies, nitrogen-doped carbon, nanoporous and mesoporous materials, nanozymes, polymeric materials, covalent organic frameworks, vesicle structures from synthetic polymers, chirality- and topology-controlled structures, chiral helices, Langmuir monolayers, LB films, LbL assembly, nanocellulose, DNA, peptides bacterial cell components, biomimetic nanoparticles, lipid membranes of protocells, organization of living cells, and the encapsulation of living cells with exogenous substances. Not limited to these examples selected in this review article, the concept of nanoarchitectonics is applicable to diverse materials systems. Nanoarchitectonics represents a conceptual framework for creating materials at all levels and can be likened to a method for everything in materials science. Developing technology that can universally create materials with unexpected functions could represent the final frontier of materials science. Nanoarchitectonics will play a significant part in achieving this final frontier in materials science. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science, Second Edition)
Show Figures

Graphical abstract

22 pages, 1175 KB  
Review
Metallogels as Supramolecular Platforms for Biomedical Applications: A Review
by Pasqualina Liana Scognamiglio, Diego Tesauro and Giovanni N. Roviello
Processes 2025, 13(11), 3671; https://doi.org/10.3390/pr13113671 - 13 Nov 2025
Viewed by 882
Abstract
Metallogels, three-dimensional supramolecular networks formed through metal–ligand coordination, have emerged as a new generation of adaptive soft materials with promising biomedical potential. By integrating the structural stability and tuneable functionality of metal centres with the dynamic self-assembly of organic gelators, these systems exhibit [...] Read more.
Metallogels, three-dimensional supramolecular networks formed through metal–ligand coordination, have emerged as a new generation of adaptive soft materials with promising biomedical potential. By integrating the structural stability and tuneable functionality of metal centres with the dynamic self-assembly of organic gelators, these systems exhibit exceptional mechanical strength, responsiveness, and multifunctionality. Recent studies demonstrate their diverse applications in drug delivery, anticancer therapy, antimicrobial and wound healing treatments, biosensing, bioimaging, and tissue engineering. Interestingly, the coordination of metal ions such as Ru(II), Zn(II), Fe(III), and lanthanides enables the creation of self-healing, thixotropic, and stimuli-responsive gels capable of controlled release and therapeutic action. Moreover, the incorporation of luminescent or redox-active metals adds optical and electronic properties suitable for diagnostic and monitoring purposes. This collection summarizes the most recent advances in the field, highlighting how rational molecular design and coordination chemistry contribute to the development of multifunctional, biocompatible, and responsive metallogels that bridge the gap between materials science and medicine. Full article
Show Figures

Figure 1

18 pages, 7072 KB  
Article
A 1D [Ni(L)(H2O)3]n·nH2O Coordination Polymer as a Dual Function Material for Antibiotic Detection and Dye Photo-Degradation
by Fengli Yu, Mingxuan Zhu, Xiaoyu Weng, Dazhi Sun, Xingyuan Yu, Jiazhen Shi, Zhifang Liu and Xiaoyang Yu
Molecules 2025, 30(22), 4366; https://doi.org/10.3390/molecules30224366 - 12 Nov 2025
Viewed by 514
Abstract
The development of materials for the remediation and monitoring of water environments remains a significant challenge in the field of environment and materials science. In this study, a nickel-based coordination polymer, [Ni(L)(H2O)3]n·nH2O (1), [...] Read more.
The development of materials for the remediation and monitoring of water environments remains a significant challenge in the field of environment and materials science. In this study, a nickel-based coordination polymer, [Ni(L)(H2O)3]n·nH2O (1), was synthesized employing 4,4′-(1H,1′H-[2,2′-biimidazole]-1,1′-diyl)dibenzoic acid (H2L). Single-crystal X-ray diffraction analysis showed that L2− ligands connect Ni2+ ions into 1D Z-shaped chains via two coordination modes. The chains are further assembled into a 3D supramolecular structure through hydrogen bonding interactions. The photocatalytic test showed that complex 1 could effectively degrade the organic dye methylene blue (MB). Under the conditions of catalyst dosage 5 mg, MB initial concentration 20 ppm and pH 7, the degradation efficiency reached 87.7% within 180 min. In addition, complex 1 can be used for the electrochemical detection of norfloxacin (NOR) by differential pulse voltammetry (DPV), exhibiting a linear response in the concentration range of 2–197 μM and the detection limit (LOD) of 1.74 μM. These results demonstrate that complex 1 has bifunctional properties of photocatalytic degradation of organic dyes and electrochemical sensing of antibiotic NOR, making it a promising candidate material for the synergistic treatment of complex pollutants. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Graphical abstract

Back to TopTop