Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (469)

Search Parameters:
Keywords = support arch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2302 KiB  
Article
Edentulous Mandibles Restored with Fiber-Reinforced Composite Prostheses Supported by 5.0 mm Ultra-Short Implants: Ten-Year Follow-Up
by Giulia Petroni, Fabrizio Zaccheo, Cosimo Rupe and Andrea Cicconetti
Prosthesis 2025, 7(4), 94; https://doi.org/10.3390/prosthesis7040094 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: This study aimed to assess the long-term clinical performance of full-arch fixed restorations made of fiber-reinforced composite (FRC) supported by four ultra-short implants (4.0 × 5.0 mm) in patients with edentulous, atrophic mandibles. Methods: Ten patients were treated at Sapienza University of [...] Read more.
Background/Objectives: This study aimed to assess the long-term clinical performance of full-arch fixed restorations made of fiber-reinforced composite (FRC) supported by four ultra-short implants (4.0 × 5.0 mm) in patients with edentulous, atrophic mandibles. Methods: Ten patients were treated at Sapienza University of Rome and monitored over a 10-year period. Each case involved the placement of four plateau-design implants with a pure conometric connection and a calcium phosphate-treated surface. The final prostheses were fabricated using CAD/CAM-milled Trinia® fiber-reinforced composite frameworks. Clinical parameters included implant and prosthesis survival, marginal bone level (MBL), peri-implant probing depth (PPD), and patient-reported outcome measures (PROMs). Results: Implant and prosthesis survival reached 100% over the 10-year follow-up. MBL data showed a minor bone gain of approximately 0.11 mm per 5 years (p < 0.0001). PPD remained stable under 3 mm, with a minimal increase of 0.16 mm over the same period (p < 0.0001). PROMs reflected sustained high patient satisfaction. No technical complications, such as chipping or framework fracture, were observed. Conclusions: Rehabilitation of the edentulous mandible with ultra-short implants and metal-free FRC prostheses proved to be a minimally invasive and long-lasting treatment option. The 10-year follow-up confirmed excellent implant and prosthetic outcomes, favorable peri-implant tissue health, and strong patient satisfaction. Nonetheless, further studies with larger sample sizes are needed to confirm these encouraging results and strengthen the clinical evidence. Full article
Show Figures

Figure 1

18 pages, 8141 KiB  
Review
AI-Driven Aesthetic Rehabilitation in Edentulous Arches: Advancing Symmetry and Smile Design Through Medit SmartX and Scan Ladder
by Adam Brian Nulty
J. Aesthetic Med. 2025, 1(1), 4; https://doi.org/10.3390/jaestheticmed1010004 (registering DOI) - 1 Aug 2025
Abstract
The integration of artificial intelligence (AI) and advanced digital workflows is revolutionising full-arch implant dentistry, particularly for geriatric patients with edentulous and atrophic arches, for whom achieving both prosthetic passivity and optimal aesthetic outcomes is critical. This narrative review evaluates current challenges in [...] Read more.
The integration of artificial intelligence (AI) and advanced digital workflows is revolutionising full-arch implant dentistry, particularly for geriatric patients with edentulous and atrophic arches, for whom achieving both prosthetic passivity and optimal aesthetic outcomes is critical. This narrative review evaluates current challenges in intraoral scanning accuracy—such as scan distortion, angular deviation, and cross-arch misalignment—and presents how innovations like the Medit SmartX AI-guided workflow and the Scan Ladder system can significantly enhance precision in implant position registration. These technologies mitigate stitching errors by using real-time scan body recognition and auxiliary geometric references, yielding mean RMS trueness values as low as 11–13 µm, comparable to dedicated photogrammetry systems. AI-driven prosthetic design further aligns implant-supported restorations with facial symmetry and smile aesthetics, prioritising predictable midline and occlusal plane control. Early clinical data indicate that such tools can reduce prosthetic misfits to under 20 µm and lower complication rates related to passive fit, while shortening scan times by up to 30% compared to conventional workflows. This is especially valuable for elderly individuals who may not tolerate multiple lengthy adjustments. Additionally, emerging AI applications in design automation, scan validation, and patient-specific workflow adaptation continue to evolve, supporting more efficient and personalised digital prosthodontics. In summary, AI-enhanced scanning and prosthetic workflows do not merely meet functional demands but also elevate aesthetic standards in complex full-arch rehabilitations. The synergy of AI and digital dentistry presents a transformative opportunity to consistently deliver superior precision, passivity, and facial harmony for edentulous implant patients. Full article
Show Figures

Graphical abstract

26 pages, 504 KiB  
Article
Exploring the Role of Social Protection in UK Asylum-Seeker Wellbeing Using Human Scale Development Theory
by Michelle James and Rachel Forrester-Jones
Soc. Sci. 2025, 14(8), 474; https://doi.org/10.3390/socsci14080474 - 30 Jul 2025
Viewed by 259
Abstract
This article utilises Max-Neef’s Human Scale Development (HSD) framework (1991) to answer two research questions: what impact does government and community-based social protection (SP) have on UK asylum-seeker wellbeing; how are interactions with all forms of SP, both as giver and receiver, supporting [...] Read more.
This article utilises Max-Neef’s Human Scale Development (HSD) framework (1991) to answer two research questions: what impact does government and community-based social protection (SP) have on UK asylum-seeker wellbeing; how are interactions with all forms of SP, both as giver and receiver, supporting or harming the satisfaction of asylum-seekers’ fundamental human needs at this time? The research study utilised a mixed-methods, collaborative, case study design situated within a refugee and asylum-seeker (RAS) support charity in Southwest England. Methods included peer-led Qualitative Impact Protocol interviews, Photovoice, surveys, and staff interviews. Data were subjected to an inductive, bottom-up process on Causal Map software (version 2, Causal Map Ltd., 39 Apsley Rd., Bath BA1 3LP, UK) and the analysis used the HSD framework. We found eight over-arching themes. The four main needs-violators/destroyers of asylum-seeker wellbeing were dehumanisation, unfreedoms, enforced ignorance, and (re)traumatisation, and the four main needs-satisfiers were common humanity, autonomy and resistance, exerting agency through knowledge exchange, and healing. Five policy and practice-focused bridging satisfiers are recommended to help move individual and collective experience from a negative to a positive state in the research population. Policy and practice should be transparent and evidence-based, efficient and equitable, supportive of participation and productivity, trauma-informed, and multi-agency. Full article
(This article belongs to the Section International Migration)
Show Figures

Figure 1

15 pages, 1812 KiB  
Article
Influence of Digital Manufacturing and Abutment Design on Full-Arch Implant Prostheses—An In Vitro Study
by Shahad Altwaijri, Hanan Alotaibi, Talal M. Alnassar and Alhanoof Aldegheishem
Materials 2025, 18(15), 3543; https://doi.org/10.3390/ma18153543 - 29 Jul 2025
Viewed by 150
Abstract
Achieving accurate fit in implant-supported prostheses is critical for avoiding mechanical complications; however, the influence of digital manufacturing techniques and abutment designs on misfit and preload remains unclear. This study evaluated the impact of different manufacturing techniques (CAD-cast and 3D printing) and abutment [...] Read more.
Achieving accurate fit in implant-supported prostheses is critical for avoiding mechanical complications; however, the influence of digital manufacturing techniques and abutment designs on misfit and preload remains unclear. This study evaluated the impact of different manufacturing techniques (CAD-cast and 3D printing) and abutment connection types (engaging [E], non-engaging [NE]) on the misfit and preload of implant-supported cantilevered fixed dental prostheses (ICFDPs). Misfit was measured at six points using scanning electron microscopy, and preload was assessed via eight strain gauges placed buccally and lingually on four implants. Frameworks were torqued to 35 Ncm, retorqued after 10 min, and subjected to 200,000 cycles of loading. Mean preload values ranged from 173.4 ± 79.5 Ncm (PF) to 330 ± 253.2 Ncm (3DP). Preload trends varied depending on the abutment type and manufacturing technique, with the 3DP group showing higher preload in engaging (E) abutments, whereas the CAD-cast group showed the opposite pattern. Although preload values varied numerically, these differences were not statistically significant (p = 0.5). In terms of misfit, significant differences were observed between groups (p < 0.05), except between CAD-cast E (86.4 ± 17.8 μm) and 3DP E (84.1 ± 19.2 μm). Additionally, E and NE abutments showed significant differences in misfit within both CAD-cast and 3DP groups. Overall, 3DP frameworks showed superior fit over CAD-cast. These findings suggest that 3DP may offer improved clinical outcomes in terms of implant–abutment fit. Full article
Show Figures

Figure 1

15 pages, 703 KiB  
Systematic Review
Total Arch Replacement with Ascyrus Medical Dissection Stent Versus Frozen Elephant Trunk in Acute Type A Aortic Dissection: A Meta-Analysis
by Massimo Baudo, Fabrizio Rosati, Michele D’Alonzo, Antonio Fiore, Claudio Muneretto, Stefano Benussi and Lorenzo Di Bacco
J. Clin. Med. 2025, 14(14), 5170; https://doi.org/10.3390/jcm14145170 - 21 Jul 2025
Viewed by 343
Abstract
Background: Acute Stanford Type A aortic dissection (ATAAD) often requires total arch replacement (TAR) with frozen elephant trunk (FET) to address entry tears and support aortic remodeling. In select cases, AMDS may provide a simpler option. The present meta-analysis aims to compare [...] Read more.
Background: Acute Stanford Type A aortic dissection (ATAAD) often requires total arch replacement (TAR) with frozen elephant trunk (FET) to address entry tears and support aortic remodeling. In select cases, AMDS may provide a simpler option. The present meta-analysis aims to compare surgical outcomes between these two approaches. Methods: A comprehensive search in the Pubmed, ScienceDirect, SciELO, DOAJ, and Cochrane library databases was performed until February 2025. We included studies that reported the outcomes of patients with ATAAD undergoing TAR with AMDS or FET. To enable a meaningful comparison, we only included FET studies where patients met the same inclusion criteria as those with the AMDS. Results: Thirty-eight articles met our inclusion criteria, with a total of 319 patients in the AMDS group and 4129 in the FET group. Patients undergoing an AMDS procedure experienced significantly higher bleeding requiring surgery (21.2% vs. 6.4%, p < 0.001) and a higher hospital mortality (14.5% vs. 10.0%, p = 0.037) compared to FET. The individual patient data of 1411 patients were constructed. Overall survival at 1 and 3 years was 81.9% ± 3.3% vs. 88.8% ± 0.9% and 81.9% ± 3.3% vs. 85.2% ± 1.0% between AMDS and FET, respectively. A flexible parametric survival model demonstrated a significant mortality drawback for AMDS compared to FET up to 31 days, beyond which the difference was no longer evident. Conclusions: The comparison between AMDS and FET for ATAAD treatment remains debated, with FET favored for its lower mortality and stronger long-term evidence. AMDS, as a newer technique, shows promise but lacks sufficient data to confirm its safety and efficacy. Full article
(This article belongs to the Special Issue Advances in Aortic Surgery)
Show Figures

Figure 1

15 pages, 2489 KiB  
Article
Trueness of Implant Positioning Using Intraoral Scanning and Dental Photogrammetry for Full-Arch Implant-Supported Rehabilitations: An In Vitro Study
by João Carlos Faria, Manuel António Sampaio-Fernandes, Susana João Oliveira, Rodrigo Malheiro, João Carlos Sampaio-Fernandes and Maria Helena Figueiral
Appl. Sci. 2025, 15(14), 8016; https://doi.org/10.3390/app15148016 - 18 Jul 2025
Viewed by 280
Abstract
This in vitro study aims to compare the trueness of digital impressions obtained using two intraoral scanners (IOS) and one photogrammetry device for full-arch implant-supported rehabilitations. According to the Caramês Classification I, three models were produced with Straumann implants arranged in different spatial [...] Read more.
This in vitro study aims to compare the trueness of digital impressions obtained using two intraoral scanners (IOS) and one photogrammetry device for full-arch implant-supported rehabilitations. According to the Caramês Classification I, three models were produced with Straumann implants arranged in different spatial distributions: Option A with six implants and Options B and C with four implants each. The three models were scanned using a 12-megapixel scanner to create digital master casts. For each reference model, 30 digital impressions were acquired: 10 with the 3Shape Trios 3 intraoral scanner, 10 with the Medit i500 intraoral scanner, and 10 with the PIC Dental photogrammetry device. Trueness was assessed through best-fit superimpositions between the digital master casts and the corresponding virtual models. The Shapiro–Wilk test was applied to assess the normality of the data distribution, and Levene’s test was used to evaluate the homogeneity of variances. The non-parametric Kruskal–Wallis test was employed to compare group differences, with post hoc adjustments made using the Bonferroni correction. A significance threshold of p = 0.05 was adopted for all statistical tests. Statistically significant differences were observed in the root mean square values among the three devices. The Medit i500 demonstrated the highest trueness, with a median (interquartile range) deviation of 24.45 (18.18) µm, whereas the PIC Dental exhibited the lowest trueness, with a median deviation of 49.45 (9.17) µm. Among the implant distribution, the Option C showed the best trueness, with a median deviation of 19.00 (27.83). Considering the results of this in vitro study, intraoral scanners demonstrated comparable trueness, whereas the photogrammetry-based system exhibited lower trueness values. Additionally, a smaller number of implants and reduced inter-implant distances were associated with improved trueness in digital impressions for full-arch implant rehabilitation. Full article
(This article belongs to the Special Issue Recent Advances in Digital Dentistry and Oral Implantology)
Show Figures

Figure 1

14 pages, 514 KiB  
Article
Mechanical and Biological Complications Two Years After Full-Arch Implant-Supported Prosthetic Rehabilitation: A Retrospective Clinical Study
by Denisa Tabita Sabău, Petra Saitos, Rahela Tabita Moca, Raluca Iulia Juncar and Mihai Juncar
Clin. Pract. 2025, 15(7), 134; https://doi.org/10.3390/clinpract15070134 - 18 Jul 2025
Viewed by 317
Abstract
Background/Objectives: Full-arch implant-supported prostheses have become a widely accepted solution for edentulous patients, yet long-term biological and mechanical complications remain a clinical concern. Methods: This retrospective study included 70 fully edentulous patients (362 implants) rehabilitated with either fixed or removable implant-supported prostheses. [...] Read more.
Background/Objectives: Full-arch implant-supported prostheses have become a widely accepted solution for edentulous patients, yet long-term biological and mechanical complications remain a clinical concern. Methods: This retrospective study included 70 fully edentulous patients (362 implants) rehabilitated with either fixed or removable implant-supported prostheses. Data were collected on demographics, medical status, type and location of prostheses, implant type, abutments, method of fixation, and complications. Statistical analysis included Fisher’s exact test, the Mann–Whitney U test, and chi-squared tests, with a significance level set at p < 0.05. Results: Mechanical complications occurred in 41.4% of patients (29 out of 70), with framework fractures reported in eight cases (27.6%), ceramic chipping in six cases (20.7%), and resin discoloration in four cases (13.8%). The prostheses were fabricated using monolithic zirconia, metal–ceramic crowns, zirconia on titanium bars, and hybrid resin/PMMA on cobalt–chromium frameworks. Gingival inflammation was also noted in 41.4% of cases (n = 29), predominantly in posterior implant regions. Younger patients and those without systemic diseases showed a significantly higher incidence of mechanical complications. Conclusions: Two years post-treatment, mechanical and biological complications appear to be independent phenomena, not significantly associated with most prosthetic variables. Patient-specific factors, particularly age and general health status, may have greater predictive value than prosthetic design. Limitations of the study include its retrospective design and the lack of radiographic data to assess peri-implant bone changes. Full article
Show Figures

Figure 1

12 pages, 251 KiB  
Article
Pain Perception and Dietary Impact in Fixed Orthodontic Appliances vs. Clear Aligners: An Observational Study
by Bianca Maria Negruțiu, Cristina Paula Costea, Alexandru Nicolae Pîrvan, Diana-Ioana Gavra, Claudia Judea Pusta, Ligia Luminița Vaida, Abel Emanuel Moca, Raluca Iurcov and Claudia Elena Staniș
J. Clin. Med. 2025, 14(14), 5060; https://doi.org/10.3390/jcm14145060 - 17 Jul 2025
Viewed by 265
Abstract
Background and Objectives: Orthodontic treatment, whether fixed or removable, offers several benefits, including improved aesthetics, enhanced oral function, and increased self-confidence. However, it may also cause discomfort and pain, particularly following adjustment visits. This study aimed to assess pain characteristics (latency and continuity), [...] Read more.
Background and Objectives: Orthodontic treatment, whether fixed or removable, offers several benefits, including improved aesthetics, enhanced oral function, and increased self-confidence. However, it may also cause discomfort and pain, particularly following adjustment visits. This study aimed to assess pain characteristics (latency and continuity), food impairment, weight loss, and analgesic use in relation to treatment duration and appliance type. Methods: This observational study included 160 orthodontic patients who completed a structured questionnaire comprising 13 single-choice items. The questionnaire assessed age, gender, residential environment, educational status, type and duration of orthodontic treatment, pain characteristics (duration, latency, continuity), food impairment, and analgesic use. Inclusion criteria specified patients with moderate anterior crowding undergoing fixed orthodontic treatment or treatment with clear aligners on both arches, for at least one month. All fixed appliance cases involved 0.022-inch-slot Roth prescription brackets. Results: Patients undergoing fixed orthodontic treatment reported a higher frequency of pain (91.4%), greater need for analgesics (95.2%), and more food impairment compared to those with clear aligners. Patients treated for less than 6 months more frequently reported pain lasting 1 week (57.1%), while those treated for 1–2 years more commonly reported pain lasting several days (43.8%). Conclusions: Fixed orthodontic appliances are associated with greater discomfort, longer pain latency, more frequent analgesic use, and higher dietary impact compared to clear aligners. These findings emphasize the importance of personalized patient counseling and proactive pain management to improve compliance, enhance quality of life, and support informed decision-making in orthodontic care. Full article
(This article belongs to the Special Issue Orthodontics: State of the Art and Perspectives)
13 pages, 6867 KiB  
Article
A Closed-Form Solution for Water Inflow into Deeply Buried Arched Tunnels
by Yunbo Wei, Qiang Chang and Kexun Zheng
Water 2025, 17(14), 2121; https://doi.org/10.3390/w17142121 - 16 Jul 2025
Viewed by 202
Abstract
The analytical solutions for groundwater inflow into tunnels are usually developed under the condition of circular tunnels. However, real-world tunnels often have non-circular cross-sections, such as arched, lens-shaped, or egg-shaped profiles. Accurately assessing water inflow for these diverse tunnel shapes remains challenging. To [...] Read more.
The analytical solutions for groundwater inflow into tunnels are usually developed under the condition of circular tunnels. However, real-world tunnels often have non-circular cross-sections, such as arched, lens-shaped, or egg-shaped profiles. Accurately assessing water inflow for these diverse tunnel shapes remains challenging. To address this gap, this study developed a closed-form analytical solution for water inflow into a deeply buried arched tunnel using the conformal mapping method. When the tunnel circumference degenerates to a circle, the analytical solution degenerates to the widely used Goodman’s equation. The solution also showed excellent agreement with numerical simulations carried out using COMSOL. Based on the analytical solution, the impact of various factors on water inflow Q was further discussed: (1) Q decreases as the boundary distance D increases. And the boundary inclination angle (απ/2) significantly affects Q only when the boundary is close to the tunnel (D<20); (2) Q increases quickly with the upper arc radius r1, while it shows minimal variation with the change in the lower arc radius r2. The findings provide a theoretical foundation for characterizing water inflow into arched tunnels, thereby supporting improved tunnel planning and grouting system design. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

16 pages, 6475 KiB  
Review
Fully Digital Workflow in Full-Arch Implant Rehabilitation: A Descriptive Methodological Review
by Chantal Auduc, Thomas Douillard, Emmanuel Nicolas and Nada El Osta
Prosthesis 2025, 7(4), 85; https://doi.org/10.3390/prosthesis7040085 - 16 Jul 2025
Viewed by 457
Abstract
Background. Digital dentistry continues to evolve, offering improved accuracy, efficiency, and patient experience across various prosthodontic procedures. Many previous reviews have focused on digital applications in prosthodontics. But the use of a fully digital workflow for full-arch implant-supported prostheses in edentulous patients remains [...] Read more.
Background. Digital dentistry continues to evolve, offering improved accuracy, efficiency, and patient experience across various prosthodontic procedures. Many previous reviews have focused on digital applications in prosthodontics. But the use of a fully digital workflow for full-arch implant-supported prostheses in edentulous patients remains an emerging and underexplored area in the literature. Objective. This article presents a comprehensive methodological review of the digital workflow in full-arch implant-supported rehabilitation. It follows a structured literature exploration and synthesizes relevant technological processes from patient assessment to prosthetic delivery. Methods. The relevant literature was retrieved from the PubMed database on 20 June 2024, to identify the most recent and relevant studies. A total of 22 articles met the eligibility criteria and were included in the review. The majority included case and technical reports. Results. The review illustrates the integration and application of digital tools in implant dentistry, including cone-beam computed tomography (CBCT) exposure, intraoral scanning, digital smile design, virtual patients, guided surgery, and digital scanning. The key findings demonstrate multiple advantages of a fully digital workflow, such as reduced treatment time and cost, increased patient satisfaction, and improved interdisciplinary communication. Conclusions. Despite these benefits, limitations persist due to the low level of evidence, technological challenges, and the lack of standardized protocols. Further randomized controlled trials and long-term clinical evaluations are essential to validate the effectiveness and feasibility of a fully digital workflow for full-arch implant-supported rehabilitation. Full article
Show Figures

Figure 1

16 pages, 2823 KiB  
Article
Electronic Properties of Molybdenum Disulfide Rings-Based Chains Associated with Length and Bias
by Yang Shu, Jie Li, Rukai Liu and Junnan Guo
Coatings 2025, 15(7), 827; https://doi.org/10.3390/coatings15070827 - 16 Jul 2025
Viewed by 224
Abstract
Molybdenum disulfide is more attractive and valuable at the molecular level due to its unique structure and exceptional properties. Here, new-type MoS2-ring chains are constructed and theoretically investigated for relevant electronic properties influenced by the length of the chain and the [...] Read more.
Molybdenum disulfide is more attractive and valuable at the molecular level due to its unique structure and exceptional properties. Here, new-type MoS2-ring chains are constructed and theoretically investigated for relevant electronic properties influenced by the length of the chain and the bias. Different from traditional wires, our findings demonstrate that the conductance of such a new-type chain presents unusually non-exponential decay with the length of the chain, with a particularly anomalous length of seven rings, which shows stronger equilibrium conductance than a shorter four-ring chain. Multi-peaks of electron transmission and delocalized electronic states contribute such uniqueness. Mo atoms play a vital role in electron transport. Essentially, a narrower “HOMO-LUMO” (the two closest energy levels to the Fermi level of MoS2-ring chain) gap compensates for the lower device density of states of new-type molybdenum disulfide-ring chains. The usual electronic structure of a seven-ring chain is derived from its slightly arched structure and mainly originates from interference, which is the resonance occurring between the electrodes. Noticeably, the bias could greatly enhance conductance, which could reach 1000 times more than the equilibrium conductance. At a certain bias, the conductance of a seven-ring chain even exceeds the shortest one- or two-ring chain. Furthermore, the threshold voltage (at which the maximum conductance appears) gradually decreases with the length of the chain and eventually remains at 0.7 V. The valuable negative differential resistance (NDR) effect could be found in such a molecular chain, which becomes more obvious as the length rises until the seven-ring chain reaches the peak. Our findings shed light on the relations between electronic properties and the length of a new-type molybdenum disulfide-ring chain, and provide support for such new-type chains in applications of innovative low-power and controllable electronics. Full article
(This article belongs to the Special Issue Research in Laser Welding and Surface Treatment Technology)
Show Figures

Figure 1

21 pages, 10296 KiB  
Article
Spatiotemporal Mechanical Effects of Framework–Slope Systems Under Frost Heave Conditions
by Wendong Li, Xiaoqiang Hou, Jixian Ren and Chaoyang Wu
Appl. Sci. 2025, 15(14), 7877; https://doi.org/10.3390/app15147877 - 15 Jul 2025
Viewed by 263
Abstract
To investigate the slope instability caused by differential frost heaving mechanisms from the slope crest to the toe during frost heave processes, this study takes a typical silty clay slope in Xinjiang, China, as the research object. Through indoor triaxial consolidated undrained shear [...] Read more.
To investigate the slope instability caused by differential frost heaving mechanisms from the slope crest to the toe during frost heave processes, this study takes a typical silty clay slope in Xinjiang, China, as the research object. Through indoor triaxial consolidated undrained shear tests, eight sets of natural and frost-heaved specimens were prepared under confining pressure conditions ranging from 100 to 400 kPa. The geotechnical parameters of the soil in both natural and frost-heaved states were obtained, and a spatiotemporal thermo-hydro-mechanical coupled numerical model was established to reveal the dynamic evolution law of anchor rod axial forces and the frost heave response mechanism between the frame and slope soil. The analytical results indicate that (1) the frost heave process is influenced by slope boundaries, resulting in distinct spatial variations in the temperature field response across the slope surface—namely pronounced responses at the crest and toe but a weaker response in the mid-slope. (2) Under the coupled drive of the water potential gradient and gravitational potential gradient, the ice content in the toe area increases significantly, and the horizontal frost heave force exhibits exponential growth, reaching its peak value of 92 kPa at the toe in February. (3) During soil freezing, the reverse stress field generated by soil arching shows consistent temporal variation trends with the temperature field. Along the height of the soil arch, the intensity of the reverse frost heave force field displays a nonlinear distribution characteristic of initial strengthening followed by attenuation. (4) By analyzing the changes in anchor rod axial forces during frost heaving, it was found that axial forces during the frost heave period are approximately 1.3 times those under natural conditions, confirming the frost heave period as the most critical condition for frame anchor design. Furthermore, through comparative analysis with 12 months of on-site anchor rod axial force monitoring data, the reliability and accuracy of the numerical simulation model were validated. These research outcomes provide a theoretical basis for the design of frame anchor support systems in seasonally frozen regions. Full article
Show Figures

Figure 1

23 pages, 11962 KiB  
Article
Model Test on Excavation Face Stability of Shallow-Buried Rectangular Pipe Jacking in Sand Layer
by Yunlong Zhang, Peng Zhang, Yong Xu and Jiahao Mei
Appl. Sci. 2025, 15(14), 7847; https://doi.org/10.3390/app15147847 - 14 Jul 2025
Viewed by 194
Abstract
This study addresses the critical challenge of excavation face instability in rectangular pipe jacking through systematic physical model tests. Utilizing a half-section symmetry apparatus with non-contact photogrammetry and pressure monitoring, the study investigates failure mechanisms under varying overburden ratios and sand densities. Key [...] Read more.
This study addresses the critical challenge of excavation face instability in rectangular pipe jacking through systematic physical model tests. Utilizing a half-section symmetry apparatus with non-contact photogrammetry and pressure monitoring, the study investigates failure mechanisms under varying overburden ratios and sand densities. Key findings reveal that support pressure evolution follows a four-stage trajectory: rapid decline (elastic deformation), slow decline (soil arching development), slow rise (arch degradation), and stabilization (global shear failure). The minimum support pressure ratio Pmin decreases by 39–58% in loose sand but only 10–37% in dense sand due to enhanced arching effects. Distinctive failure mechanisms include the following: (1) failure angles exceeding 70°, substantially larger than theoretical predictions; (2) bimodal ground settlement characterized by without settlement followed by abrupt collapse, contrasting with gradual transitions in circular excavations; (3) trapezoidal settlement surfaces with equilibrium arch angles ranging 41°–48°. These new discoveries demonstrate that real-time support pressure monitoring is essential for risk mitigation, as ground deformation exhibits severe hysteresis preceding catastrophic rapid collapse. The experimental framework provides fundamental insights into optimizing excavation face support design in shallow-buried rectangular tunneling. Full article
Show Figures

Figure 1

19 pages, 13404 KiB  
Article
A New Bronze Age Productive Site on the Margin of the Venice Lagoon: Preliminary Data and Considerations
by Cecilia Rossi, Rita Deiana, Gaia Alessandra Garosi, Alessandro de Leo, Stefano Di Stefano, Sandra Primon, Luca Peruzzo, Ilaria Barone, Samuele Rampin, Pietro Maniero and Paolo Mozzi
Land 2025, 14(7), 1452; https://doi.org/10.3390/land14071452 - 11 Jul 2025
Viewed by 432
Abstract
The possibility of collecting new archaeological elements useful in reconstructing the dynamics of population, production and commercial activities in the Bronze Age at the edge of the central-southern Venice Lagoon was provided between 2023 and 2024 thanks to an intervention of rescue archaeology [...] Read more.
The possibility of collecting new archaeological elements useful in reconstructing the dynamics of population, production and commercial activities in the Bronze Age at the edge of the central-southern Venice Lagoon was provided between 2023 and 2024 thanks to an intervention of rescue archaeology planned during some water restoration works in the Giare–Mira area. Three small excavations revealed, approximately one meter below the current surface and covered by alluvial sediments, a rather complex palimpsest dated to the late Recent and the early Final Bronze Age. Three large circular pits containing exclusively purified grey/blue clay and very rare inclusions of vegetable fibres, and many large, fired clay vessels’ bases, walls and rims clustered in concentrated assemblages and random deposits point to potential on-site production. Two pyro-technological structures, one characterised by a sub-circular combustion chamber and a long inlet channel/praefurnium, and the second one with a sub-rectangular shape with arched niches along its southern side, complete the exceptional context here discovered. To analyse the relationship between the site and the natural sedimentary succession and to evaluate the possible extension of this site, three electrical resistivity tomography (ERT) and low-frequency electromagnetic (FDEM) measurements were collected. Several manual core drillings associated with remote sensing integrated the geophysical data in the analysis of the geomorphological evolution of this area, clearly related to different phases of fluvial activity, in a framework of continuous relative sea level rise. The typology and chronology of the archaeological structures and materials, currently undergoing further analyses, support the interpretation of the site as a late Recent/early Final Bronze Age productive site. Geophysical and geomorphological data provide information on the palaeoenvironmental setting, suggesting that the site was located on a fine-grained, stable alluvial plain at a distance of a few kilometres from the lagoon shore to the south-east and the course of the Brenta River to the north. The archaeological site was buried by fine-grained floodplain deposits attributed to the Brenta River. The good preservation of the archaeological structures buried by fluvial sediments suggests that the site was abandoned soon before sedimentation started. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement II)
Show Figures

Figure 1

22 pages, 7152 KiB  
Article
Comprehensive Substantiation of the Impact of Pre-Support Technology on a 50-Year-Old Subway Station During the Construction of Undercrossing Tunnel Lines
by Bin Zhang, Shaohui He, Jianfei Ma, Jiaxin He, Yiming Li and Jinlei Zheng
Infrastructures 2025, 10(7), 183; https://doi.org/10.3390/infrastructures10070183 - 11 Jul 2025
Viewed by 191
Abstract
Due to the long operation period of Beijing Metro Line 2 and the complex surrounding building environment, this paper comprehensively studied the mechanical properties of new tunnels using close-fitting undercrossing based on pre-support technology. To control structural deformation caused by the expansion project, [...] Read more.
Due to the long operation period of Beijing Metro Line 2 and the complex surrounding building environment, this paper comprehensively studied the mechanical properties of new tunnels using close-fitting undercrossing based on pre-support technology. To control structural deformation caused by the expansion project, methods such as laboratory tests, numerical simulation, and field tests were adopted to systematically analyze the tunnel mechanics during the undercrossing of existing metro lines. First, field tests were carried out on the existing Line 2 and Line 3 tunnels during the construction period. It was found that the close-fitting construction based on pre-support technology caused small deformation displacement in the subway tunnels, with little impact on the smoothness of the existing subway rail surface. The fluctuation range was −1 to 1 mm, ensuring the safety of existing subway operations. Then, a refined finite difference model for the close-fitting undercrossing construction process based on pre-support technology was established, and a series of field and laboratory tests were conducted to obtain calculation parameters. The reliability of the numerical model was verified by comparing the monitored deformation of existing structures with the simulated structural forces and deformations. The influence of construction methods on the settlement changes of existing line tracks, structures, and deformation joints was discussed. The research results show that this construction method effectively controls the settlement deformation of existing lines. The settlement deformation of existing lines is controlled within 1~3 cm. The deformation stress of the existing lines is within the concrete strength range of the existing structure, and the tensile stress is less than 3 MPa. The maximum settlement and maximum tensile stress of the station in the pre-support jacking scheme are −5.27 mm and 2.29 MPa. The construction scheme with pre-support can more significantly control structural deformation, reduce stress variations in existing line structures, and minimize damage to concrete structures. Based on the monitoring data and simulation results, some optimization measures were proposed. Full article
(This article belongs to the Special Issue Recent Advances in Railway Engineering)
Show Figures

Figure 1

Back to TopTop