Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (146)

Search Parameters:
Keywords = supply-gas safety

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4980 KiB  
Review
Intelligent Gas Sensors for Food Safety and Quality Monitoring: Advances, Applications, and Future Directions
by Heera Jayan, Ruiyun Zhou, Chanjun Sun, Chen Wang, Limei Yin, Xiaobo Zou and Zhiming Guo
Foods 2025, 14(15), 2706; https://doi.org/10.3390/foods14152706 - 1 Aug 2025
Viewed by 304
Abstract
Gas sensors are considered a highly effective non-destructive technique for monitoring the quality and safety of food materials. These intelligent sensors can detect volatile profiles emitted by food products, providing valuable information on the changes occurring within the food. Gas sensors have garnered [...] Read more.
Gas sensors are considered a highly effective non-destructive technique for monitoring the quality and safety of food materials. These intelligent sensors can detect volatile profiles emitted by food products, providing valuable information on the changes occurring within the food. Gas sensors have garnered significant interest for their numerous advantages in the development of food safety monitoring systems. The adaptable characteristics of gas sensors make them ideal for integration into production lines, while the flexibility of certain sensor types allows for incorporation into packaging materials. Various types of gas sensors have been developed for their distinct properties and are utilized in a wide range of applications. Metal-oxide semiconductors and optical sensors are widely studied for their potential use as gas sensors in food quality assessments due to their ability to provide visual indicators to consumers. The advancement of new nanomaterials and their integration with advanced data acquisition techniques is expected to enhance the performance and utility of sensors in sustainable practices within the food supply chain. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

17 pages, 919 KiB  
Article
Impact of Hydrogen-Enriched Natural Gas on the Accuracy of Odorant Measurements
by Giorgio Ficco, Viviana Cigolotti, Gino Cortellessa, Giulia Monteleone and Marco Dell’Isola
Sensors 2025, 25(14), 4394; https://doi.org/10.3390/s25144394 - 14 Jul 2025
Viewed by 339
Abstract
Blending hydrogen with natural gas is emerging as a pivotal strategy in the transition to low-carbon energy systems. However, the exploitation of the natural gas infrastructure to distribute natural gas and hydrogen blends (and 100% hydrogen in the long-term) introduces several technical, economic, [...] Read more.
Blending hydrogen with natural gas is emerging as a pivotal strategy in the transition to low-carbon energy systems. However, the exploitation of the natural gas infrastructure to distribute natural gas and hydrogen blends (and 100% hydrogen in the long-term) introduces several technical, economic, and safety issues. These latter are paramount, especially in urban distribution networks that supply residential buildings and dwellings, since the quality and safety of the living environment can also be significantly affected. In this scenario, the reliability of odorant concentration measurements according to the best practices currently in use for natural gas becomes crucial. This study is aimed at assessing the accuracy of odorant measurements at different concentration levels (i.e., low, medium, and high) in 100% methane, methane–hydrogen blend and 100% hydrogen. The obtained results show the tendency to overestimate the odorant concentration up to 2.3% in methane–hydrogen blends at medium and high concentrations of THT as well as the underestimation of −3.4% in 100% hydrogen at low concentration of TBM. These results are consistent with those of natural gas from the city distribution network with hydrogen content of 5% and 20%. Full article
(This article belongs to the Special Issue Metrology for Living Environment 2024)
Show Figures

Figure 1

29 pages, 3895 KiB  
Article
Numerical Study on Ammonia Dispersion and Explosion Characteristics in Confined Space of Marine Fuel Preparation Room
by Phan Anh Duong, Jin-Woo Bae, Changmin Lee, Dong Hak Yang and Hokeun Kang
J. Mar. Sci. Eng. 2025, 13(7), 1235; https://doi.org/10.3390/jmse13071235 - 26 Jun 2025
Viewed by 466
Abstract
Ammonia is emerging as a promising zero-carbon marine fuel due to its high hydrogen density, low storage pressure, and long-term stability, making it well-suited for supporting sustainable maritime energy systems. However, its adoption introduces serious safety challenges, as its toxic, flammable, and corrosive [...] Read more.
Ammonia is emerging as a promising zero-carbon marine fuel due to its high hydrogen density, low storage pressure, and long-term stability, making it well-suited for supporting sustainable maritime energy systems. However, its adoption introduces serious safety challenges, as its toxic, flammable, and corrosive properties pose greater risks than many other alternative fuels, necessitating rigorous risk assessment and safety management. This study presents a comprehensive investigation of potential ammonia leakage scenarios that may arise during the fuel gas supply process within confined compartments of marine vessels, such as the fuel preparation room and engine room. The simulations were conducted using FLACS-CFD V22.2, a validated computational fluid dynamics tool specialized for flammable gas dispersion and explosion risk analysis in complex geometries. The model enables detailed assessment of gas concentration evolution, toxic exposure zones, and overpressure development under various leakage conditions, providing valuable insights for emergency planning, ventilation design, and structural safety reinforcement in ammonia-fueled ship systems. Prolonged ammonia exposure is driven by three key factors: leakage occurring opposite the main ventilation flow, equipment layout obstructing airflow and causing gas accumulation, and delayed sensor response due to recirculating flow patterns. Simulation results revealed that within 1.675 s of ammonia leakage and ignition, critical impact zones capable of causing fatal injuries or severe structural damage were largely contained within a 10 m radius of the explosion source. However, lower overpressure zones extended much further, with slight damage reaching up to 14.51 m and minor injury risks encompassing the entire fuel preparation room, highlighting a wider threat to crew safety beyond the immediate blast zone. Overall, the study highlights the importance of targeted emergency planning and structural reinforcement to mitigate explosion risks in ammonia-fueled environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 1096 KiB  
Review
Edible Coatings to Prolong the Shelf Life and Improve the Quality of Subtropical Fresh/Fresh-Cut Fruits: A Review
by Farid Moradinezhad, Atman Adiba, Azam Ranjbar and Maryam Dorostkar
Horticulturae 2025, 11(6), 577; https://doi.org/10.3390/horticulturae11060577 - 23 May 2025
Viewed by 2549
Abstract
Despite the growth of fruit production, the challenge of postharvest fruit loss particularly in tropical and subtropical fruits due to spoilage, decay, and natural deterioration remains a critical issue, impacting the global food supply chain by reducing both the quantity and quality of [...] Read more.
Despite the growth of fruit production, the challenge of postharvest fruit loss particularly in tropical and subtropical fruits due to spoilage, decay, and natural deterioration remains a critical issue, impacting the global food supply chain by reducing both the quantity and quality of fruits postharvest. Edible coatings have emerged as a sustainable solution to extending the shelf life of fruits and decreasing postharvest losses. The precise composition and application of these coatings are crucial in determining their effectiveness in preventing microbial growth and preserving the sensory attributes of fruits. Furthermore, the integration of nanotechnology into edible coatings has the potential to enhance their functionalities, including improved barrier properties, the controlled release of active substances, and increased antimicrobial capabilities. Recent advancements highlighting the impact of edible coatings are underscored in this review, showcasing how they help in prolonging shelf life, preserving quality, and minimizing postharvest losses of subtropical fresh fruits worldwide. The utilization of edible coatings presents challenges in terms of production, storage, and large-scale application, all while ensuring consumer acceptance, food safety, nutritional value, and extended shelf life. Edible coatings based on polysaccharides and proteins encounter difficulties due to inadequate water and gas barrier properties, necessitating the incorporation of plasticizers, emulsifiers, and other additives to enhance their mechanical and thermal durability. Moreover, high levels of biopolymers and active components like essential oils and plant extracts could potentially impact the taste of the produce, directly influencing consumer satisfaction. Therefore, ongoing research and innovation in this field show great potential for reducing postharvest losses and strengthening food security. This paper presents a comprehensive overview of the latest advancements in the application of edible coatings and their influence on extending the postharvest longevity of main subtropical fruits, emphasizing the importance of maintaining the quality of fresh and fresh-cut subtropical fruits, prolonging their shelf life, and protecting them from deterioration through innovative techniques. Full article
Show Figures

Figure 1

17 pages, 2913 KiB  
Article
On-Orbit Functional Verification of Combustion Science Experimental System in China Space Station
by Pingping Zhao, Xiaowu Zhang, Yu Fang, Hailong Wu, Xiaofang Yang and Huilong Zheng
Aerospace 2025, 12(5), 448; https://doi.org/10.3390/aerospace12050448 - 20 May 2025
Viewed by 367
Abstract
We demonstrated the development, implementation, and functional verification of the combustion science payload deployed on the China Space Station. The Combustion Science Experiment System (CSES) integrated seven subsystems and modular plugins to address the major challenges facing microgravity combustion research, including the lack [...] Read more.
We demonstrated the development, implementation, and functional verification of the combustion science payload deployed on the China Space Station. The Combustion Science Experiment System (CSES) integrated seven subsystems and modular plugins to address the major challenges facing microgravity combustion research, including the lack of long-duration experimental platforms, spatial constraints, and safety risks. Through on-orbit testing, the core functions of the CSES under microgravity conditions were validated, including gas supply, ignition, combustion diagnostic, exhaust purification, and emission. The system achieved autonomous experiment execution by ground-injected commands. Data from on-orbit methane combustion experiments demonstrated that the CSES was capable of stably supplying oxygen and fuel gas at a preset flow rate, real-time combustion diagnosis, and provided high-resolution flame image. Effectively exhaust gas purification and emission control of the CSES have also been tested and verified. It provides a safe, reliable, and stable microgravity environment of long-duration research for the combustion science and the development of spacecraft fire safety technology. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

24 pages, 2333 KiB  
Article
Assessment of the Energy Security of EU Countries in Light of the Expansion of Renewable Energy Sources
by Aleksandra Kuzior, Yevhen Kovalenko, Inna Tiutiunyk and Larysa Hrytsenko
Energies 2025, 18(8), 2126; https://doi.org/10.3390/en18082126 - 21 Apr 2025
Cited by 1 | Viewed by 690
Abstract
In response to disturbances in the European energy market due to Russia’s invasion of Ukraine, Europe had to strengthen its strategic resilience and reduce reliance on Russian gas imports by conserving energy, producing clean energy, and diversifying energy sources. A crucial aspect of [...] Read more.
In response to disturbances in the European energy market due to Russia’s invasion of Ukraine, Europe had to strengthen its strategic resilience and reduce reliance on Russian gas imports by conserving energy, producing clean energy, and diversifying energy sources. A crucial aspect of this effort is assessing energy security, which serves as an indicator summarizing various aspects of energy development. This study evaluates the energy system’s ability to continuously, economically, and environmentally safely meet consumer needs in 28 European economies. This research employs non-linear (piecewise linear) normalization and the multiplicative convolution method, analyzing data from 2000 to 2021. Critical components of energy security examined include the resource supply, resource availability, consumption, compensability, efficiency, safety, and innovativeness. The findings indicate that most EU countries have sufficient-to-moderate levels of energy security. The histogram depicting the distribution of the energy security index and its components reveals that the innovation aspect within a country’s energy security framework has the lowest scores. This indicates insufficient innovation activity in developing and implementing new technologies and modern energy transportation and consumption methods. Consequently, the study highlights the inadequate effectiveness of current energy transition measures and offers recommendations for European policymakers based on these findings. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

23 pages, 1265 KiB  
Review
Review of Recent Advances in Intelligent and Antibacterial Packaging for Meat Quality and Safety
by Junjun Zhang, Jianing Zhang, Lidan Zhang, Zhou Qin and Tianxing Wang
Foods 2025, 14(7), 1157; https://doi.org/10.3390/foods14071157 - 26 Mar 2025
Cited by 3 | Viewed by 1672
Abstract
Intelligent and antimicrobial packaging technologies are transforming meat preservation by enhancing food safety, enabling real-time quality monitoring, and extending shelf life. This review critically examines advancements in intelligent systems, including radio frequency identification (RFID), gas sensors, time-temperature indicators (TTIs), and colorimetric indicators for [...] Read more.
Intelligent and antimicrobial packaging technologies are transforming meat preservation by enhancing food safety, enabling real-time quality monitoring, and extending shelf life. This review critically examines advancements in intelligent systems, including radio frequency identification (RFID), gas sensors, time-temperature indicators (TTIs), and colorimetric indicators for continuous freshness assessment. A key focus is natural compound-based chromogenic indicators, which establish visual spoilage detection via distinct color transitions. Concurrently, antimicrobial systems integrating inorganic compounds, organic bioactive agents, and natural antimicrobials effectively inhibit microbial growth. Strategic incorporation of these agents into polymeric matrices enhances meat safety, supported by standardized evaluation protocols for regulatory compliance and quality assurance. Future research should prioritize optimizing sensitivity, cost-efficiency, and sustainability, alongside developing biodegradable materials to balance food safety with reduced environmental impact, advancing sustainable food supply chains. Full article
(This article belongs to the Special Issue Advances of Novel Technologies in Food Analysis and Food Safety)
Show Figures

Graphical abstract

20 pages, 4620 KiB  
Article
Assessing the Efficacy of Seawater Batteries Using NASICON Solid Electrolyte
by Mihaela Iordache, Anișoara Oubraham, Mihaela Bazga, Gheorghe Eugen Ungureanu, Simona Elena Borta and Adriana Marinoiu
Appl. Sci. 2025, 15(7), 3469; https://doi.org/10.3390/app15073469 - 21 Mar 2025
Viewed by 995
Abstract
The need to reduce greenhouse gas emissions and guarantee a stable and reliable energy supply has resulted in an increase in the demand for sustainable energy storage solutions over the last decade. Rechargeable batteries with solid-state electrolytes (SSE) have become a focus area [...] Read more.
The need to reduce greenhouse gas emissions and guarantee a stable and reliable energy supply has resulted in an increase in the demand for sustainable energy storage solutions over the last decade. Rechargeable batteries with solid-state electrolytes (SSE) have become a focus area due to their potential for increased energy density, longer cycle life, and safety over conventional liquid electrolytic batteries. The superionic sodium conductor (NASICON) Na3Zr2Si2PO12 has gained a lot of attention among ESS because of its exceptional electrochemical properties, which make it a promising candidate for solid-state sodium-ion batteries. NASICON’s open frame structure makes it possible to transport sodium ions efficiently even at room temperature, while its wide electrochemical window enables high-voltage operation and reduces side reactions, resulting in safer battery performance. Furthermore, NASICON is more compatible with sodium ion systems, can help with electrode interface issues, and is simple to process. The characteristics of NASICON make it a highly desirable and vital material for solid-state sodium-ion batteries. The aim of this study is to prepare and characterize ceramic membranes that contain Na3.06Zr2Si2PO12 and Na3.18Zr2Si2PO12, and measure their stability in seawater batteries that serve as solid electrolytes. The surface analysis revealed that the Na3.06Zr2Si2PO12 powder has a specific surface area of 7.17 m2 g−1, which is more than the Na3.18Zr2Si2PO12 powder’s 6.61 m2 g−1. During measurement, the NASICON samples showed ionic conductivities of 8.5 × 10−5 and 6.19 × 10−4 S cm−1. Using platinum/carbon (Pt/C) as a catalyst and seawater as a source of cathodes with sodium ions (Na+), batteries were charged and discharged using different current values (50 and 100 µA) for testing. In an electrochemical cell, a battery with a NASICON membrane and Pt/C catalysts with 0.00033 g platinum content was used to assess reproducibility at a constant current of 2 h. After 100 h of operation, charging and discharging voltage efficiency was 71% (50/100 µA) and 83.5% (100 µA). The electric power level is observed to increase with the number of operating cycles. Full article
(This article belongs to the Special Issue Novel Ceramic Materials: Processes, Properties and Applications)
Show Figures

Figure 1

30 pages, 3786 KiB  
Article
Governmental Functions in Establishing Alternative Marine Fuel Supply Chains in Shipping Decarbonization Governance
by Wenwen Li, Zhengliang Hu and Xinqiang Chen
Sustainability 2025, 17(7), 2808; https://doi.org/10.3390/su17072808 - 21 Mar 2025
Viewed by 456
Abstract
This study aims at exploring the importance of the governmental functions in establishing alternative marine fuel (AMF) supply chains at the early stage of shipping decarbonization and providing proposals of the main measures to be taken by governments. It first analyzes the significance [...] Read more.
This study aims at exploring the importance of the governmental functions in establishing alternative marine fuel (AMF) supply chains at the early stage of shipping decarbonization and providing proposals of the main measures to be taken by governments. It first analyzes the significance of these supply chains based on the adaptability analysis of AMFs from the perspective of their respective potential in reducing greenhouse gas emissions, costs, safety, and availability, mainly by way of a literature review. Then, the importance of governmental functions in establishing these supply chains is probed based on the features of these supply chains and by applying the theory of economics concerning the relationship between the government and the market. Finally, four specific measures to be taken by governments in establishing these supply chains are explored and proposed. The findings of a questionnaire investigation conducted in China are cited in support of the theoretical analysis. The main conclusions of this study reflecting its main contribution thereof are: AMF supply chains are crucial in achieving shipping decarbonization goals; government intervention is needed to rectify the disadvantages of market mechanisms in establishing these supply chains; as the main measures, governments need to develop strategic plans and policies, take appropriate market-based measures of tax incentives, fiscal subsidies, and/or other economic incentives, provide administrative guidance, and enhance international cooperation. Full article
Show Figures

Figure 1

25 pages, 1776 KiB  
Article
Study of the Safety–Economy–Environmental Protection Coordination of Beijing’s Natural Gas Industry Based on a Coupling Coordination Degree Model
by Qiaochu Li and Peng Zhang
Sustainability 2025, 17(6), 2686; https://doi.org/10.3390/su17062686 - 18 Mar 2025
Viewed by 519
Abstract
Under the guidance of high-quality development goals, the energy industry should not only pay attention to the development level but also to the coordination effect among multiple elements. In the process of low-carbon development, natural gas plays an important transitional role as a [...] Read more.
Under the guidance of high-quality development goals, the energy industry should not only pay attention to the development level but also to the coordination effect among multiple elements. In the process of low-carbon development, natural gas plays an important transitional role as a clean fossil energy. In this study, by introducing the theoretical perspective of energy trilemma, a comprehensive measurement system of the three-dimensional development level of the regional natural gas industry was constructed. Then, in order to overcome the limitation that the coordination effect is weakened due to the concentration of function values, an improved coupling coordination model was established based on the redefined coupling degree distribution function. Next, based on actual data from Beijing from 2006 to 2022, the safety–economy–environmental protection development level of the natural gas industry was empirically analyzed, and the coupling coordination degree of multi-dimensional factors was deeply investigated. The empirical results reveal the following: (1) Beijing is one of the largest natural gas consumption markets in China, so the economy level of its natural gas industry was relatively high. However, the safety level and environmental protection level needed to be improved. This is mainly due to the scarce resource endowment, and the dependence of economic growth on fossil energy. (2) The coupling coordination degree showed a fluctuating upward trend. The coordination degree of safety and environmental protection was the best, mainly because they coexisted and promoted each other at the policy level. The coordination degree of safety and economy was also relatively high, mainly because supply security could provide resource support for market expansion and stabilize price levels. Meanwhile, a prosperous market would stimulate energy exploration and infrastructure extension. This study will help to provide a high-quality development plan for the natural gas industry for solving the regional energy trilemma. Full article
Show Figures

Figure 1

87 pages, 11054 KiB  
Review
Advancing Hybrid Cryogenic Natural Gas Systems: A Comprehensive Review of Processes and Performance Optimization
by Bahram Ghorbani, Sohrab Zendehboudi and Noori M. Cata Saady
Energies 2025, 18(6), 1443; https://doi.org/10.3390/en18061443 - 14 Mar 2025
Cited by 2 | Viewed by 2805
Abstract
Recent research in the liquefied natural gas (LNG) industry has concentrated on reducing specific power consumption (SPC) during production, which helps to lower operating costs and decrease the carbon footprint. Although reducing the SPC offers benefits, it can complicate the system and increase [...] Read more.
Recent research in the liquefied natural gas (LNG) industry has concentrated on reducing specific power consumption (SPC) during production, which helps to lower operating costs and decrease the carbon footprint. Although reducing the SPC offers benefits, it can complicate the system and increase investment costs. This review investigates the thermodynamic parameters of various natural gas (NG) liquefaction technologies. It examines the cryogenic NG processes, including integrating NG liquid recovery plants, nitrogen rejection cycles, helium recovery units, and LNG facilities. It explores various approaches to improve hybrid NG liquefaction performance, including the application of optimization algorithms, mixed refrigerant units, absorption refrigeration cycles, diffusion–absorption refrigeration systems, auto-cascade absorption refrigeration processes, thermoelectric generator plants, liquid air cold recovery units, ejector refrigeration cycles, and the integration of renewable energy sources and waste heat. The review evaluates the economic aspects of hybrid LNG systems, focusing on specific capital costs, LNG pricing, and capacity. LNG capital cost estimates from academic sources (173.2–1184 USD/TPA) are lower than those in technical reports (486.7–3839 USD/TPA). LNG prices in research studies (0.2–0.45 USD/kg, 2024) are lower than in technical reports (0.3–0.7 USD/kg), based on 2024 data. Also, this review investigates LNG accidents in detail and provides valuable insights into safety protocols, risk management strategies, and the overall resilience of LNG operations in the face of potential hazards. A detailed evaluation of LNG plants built in recent years is provided, focusing on technological advancements, operational efficiency, and safety measures. Moreover, this study investigates LNG ports in the United States, examining their infrastructures, regulatory compliance, and strategic role in the global LNG supply chain. In addition, it outlines LNG’s current status and future outlook, focusing on key industry trends. Finally, it presents a market share analysis that examines LNG distribution by export, import, re-loading, and receiving markets. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

20 pages, 838 KiB  
Review
A Review of Decontamination of Aspergillus spp. and Aflatoxin Control for Grains and Nuts with Atmospheric Cold Plasma
by Miral Javed, Wei Cao, Linyi Tang and Kevin M. Keener
Toxins 2025, 17(3), 129; https://doi.org/10.3390/toxins17030129 - 10 Mar 2025
Cited by 1 | Viewed by 1572
Abstract
Aspergillus spp. and their produced aflatoxins are responsible for contaminating 25–30% of the global food supply, including many grains, and nuts which when consumed are detrimental to human and animal health. Despite regulatory frameworks, Aspergillus spp. and aflatoxin contamination is still a global [...] Read more.
Aspergillus spp. and their produced aflatoxins are responsible for contaminating 25–30% of the global food supply, including many grains, and nuts which when consumed are detrimental to human and animal health. Despite regulatory frameworks, Aspergillus spp. and aflatoxin contamination is still a global challenge, especially in cereal-based matrices and their derived by-products. The methods for reducing Aspergillus spp. and aflatoxin contamination involve various approaches, including physical, chemical, and biological control strategies. Recently, a novel technology, atmospheric cold plasma (ACP), has emerged which can reduce mold populations and also degrade these toxins. ACP is a non-thermal technology that operates at room temperature and atmospheric pressure. It can reduce mold and toxins from grains and seeds without affecting food quality or leaving any chemical residue. ACP is the conversion of a gas, such as air, into a reactive gas. Specifically, an electrical charge is applied to the “working” gas (air) leading to the breakdown of diatomic oxygen, diatomic nitrogen, and water vapor into a mixture of radicals (e.g., atomic oxygen, atomic nitrogen, atomic hydrogen, hydroxyls), metastable species, and ions (e.g., nitrate, nitrite, peroxynitrate). In a cold plasma process, approximately 5% or less of the working gas is ionized. However, cold plasma treatment can generate over 1000 ppm of reactive gas species (RGS). The final result is a range of bactericidal and fungicidal molecules such as ozone, peroxides, nitrates, and many others. This review provides an overview of the mechanisms and chemistry of ACP and its application in inactivating Aspergillus spp. and degrading aflatoxins, serving as a novel treatment to enhance the safety and quality of grains and nuts. The final section of the review discusses the commercialization status of ACP treatment. Full article
(This article belongs to the Special Issue Aspergillus flavus and Aflatoxins (3rd Edition))
Show Figures

Figure 1

29 pages, 3833 KiB  
Review
Sustainable Energy Systems in a Post-Pandemic World: A Taxonomy-Based Analysis of Global Energy-Related Markets Responses and Strategies Following COVID-19
by Tawfiq M. Aljohani, Yasser O. Assolami, Omar Alrumayh, Mohamed A. Mohamed and Abdulaziz Almutairi
Sustainability 2025, 17(5), 2307; https://doi.org/10.3390/su17052307 - 6 Mar 2025
Cited by 1 | Viewed by 1930
Abstract
The global energy sector has been profoundly reshaped by the COVID-19 pandemic, triggering diverse reactions in energy demand patterns, accelerating the transition toward renewable energy sources, and amplifying concerns over global energy security and the digital safety of energy infrastructure. Five years after [...] Read more.
The global energy sector has been profoundly reshaped by the COVID-19 pandemic, triggering diverse reactions in energy demand patterns, accelerating the transition toward renewable energy sources, and amplifying concerns over global energy security and the digital safety of energy infrastructure. Five years after the pandemic’s onset, this study provides a taxonomy-based lesson-learned analysis, offering a comprehensive examination of the pandemic’s enduring effects on energy systems. It employs a detailed analytical framework to map short-, medium-, and long-term transformations across various energy-related sectors. Specifically, the study investigates significant shifts in the global energy landscape, including the electric and conventional vehicle markets, the upstream energy industry (oil, coal, and natural gas), conventional and renewable energy generation, aerial transportation, and the broader implications for global and continental energy security. Additionally, it highlights the growing importance of cybersecurity in the context of digital evolution and remote operations, which became critical during the pandemic. The study is structured to dissect the initial shock to energy supply and demand, the environmental consequences of reduced fossil fuel consumption, and the subsequent pivot toward sustainable recovery pathways. It also evaluates the strategic actions and policy measures implemented globally, providing a comparative analysis of recovery efforts and the evolving patterns of energy consumption. In the face of a global reduction in energy demand, the analysis reveals both spatial and temporal disparities, underscoring the complexity of the pandemic’s impact on the energy sector. Drawing on the lessons of COVID-19, this work emphasizes the need for flexible, forward-thinking strategies and deeper international collaboration to build energy systems that are both resilient and sustainable in the face of uncertainties. Full article
Show Figures

Figure 1

16 pages, 3072 KiB  
Article
Research on Hydrogen Production from Ammonia Decomposition by Pulsed Plasma Catalysis
by Yuze He, Neng Zhu and Yunkai Cai
Molecules 2025, 30(5), 1054; https://doi.org/10.3390/molecules30051054 - 25 Feb 2025
Viewed by 951
Abstract
Driven by dual-carbon targets, marine engines are accelerating their transition towards low-carbon and zero-carbon. Ammonium–hydrogen fusion fuel is considered to be one of the most promising fuels for ship decarbonization. Using non-thermal plasma (NTP) catalytic ammonia on-line hydrogen production technology to achieve hydrogen [...] Read more.
Driven by dual-carbon targets, marine engines are accelerating their transition towards low-carbon and zero-carbon. Ammonium–hydrogen fusion fuel is considered to be one of the most promising fuels for ship decarbonization. Using non-thermal plasma (NTP) catalytic ammonia on-line hydrogen production technology to achieve hydrogen supply is one of the most important means to guarantee the safety and effectiveness of hydrogen energy in the storage and transportation process. However, the efficiency of ammonia catalytic hydrogen production can be influenced to some extent by the presence of several factors, and the reaction mechanism is complex under the conditions of ship engine temperature emissions. This makes it difficult to realize the precise control of plasma catalytic hydrogen production from ammonia technology under temperature emission conditions, thus restricting an improvement in the ammonia conversion rate. In this study, a kinetic model of hydrogen production from ammonia catalyzed by NTP was established. The influencing factors (reaction temperature, pressure, N2/NH3 ratio in the feed gas) and mechanism path of hydrogen production from ammonia decomposition were explored. The results show that the increase in reaction temperature will lead to an increase in the ammonia conversion rate, while the ammonia conversion rate will decrease with the increase in reaction pressure and N2/NH3 ratio. When the reaction temperature is 300 K, the pressure is 1 bar, the feed gas is 98%N2/2%NH3, and the ammonia conversion rate is 16.7%. The reason why the addition of N2 is conducive to the hydrogen production from NH3 decomposition is that the reaction N2(A3) + NH3 => N2 + NH2 + H, triggered by the electron excited-state N2(A3), is the main reaction for NH3 decomposition. Full article
Show Figures

Graphical abstract

18 pages, 7794 KiB  
Article
A Hybrid Simulated Annealing–Particle Swarm Optimization Framework for the Enhanced Operational Efficiency of the W23 Underground Gas Storage Facility
by Xuefeng Bai, Tong Gu, Bo Yu, Yun Liu, Jiakun Yang, Famu Huang, Siyuan Zhang, Wen Deng and Zhi Zhong
Processes 2025, 13(2), 590; https://doi.org/10.3390/pr13020590 - 19 Feb 2025
Viewed by 664
Abstract
Seasonal and industrial fluctuations in natural gas demands require optimized gas storage operations, especially in depleted reservoirs, to ensure a stable supply. This study proposes a novel optimization model for injection–production processes using the simulated annealing–particle swarm optimization (SA-PSO) algorithm. The model focuses [...] Read more.
Seasonal and industrial fluctuations in natural gas demands require optimized gas storage operations, especially in depleted reservoirs, to ensure a stable supply. This study proposes a novel optimization model for injection–production processes using the simulated annealing–particle swarm optimization (SA-PSO) algorithm. The model focuses on minimizing pressure variances across different reservoir blocks during injection–production cycles. The approach is applied to the W23 underground gas storage facility, where a high-precision 3D geological model and numerical simulations were developed. The SA-PSO algorithm effectively reduced pressure differentials during the sixth injection–production cycle, improving reservoir efficiency. During the gas injection period, the optimized pressure difference between blocks was reduced to one-eighth of that in the initial plan. The average formation pressures in Phase I and Phase II decreased by 0.35 MPa and 0.76 MPa, respectively. During the gas production period, the optimized pressure difference between blocks was reduced to one-tenth of that in the initial plan. The average formation pressures in Phase I and Phase II increased by 0.4 MPa and 1.21 MPa, respectively. The optimized injection–production strategy enhances working gas capacity, maintains balanced formation pressures, and mitigates risks such as high pressure and salt precipitation. The findings demonstrate the potential of SA-PSO optimization to improve the operational efficiency and safety of gas storage reservoirs. Full article
(This article belongs to the Special Issue Oil and Gas Drilling Processes: Control and Optimization)
Show Figures

Figure 1

Back to TopTop