Study of the Safety–Economy–Environmental Protection Coordination of Beijing’s Natural Gas Industry Based on a Coupling Coordination Degree Model
Abstract
:1. Introduction
2. Literature Review
3. Model and Data
3.1. Establishment of Indicator System
3.2. Development Level Measurement Model
3.2.1. Entropy Weight Method
3.2.2. Improvement of Entropy Weight Method
3.3. Coupling Coordination Evaluation Model
4. Empirical Analysis
4.1. Three-Dimensional Development Level of Natural Gas Industry
4.2. Three-Dimensional Coupling Coordination Degree of the Natural Gas Industry
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cigdem, E. From diesel to renewables: Driving the energy revolution. Ventur. Cap. 2024, 64, 1611–1710. [Google Scholar]
- Maneejuk, P.; Kaewtathip, N.; Yamaka, W. The influence of the Ukraine-Russia conflict on renewable and fossil energy price cycles. Energy Econ. 2024, 129, 107218. [Google Scholar] [CrossRef]
- Li, Q.C.; Chen, J.H.; Zhang, P. Study oncarbon emission characteristics and its influencing factors of energy consumption in Sichuan Province, China. Front. Environ. Sci. 2024, 12, 1414730. [Google Scholar] [CrossRef]
- Li, S.L.; Gong, K.; Song, N.N.; Zeng, B. Forecasting China’s natural gas external dependence under the “Dual Carbon” goals by a new grey model. Sci. Progress 2023, 106, 368504231157707. [Google Scholar] [CrossRef]
- Guo, X.P.; Cao, J.B.; Ren, D.F. Multi-objective decision making of natural gas distribution optimization considering clean heating—Evidence from Beijing. Energy Sources Part A Recover. Util. Environ. Eff. 2023, 45, 2253–2266. [Google Scholar] [CrossRef]
- Song, M.J.; Latif, M.I.; Zhang, J.J.; Omran, M. Examining the energy trilemma index and the prospects for clean energy development. Gondwana Res. 2023, 122, 11–22. [Google Scholar] [CrossRef]
- Thaler, P.; Hofmann, B. The impossible energy trinity: Energy security, sustainability, and sovereignty in cross-border electricity systems. Political Geogr. 2022, 94, 102579. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Dong, K.Y.; Liu, Z.G.; Ma, X.Y. Is digital economy an answer to energy trilemma eradication? The case of China. J. Environ. Manag. 2024, 349, 119369. [Google Scholar] [CrossRef]
- Marti, L.; Puertas, R. Sustainable energy development analysis: Energy Trilemma. Sustain. Technol. Entrep. 2022, 1, 100007. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Dong, K.Y.; Wang, K.; Dong, X.C. How does energy trilemma eradication reduce carbon emissions? The role of dual environmental regulation for China. Energy Econ. 2022, 116, 106418. [Google Scholar] [CrossRef]
- Yap, J.T.; Gabriola, A.J.P.; Herrera, C.F. Managing the energy trilemma in the Philippines. Energy Sustain. Soc. 2021, 11, 34. [Google Scholar] [CrossRef]
- Khan, I.; Zakari, A.; Dagar, V.; Singh, S. World energy trilemma and transformative energy developments as determinants of economic growth amid environmental sustainability. Energ. Econ. 2022, 108, 105884. [Google Scholar] [CrossRef]
- Khan, I.; Zakari, A.; Zhang, J.J.; Dagar, V.; Singh, S. A study of trilemma energy balance, clean energy transitions, and economic expansion in the midst of environmental sustainability: New insights from three trilemma leadership. Energy 2022, 248, 123619. [Google Scholar] [CrossRef]
- Heffron, R.J.; Darren, M.C.; Zarazua, D.R.G. Balancing the energy trilemma through the energy justice metric. Appl. Energ. 2018, 229, 1191–1201. [Google Scholar] [CrossRef]
- Stempien, J.P.; Chan, S.H. Addressing energy trilemma via the modified Markowitz Mean-Variance Portfolio Optimization theory. Appl. Energy 2017, 202, 228–237. [Google Scholar] [CrossRef]
- Lowitzsch, J.; Croonenbroeck, C.; Novo, R. Feeding bees according to desired honey type: Tailoring support for European Energy Communities to their function to escape the energy trilemma. Energy Res. Soc. Sci. 2024, 114, 103579. [Google Scholar] [CrossRef]
- Behera, P.; Sethi, L.; Sethi, N. Balancing India’s energy trilemma: Assessing the role of renewable energy and green technology innovation for sustainable development. Energy 2024, 308, 132842. [Google Scholar] [CrossRef]
- Heffron, R.J.; Körner, M.F.; Sumarno, T.; Wagner, J.; Weibelzahl, M.; Fridgen, G. How different electricity pricing systems affect the energy trilemma: Assessing Indonesia’s electricity market transition. Energy Econ. 2022, 107, 105663. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Cheng, L.S.; Solangi, Y.A.; Ahmed, M.; Ali, S. Energy trilemma based prioritization of waste-to-energy technologies: Implications for post-COVID-19 green economic recovery in Pakistan. J. Clean. Prod. 2021, 284, 124729. [Google Scholar] [CrossRef]
- Shankar, A.; Vijayakumar, K.; Babu, B.C.; Kaur, R. Energy trilemma index-based multiobjective optimal sizing of PV-battery system for a building in tropical savanna climate. IEEE Syst. J. 2022, 16, 5630–5638. [Google Scholar] [CrossRef]
- World Energy Council. World Energy Trilemma 2024: Evolving with Resilience and Justice. 2024. Available online: https://www.worldenergy.org/publications/entry/world-energy-trilemma-report-2024 (accessed on 25 December 2024).
- Li, Q.C.; Lin, Y.F. Systematic structural analysis of buried urban gas pipeline disaster in karst area. Welded Pipe Tube 2024, 47, 30–35. [Google Scholar] [CrossRef]
- Al Asbahi, A.A.M.H.; Gang, F.Z.; Iqbal, W.; Abass, Q.; Mohsin, M.; Iram, R. Novel approach of principal component analysis method to assess the national energy performance via Energy Trilemma Index. Energy Rep. 2019, 5, 704–713. [Google Scholar] [CrossRef]
- Gunningham, N. Managing the energy trilemma: The case of Indonesia. Energy Policy 2013, 54, 184–193. [Google Scholar] [CrossRef]
- Heffron, R.J.; McCauley, D.; Sovacool, B.K. Resolving society’s energy trilemma through the Energy Justice Metric. Energy Policy 2015, 87, 168–176. [Google Scholar] [CrossRef]
- Oliver, J.; Sovacool, B. The energy trilemma and the smart grid: Implications beyond the United States. Asia Pac. Policy Stud. 2017, 4, 70–84. [Google Scholar] [CrossRef]
- Alola, A.A.; Olanipekun, I.O.; Shah, M.I. Examining the drivers of alternative energy in leading energy sustainable economies: The trilemma of energy efficiency, energy intensity and renewables expenses. Renew. Energy 2023, 202, 1190–1197. [Google Scholar] [CrossRef]
- Grigoryev, L.M.; Medzhidova, D.D. Global energy trilemma. Russ. J. Econ. 2020, 6, 437–462. [Google Scholar] [CrossRef]
- Fu, F.Y.; Alharthi, M.; Bhatti, Z.; Sun, L.; Rasul, F.; Hanif, I.; Iqbal, W. The dynamic role of energy security, energy equity and environmental sustainability in the dilemma of emission reduction and economic growth. J. Environ. Manag. 2021, 280, 111828. [Google Scholar] [CrossRef]
- Joița, D.; Panait, M.; Dobrotă, C.E.; Diniță, A.; Neacșa, A.; Naghi, L.E. The European dilemma—Energy security or green transition. Energies 2023, 16, 3849. [Google Scholar] [CrossRef]
- Weiss, O.; Pareschi, G.; Georges, G.; Boulouchos, K. The Swiss energy transition: Policies to address the Energy Trilemma. Energy Policy 2021, 148, 111926. [Google Scholar] [CrossRef]
- Shirazi, M. Assessing energy trilemma-related policies: The world’s large energy user evidence. Energy Policy 2022, 167, 113082. [Google Scholar] [CrossRef]
- Fu, Y.L.; Lu, Y.H.; Yu, C.; Lai, K.K. Inter-country comparisons of energy system performance with the energy trilemma index: An ensemble ranking methodology based on the half-quadratic theory. Energy 2022, 261, 125048. [Google Scholar] [CrossRef]
- Khan, I.; Hou, F.; Irfan, M.; Zakari, A.; Le, H.P. Does energy trilemma a driver of economic growth? The roles of energy use, population growth, and financial development. Renew. Sustain. Energy Rev. 2021, 146, 111157. [Google Scholar] [CrossRef]
- Li, Q.C.; Zhang, P. Temporal–Spatial Characteristics of Carbon Emissions and Low-Carbon Efficiency in Sichuan Province, China. Sustainability 2024, 16, 7985. [Google Scholar] [CrossRef]
- Maki, A. The statistical price index as an approximation of the constant-utility price index: An empirical analysis using Japanese data sets. J. Jpn. Int. Econ. 2005, 19, 37–50. [Google Scholar] [CrossRef]
- Banadkouki, M.R.Z. Selection of strategies to improve energy efficiency in industry: A hybrid approach using entropy weight method and fuzzy TOPSIS. Energy 2023, 279, 128070. [Google Scholar] [CrossRef]
- Le Roux, D.; Olivès, R.; Neveu, P. Combining entropy weight and TOPSIS method for selection of tank geometry and filler material of a packed-bed thermal energy storage system. J. Clean. Prod. 2023, 414, 137588. [Google Scholar] [CrossRef]
- Jameel, T.; Riaz, M.; Aslam, M.; Pamucar, D. Sustainable renewable energy systems with entropy based step-wise weight assessment ratio analysis and combined compromise solution. Renew. Energy 2024, 235, 121310. [Google Scholar] [CrossRef]
- Sitorus, F.; Brito-Parada, P.R. A multiple criteria decision making method to weight the sustainability criteria of renewable energy technologies under uncertainty. Renew. Sustain. Energy Rev. 2020, 127, 109891. [Google Scholar] [CrossRef]
- Korga, S.; Dirik, C. Sustainability performance measurement in manufacturing sector with improved entropy-based TOPSIS method and an indicator set proposal. J. Bus. Res. 2023, 15, 561–577. [Google Scholar]
- Yuan, Y.N.; Wei, S.P.; Wan, D.Q.; Liu, D.W. A study of land-economy-society-ecology coordination in the Yangtze River Delta based on coupled coordination degree model. Int. Rev. Econ. Financ. 2024, 95, 103474. [Google Scholar] [CrossRef]
- Nawaz, A.; Wang, H.T.; Yang, H.T.; Armghan, H.; Gao, J.C. Risk-constrained probabilistic coordination in coupled transmission and distribution system. Electr. Pow. Syst. Res. 2024, 228, 110005. [Google Scholar] [CrossRef]
- Huang, W.; Gao, S.H.; Hu, P.Q.; Han, Y.; Ding, S.Y. Is the coupling and coordination of economic, social and environmental development crucial to the governance of relative poverty? PLoS ONE 2024, 19, e0306641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ye, B.; Shen, X.X.; Zhu, Y.; Su, B.; Yin, Q.Q.; Zhou, S.L. Coupling coordination evaluation of ecology and economy and development optimization at town-scale. J. Clean. Prod. 2024, 447, 141581. [Google Scholar] [CrossRef]
- Wu, Q.; Hong, S.; Yang, L.; Mu, H.; Huang, C.Q.; Niu, X.X.; Zhong, Y.M.; Yi, J.H.; He, C. Coupling coordination relationships between air pollutant concentrations and emissions in China. Atmos. Pollut. Res. 2023, 14, 101678. [Google Scholar] [CrossRef]
- Shen, L.Y.; Huang, Y.L.; Huang, Z.H.; Lou, Y.L.; Ye, G.; Wong, S.W. Improved coupling analysis on the coordination between socio-economy and carbon emission. Ecol. Indic. 2018, 94, 357–366. [Google Scholar] [CrossRef]
- Seif, M.; Yaghoubi, S.; Khodoomi, M.R. Optimization of food-energy-water-waste nexus in a sustainable food supply chain under the COVID-19 pandemic: A case study in Iran. Environ. Dev. Sustain. 2024, 26, 7163–7197. [Google Scholar] [CrossRef]
- Norouzi, N. Post-COVID-19 and globalization of oil and natural gas trade: Challenges, opportunities, lessons, regulations, and strategies. Int. J. Energ. Res. 2021, 45, 14338–14356. [Google Scholar] [CrossRef]
- Zighed, M.; Benotmane, B. The impact of Covid-19 on energy consumption in Algeria-study and outlook. Desalin. Water Treat. 2021, 238, 49–52. [Google Scholar] [CrossRef]
- Dong, K.Y.; Sun, R.J.; Dong, C.; Li, H.; Zeng, X.G.; Ni, G.H. Environmental Kuznets curve for PM2.5 emissions in Beijing, China: What role can natural gas consumption play? Ecol. Indic. 2018, 93, 591–601. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, H.R.; Long, Y.; Fang, K.; Xu, N.; Li, Z.B.; Liang, Y.T. Economic and environmental co-benefit of natural gas supply chain considering the risk attitude of designers. J. Clean. Prod. 2020, 272, 122681. [Google Scholar] [CrossRef]
- Li, J.C.; Li, M.G.; Gao, L.N.; Li, J.J. Empowering more balanced energy futures: The role of the digital economy in alleviating China’s energy trilemma at the city-level. Energy 2024, 303, 131938. [Google Scholar] [CrossRef]
- Kim, H.J.; Han, S.M.; Yoo, S.H. Measuring the economic benefits of industrial natural gas use in South Korea. Sustainability 2018, 10, 2239. [Google Scholar] [CrossRef]
- Barbosa, M.O.; Peyerl, D.; Mendes, A.B. The economic and environmental benefits of adopting natural gas in isolated systems of Amazonas state, Brazil. Environ. Dev. 2023, 47, 100889. [Google Scholar] [CrossRef]
- Zhao, N.; Li, B.W.; Li, H.; Ahmad, R.; Peng, K.; Chen, D.Y.; Yu, X.; Zhou, Y.G.; Dong, R.J.; Wang, H.; et al. Field-based measurements of natural gas burning in domestic wall-mounted gas stove and estimates of climate, health and economic benefits in rural Baoding and Langfang regions of Northern China. Atmos. Environ. 2020, 229, 117454. [Google Scholar] [CrossRef]
- Chai, J.; Zhang, X.K.; Lu, Q.Y.; Zhang, X.J.; Wang, Y.B. Research on Imbalance between Supply and Demand in China’s Natural Gas Market under the Double-Track Price System. Energy Policy 2021, 155, 112380. [Google Scholar] [CrossRef]
- Gao, N.N. Research on Beijing Safety Guarantee System for Natural Gas Supply. Adv. Mater. Res. 2014, 1008–1009, 1429–1432. [Google Scholar] [CrossRef]
- Jiang, B.B.; Chen, W.Y.; Yu, Y.F.; Zeng, L.M.; Victor, D. The future of natural gas consumption in Beijing, Guangdong and Shanghai: An assessment utilizing MARKAL. Energ. Policy 2008, 36, 3286–3299. [Google Scholar] [CrossRef]
- Hussain, A.; Memon, J.A.; Murshed, M.; Alam, M.S.; Mehmood, U.; Alam, M.N.; Rahman, M.; Hayat, U. A time series forecasting analysis of overall and sector-based natural gas demand: A developing South Asian economy case. Environ. Sci. Pollut. Res. 2022, 29, 71676–71687. [Google Scholar] [CrossRef]
- Zhang, G.D.; Wang, J.L.; Liu, Y. ‘’Carbon’‘ suppresses ‘’energy’‘–How does carbon emission right trading policy alleviate the energy trilemma? Energy 2024, 307, 132790. [Google Scholar] [CrossRef]
- Han, J.P.; Du, E.S.; Lv, X.Y.; Hou, J.M. Low-carbon optimal configuration of integrated electricity and natural gas energy system with life-cycle carbon emission. Processes 2024, 12, 845. [Google Scholar] [CrossRef]
- Li, J.J.; Tian, Y.J.; Yan, X.H.; Yang, J.D.; Wang, Y.G.; Xu, W.Q.; Xie, K.C. Approach and potential of replacing oil and natural gas with coal in China. Front. Energy 2020, 14, 419–431. [Google Scholar] [CrossRef]
- Ivanova, A.; Zia, A.; Ahmad, P.; Bastos-Lima, M. Climate mitigation policies and actions: Access and allocation issues. Int. Environ. Agreem. Politics Law Econ. 2020, 20, 287–301. [Google Scholar] [CrossRef]
- Karamaneas, A.; Koasidis, K.; Frilingou, N.; Xexakis, G.; Nikas, A.; Doukas, H. A stakeholder-informed modelling study of Greece’s energy transition amidst an energy crisis: The role of natural gas and climate ambition. Renew. Sustain. Energy Transit. 2023, 3, 100049. [Google Scholar] [CrossRef]
- Chi, Y.Y.; Esily, R.R.; Ibrahiem, D.M.; Houssam, N.; Chen, Y.H.; Jia, X.J.; Zhang, X.F. Is North Africa region on track to energy trilemma for enhancing economic progress? The role of population growth and energy usage. Energy Strateg. Rev. 2023, 50, 101245. [Google Scholar] [CrossRef]
- Zhong, H.; He, S.; Sun, Q. A system dynamic model for natural gas safety supply and demand balance mechanism. Energy Sci. Eng. 2023, 11, 3768–3779. [Google Scholar]
- Chen, L.; Pan, L.Y.; Zhang, K.G. The dynamic cointegration relationship between international crude oil, natural gas, and coal price. Energies 2024, 17, 3126. [Google Scholar] [CrossRef]
- Rioux, B.; Galkin, P.; Murphy, F.; Feijoo, F.; Pierru, A.; Malov, A.; Li, Y.; Wu, K. The economic impact of price controls on China’s natural gas supply chain. Energy Econ. 2019, 80, 394–410. [Google Scholar] [CrossRef]
- Chung, V.N. Transmission paths of COVID-19 impact on energy supply and production chain in Vietnam. Int. J. Supply Oper. Manag. 2022, 9, 473–482. [Google Scholar]
- Rawat, A.; Garg, C.P. Assessment of the barriers of natural gas market development and implementation: A case of developing country. Energy Policy 2021, 152, 112195. [Google Scholar] [CrossRef]
- Freeman, G.M.; Apt, J.; Moura, J. What causes natural gas fuel shortages at U.S. power plants? Energy Policy 2020, 147, 111805. [Google Scholar] [CrossRef]
- Shaikh, F.; Ji, Q.; Fan, Y. Evaluating China’s natural gas supply security based on ecological network analysis. J. Clean. Prod. 2016, 139, 1196–1206. [Google Scholar] [CrossRef]
- Che, C.; Geng, X.; Zheng, H.X.; Chen, Y.; Zhang, X.G. The pricing mechanism analysis of china’s natural gas supply chain under the “Dual Carbon” target based on the perspective of game theory. Sustainability 2022, 14, 9510. [Google Scholar] [CrossRef]
- He, Y.X.; Xia, T.; Liu, Y.Y.; Zhou, L.F.; Zhou, B. Residential natural gas price affordability analysis-A case study of Beijing. Renew. Sustain. Energy Rev. 2013, 28, 392–399. [Google Scholar] [CrossRef]
- Li, J.F.; Jiang, S.Y. Energy security in the era of transition. Glob. Energy Interconnect. 2019, 2, 376–378. [Google Scholar] [CrossRef]
- Qian, J.R.; Han, X.Z.; Ye, M.; Lv, Y.X.; Che, J. Environmental benefits of the West-East Natural Gas Transmission Project: Cross-regional energy optimization and transformation for sustainable development. Energies 2024, 17, 3820. [Google Scholar] [CrossRef]
- Yang, X.H.; Xiao, D.P.; Bai, H.Z.; Tang, J.Z.; Wang, W. Spatiotemporal distributions of PM2.5 concentrations in the Beijing–Tianjin–Hebei region from 2013 to 2020. Front. Environ. Sci. 2022, 10, 842237. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhang, Y.J.; Zhong, S.; Fang, J.; Bai, B.R.; Huang, C.; Ge, X.L. Anthropogenic-driven changes in concentrations and sources of winter volatile organic compounds in an urban environment in the Yangtze River Delta of China between 2013 and 2021. Sci. Total Environ. 2024, 942, 173713. [Google Scholar] [CrossRef]
- Wen, Z.; Wang, C.J.; Li, Q.; Xu, W.; Lu, L.; Li, X.J.; Tang, A.H.; Collett, J.L.; Liu, X.J. Winter air quality improvement in Beijing by clean air actions from 2014 to 2018. Atmos. Res. 2021, 259, 105674. [Google Scholar] [CrossRef]
- Mirza, N.; Naqvi, B.; Rizvi, S.K.A.; Umar, M. Fiscal or monetary? Efficacy of regulatory regimes and energy trilemma of the inflation reduction act (IRA). Int. Rev. Financ. Anal. 2023, 90, 102821. [Google Scholar] [CrossRef]
- Theodori, G.L.; Wynveen, B.J.; Measham, T.; Evensen, D. A systematic quantitative review of the perceived environmental and natural resource-related impacts of unconventional oil and gas development. Extr. Ind. Soc. 2022, 12, 101176. [Google Scholar] [CrossRef]
- Cordano, A.L.V.; Zellou, A.M. Super cycles in natural gas prices and their impact on Latin American energy and environmental policies. Resour. Policy 2020, 65, 101513. [Google Scholar] [CrossRef]
- Yep, E.; Liang, A.C. China’s green Winter Olympics 2022 to boost natural gas demand. Platts Coal Trader Int. 2021, 21, 5–6. [Google Scholar]
- Dastan, S.A. The predicaments of the Turkish natural gas market between supply shortages and price hikes. Resour. Policy 2023, 82, 103566. [Google Scholar] [CrossRef]
- Li, L.L.; Luo, X.; Zhou, K.L.; Xu, T.T. Evaluation of increasing block pricing for households’ natural gas: A case study of Beijing, China. Energy 2018, 157, 162–172. [Google Scholar] [CrossRef]
- Rui, X.T.; Feng, L.Y.; Feng, J.X. A gas-on-gas competition trading mechanism based on cooperative game models in China’s gas market. Energy Rep. 2020, 6, 365–377. [Google Scholar] [CrossRef]
First-Level Indicator | Second-Level Indicator | Indicator Meaning | Unit |
---|---|---|---|
Safety | Elastic coefficient of natural gas production | The ratio of the annual growth rate of gross regional product to the annual growth rate of total natural gas production | - |
Per capita natural gas production level | The ratio of total natural gas production to total year-end resident population | m3/person | |
Natural gas storage capacity | The maximum capacity of regional gas storage facility | m3 | |
Natural gas self-sufficiency level | The ratio of total natural gas production to total natural gas consumption | - | |
External dependence on natural gas | The import volume of external natural gas | m3 | |
Level of resource endowment | The total proven reserves of natural gas | m3 | |
Fixed assets investment | The fixed assets investment in natural gas industry | CNY | |
Energy transportation capacity | The length of natural gas pipelines | km | |
Economy | Natural gas consumption intensity | The ratio of gross regional product to total natural gas consumption | CNY/m3 |
Natural gas popularization level | The ratio of total urban natural gas consumption population to total year-end resident population | - | |
Market demand level | The total supply of natural gas | m3 | |
Per capita consumption power | The ratio of total natural gas consumption to total year-end resident population | m3/person | |
Industrial economic benefit | The total profit of natural gas industry | CNY | |
Gas price level | The ratio of consumer price index to the producer price index of natural gas industry | - | |
Employment absorption | The employment in natural gas industry | person | |
Environmental protection | Carbon emission control level of natural gas industry | The annual reduction in carbon emissions from fuel combustion and system spillage compared with the previous year | Ton |
Natural gas processing and conversion efficiency | The ratio of output to input in the process of natural gas processing and conversion | - | |
Low-carbon level of fossil energy consumption | The ratio of total natural gas consumption to total fossil energy consumption | - | |
Natural gas export level | The export volume of local natural gas | m3 | |
Environmental pollution control level | The annual emission reduction in chemical oxygen demand in regional industrial wastewater compared with the previous year | Ton | |
Atmospheric environmental quality | The number of days with excellent air quality in the region | day | |
Investment level in environmental pollution control | The investment in environmental protection infrastructure construction in natural gas industry | CNY |
Entropy Values | Entropy Weights Calculated Before Improvement | Entropy Weights Calculated After Improvement | |
---|---|---|---|
1 | 0.9 | 0.1667 | 0.2963 |
0.8 | 0.3333 | 0.3333 | |
0.7 | 0.5000 | 0.3704 | |
2 | 0.999 | 0.1667 | 0.3330 |
0.998 | 0.3333 | 0.3333 | |
0.997 | 0.5000 | 0.3337 | |
3 | 0.9999 | 0.1667 | 0.3333 |
0.9998 | 0.3333 | 0.3333 | |
0.9997 | 0.5000 | 0.3334 |
Coupling Coordination Degree | Level | Coupling Coordination Degree | Level |
---|---|---|---|
[0.0000, 0.0999] | Extremely disorder state (DS5) | (0.4999, 0.5999] | Barely coordination state (CS1) |
(0.0999, 0.1999] | Severe disorder state (DS4) | (0.5999, 0.6999] | Primary coordination state (CS2) |
(0.1999, 0.2999] | Moderate disorder state (DS3) | (0.6999, 0.7999] | Moderate coordination state (CS3) |
(0.2999, 0.3999] | Mild disorder state (DS2) | (0.7999, 0.8999] | Good coordination state (CS4) |
(0.3999, 0.4999] | Imminent disorder state (DS1) | (0.8999, 1.0000] | High coordination state (CS5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Zhang, P. Study of the Safety–Economy–Environmental Protection Coordination of Beijing’s Natural Gas Industry Based on a Coupling Coordination Degree Model. Sustainability 2025, 17, 2686. https://doi.org/10.3390/su17062686
Li Q, Zhang P. Study of the Safety–Economy–Environmental Protection Coordination of Beijing’s Natural Gas Industry Based on a Coupling Coordination Degree Model. Sustainability. 2025; 17(6):2686. https://doi.org/10.3390/su17062686
Chicago/Turabian StyleLi, Qiaochu, and Peng Zhang. 2025. "Study of the Safety–Economy–Environmental Protection Coordination of Beijing’s Natural Gas Industry Based on a Coupling Coordination Degree Model" Sustainability 17, no. 6: 2686. https://doi.org/10.3390/su17062686
APA StyleLi, Q., & Zhang, P. (2025). Study of the Safety–Economy–Environmental Protection Coordination of Beijing’s Natural Gas Industry Based on a Coupling Coordination Degree Model. Sustainability, 17(6), 2686. https://doi.org/10.3390/su17062686