Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (370)

Search Parameters:
Keywords = supply-demand imbalance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3208 KiB  
Article
The Spatiotemporal Evolution Characteristics of the Water Use Structure in Shandong Province, Northern China, Based on the Gini Coefficient
by Caihong Liu, Mingyuan Fan, Yongfeng Yang, Kairan Wang and Haijiao Liu
Water 2025, 17(15), 2315; https://doi.org/10.3390/w17152315 - 4 Aug 2025
Viewed by 164
Abstract
The spatiotemporal evolution of the regional water use structure holds significant theoretical value for optimizing regional water resource allocation, adjusting industrial structures, and achieving sustainable water resource development. Shandong Province, located at the lowest reach of the Yellow River Basin in China, is [...] Read more.
The spatiotemporal evolution of the regional water use structure holds significant theoretical value for optimizing regional water resource allocation, adjusting industrial structures, and achieving sustainable water resource development. Shandong Province, located at the lowest reach of the Yellow River Basin in China, is a major economic, agricultural, and populous province, as well as a region with one of the most prominent water supply–demand imbalances in the country. As a result, exploring how water use patterns change over time and space in this region has become crucial. Using analytical methods like the Lorenz curve, Gini coefficient, cluster analysis, and spatial statistics, we examine shifts in Shandong’s water use structure from 2001 to 2023. We find that while agriculture remained the largest water consumer over this period, industrial, household, and ecological water use steadily increased, signaling a move toward more balanced resource distribution. Across Shandong’s 16 regions (cities), the water use patterns varied considerably, particularly in terms of agriculture, industry, and ecological needs. Among these, agricultural, industrial, and domestic water use were distributed relatively evenly, whereas ecological water use showed greater regional disparities. These results may have the potential to guide policymakers in refining water allocation strategies, improving industrial planning, and boosting the water use efficiency in Shandong and the country ore broadly. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

19 pages, 2280 KiB  
Article
A Swap-Integrated Procurement Model for Supply Chains: Coordinating with Long-Term Wholesale Contracts
by Min-Yeong Ryu and Pyung-Hoi Koo
Mathematics 2025, 13(15), 2495; https://doi.org/10.3390/math13152495 - 3 Aug 2025
Viewed by 212
Abstract
In today’s volatile supply chain environment, organizations require flexible and collaborative procurement strategies. Swap contracts, originally developed as financial instruments, have recently been adopted to address inventory imbalances—such as the 2021 COVID-19 vaccine swap between South Korea and Israel. Despite its increasing adoption [...] Read more.
In today’s volatile supply chain environment, organizations require flexible and collaborative procurement strategies. Swap contracts, originally developed as financial instruments, have recently been adopted to address inventory imbalances—such as the 2021 COVID-19 vaccine swap between South Korea and Israel. Despite its increasing adoption in the real world, theoretical studies on swap-based procurement remain limited. This study proposes an integrated model that combines buyer-to-buyer swap agreements with long-term wholesale contracts under demand uncertainty. The model quantifies the expected swap quantity between parties and embeds it into the profit function to derive optimal order quantities. Numerical experiments are conducted to compare the performance of the proposed strategy with that of a baseline wholesale contract. Sensitivity analyses are performed on key parameters, including demand asymmetry and swap prices. The numerical analysis indicates that the swap-integrated procurement strategy consistently outperforms procurement based on long-term wholesale contracts. Moreover, the results reveal that under the swap-integrated strategy, the optimal order quantity must be adjusted—either increased or decreased—depending on the demand scale of the counterpart and the specified swap price, deviating from the optimal quantity under traditional long-term contracts. These findings highlight the potential of swap-integrated procurement strategies as practical coordination mechanisms across both private and public sectors, offering strategic value in contexts such as vaccine distribution, fresh produce, and other critical products. Full article
(This article belongs to the Special Issue Theoretical and Applied Mathematics in Supply Chain Management)
Show Figures

Figure 1

17 pages, 4929 KiB  
Article
Assessment of Grassland Carrying Capacity and Grass–Livestock Balance in the Three River Headwaters Region Under Different Scenarios
by Wenjing Li, Qiong Luo, Zhe Chen, Yanlin Liu, Zhouyuan Li and Wenying Wang
Biology 2025, 14(8), 978; https://doi.org/10.3390/biology14080978 (registering DOI) - 1 Aug 2025
Viewed by 186
Abstract
It is crucial to clarify the grassland carrying capacity (CC) and the balance between grass and livestock under different scenarios for ecological protection and sustainable development in the Three River Headwaters Region (TRHR). This study focused on the TRHR and used livestock data, [...] Read more.
It is crucial to clarify the grassland carrying capacity (CC) and the balance between grass and livestock under different scenarios for ecological protection and sustainable development in the Three River Headwaters Region (TRHR). This study focused on the TRHR and used livestock data, MODIS Net Primary Productivity (NPP) data, and artificial supplementary feeding data to analyze grassland CC and explore changes in the grass–livestock balance across various scenarios. The results showed that the theoretical CC of edible forage under complete grazing conditions was much lower than that of crude protein under nutritional carrying conditions. Furthermore, without increasing the grazing intensity of natural grasslands, artificial supplementary feeding reduced overstocking areas by 21%. These results suggest that supplementary feeding effectively addresses the imbalance between forage supply and demand, serving as a key measure for achieving sustainable grassland livestock husbandry. Despite the effective mitigation of grassland degradation in the TRHR due to strict grass–livestock balance policies and ecological restoration projects, the actual livestock CC exceeded the theoretical capacity, leading to overgrazing in some areas. To achieve desired objectives, more effective grassland management strategies must be implemented in the future to minimize spatiotemporal conflicts between grasses and livestock and ensure the health and stability of grassland ecosystems. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Graphical abstract

24 pages, 3325 KiB  
Article
Multi-Energy Flow Optimal Dispatch of a Building Integrated Energy System Based on Thermal Comfort and Network Flexibility
by Jian Sun, Bingrui Sun, Xiaolong Cai, Dingqun Liu and Yongping Yang
Energies 2025, 18(15), 4051; https://doi.org/10.3390/en18154051 - 30 Jul 2025
Viewed by 251
Abstract
An efficient integrated energy system (IES) can enhance the potential of building energy conservation and carbon mitigation. However, imbalances between user-side demand and supply side output present formidable challenges to the operational dispatch of building energy systems. To mitigate heat rejection and improve [...] Read more.
An efficient integrated energy system (IES) can enhance the potential of building energy conservation and carbon mitigation. However, imbalances between user-side demand and supply side output present formidable challenges to the operational dispatch of building energy systems. To mitigate heat rejection and improve dispatch optimization, an integrated building energy system incorporating waste heat recovery via an absorption heat pump based on the flow temperature model is adopted. A comprehensive analysis was conducted to investigate the correlation among heat pump operational strategies, thermal comfort, and the dynamic thermal storage capacity of piping network systems. The optimization calculations and comparative analyses were conducted across five cases on typical season days via the CPLEX solver with MATLAB R2018a. The simulation results indicate that the operational modes of absorption heat pump reduced the costs by 4.4–8.5%, while the absorption rate of waste heat increased from 37.02% to 51.46%. Additionally, the utilization ratio of battery and thermal storage units decreased by up to 69.82% at most after considering the pipeline thermal inertia and thermal comfort, thus increasing the system’s energy-saving ability and reducing the pressure of energy storage equipment, ultimately increasing the scheduling flexibility of the integrated building energy system. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Figure 1

21 pages, 1133 KiB  
Article
Research on China’s Innovative Cybersecurity Education System Oriented Toward Engineering Education Accreditation
by Yimei Yang, Jinping Liu and Yujun Yang
Information 2025, 16(8), 645; https://doi.org/10.3390/info16080645 - 29 Jul 2025
Viewed by 175
Abstract
This study, based on engineering education accreditation standards, addresses the supply–demand imbalance in China’s cybersecurity talent cultivation by constructing a sustainable “education-industry-society” collaborative model. Through case studies at Huaihua University and other institutions, employing methods such as literature analysis, field research, and empirical [...] Read more.
This study, based on engineering education accreditation standards, addresses the supply–demand imbalance in China’s cybersecurity talent cultivation by constructing a sustainable “education-industry-society” collaborative model. Through case studies at Huaihua University and other institutions, employing methods such as literature analysis, field research, and empirical investigation, we systematically explore reform pathways for an innovative cybersecurity talent development system. The research proposes a “three-platform, four-module” practical teaching framework, where the coordinated operation of the basic skills training platform, comprehensive ability development platform, and innovation enhancement platform significantly improves students’ engineering competencies (practical courses account for 41.6% of the curriculum). Findings demonstrate that eight industry-academia practice bases established through deep collaboration effectively align teaching content with industry needs, substantially enhancing students’ innovative and practical abilities (172 national awards, 649 provincial awards). Additionally, the multi-dimensional evaluation mechanism developed in this study enables a comprehensive assessment of students’ professional skills, practical capabilities, and innovative thinking. These reforms have increased the employment rate of cybersecurity graduates to over 90%, providing a replicable solution to China’s talent shortage. The research outcomes offer valuable insights for discipline development under engineering education accreditation and contribute to implementing sustainable development concepts in higher education. Full article
(This article belongs to the Topic Explainable AI in Education)
Show Figures

Figure 1

30 pages, 8885 KiB  
Article
Seasonally Adaptive VMD-SSA-LSTM: A Hybrid Deep Learning Framework for High-Accuracy District Heating Load Forecasting
by Yu Zhang, Keyong Hu, Lei Lu, Qingqing Yang and Min Fang
Mathematics 2025, 13(15), 2406; https://doi.org/10.3390/math13152406 - 26 Jul 2025
Viewed by 233
Abstract
To improve the accuracy of heating load forecasting and effectively address the energy waste caused by supply–demand imbalances and uneven thermal distribution, this study innovatively proposes a hybrid prediction model incorporating seasonal adjustment strategies. The model establishes a dynamically adaptive forecasting framework through [...] Read more.
To improve the accuracy of heating load forecasting and effectively address the energy waste caused by supply–demand imbalances and uneven thermal distribution, this study innovatively proposes a hybrid prediction model incorporating seasonal adjustment strategies. The model establishes a dynamically adaptive forecasting framework through synergistic integration of the Sparrow Search Algorithm (SSA), Variational Mode Decomposition (VMD), and Long Short-Term Memory (LSTM) network. Specifically, VMD is first employed to decompose the historical heating load data from Arizona State University’s Tempe campus into multiple stationary modal components, aiming to reduce data complexity and suppress noise interference. Subsequently, the SSA is utilized to optimize the hyperparameters of the LSTM network, with targeted adjustments made according to the seasonal characteristics of the heating load, enabling the identification of optimal configurations for each season. Comprehensive experimental evaluations demonstrate that the proposed model achieves the lowest values across three key performance metrics—Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE)—under various seasonal conditions. Notably, the MAPE values are reduced to 1.3824%, 0.9549%, 6.4018%, and 1.3272%, with average error reductions of 9.4873%, 3.8451%, 6.6545%, and 6.5712% compared to alternative models. These results strongly confirm the superior predictive accuracy and fitting capability of the proposed model, highlighting its potential to support energy allocation optimization in district heating systems. Full article
Show Figures

Figure 1

29 pages, 5526 KiB  
Article
Dynamic Machine Learning-Based Simulation for Preemptive Supply-Demand Balancing Amid EV Charging Growth in the Jamali Grid 2025–2060
by Joshua Veli Tampubolon, Rinaldy Dalimi and Budi Sudiarto
World Electr. Veh. J. 2025, 16(7), 408; https://doi.org/10.3390/wevj16070408 - 21 Jul 2025
Viewed by 325
Abstract
The rapid uptake of electric vehicles (EVs) in the Jawa–Madura–Bali (Jamali) grid produces highly variable charging demands that threaten the supply–demand balance. To forestall instability, we developed a predictive simulation based on long short-term memory (LSTM) networks that combines historical generation and consumption [...] Read more.
The rapid uptake of electric vehicles (EVs) in the Jawa–Madura–Bali (Jamali) grid produces highly variable charging demands that threaten the supply–demand balance. To forestall instability, we developed a predictive simulation based on long short-term memory (LSTM) networks that combines historical generation and consumption patterns with models of EV population growth and initial charging-time (ICT). We introduce a novel supply–demand balance score to quantify weekly and annual deviations between projected supply and demand curves, then use this metric to guide the machine-learning model in optimizing annual growth rate (AGR) and preventing supply demand imbalance. Relative to a business-as-usual baseline, our approach improves balance scores by 64% and projects up to a 59% reduction in charging load by 2060. These results demonstrate the promise of data-driven demand-management strategies for maintaining grid reliability during large-scale EV integration. Full article
Show Figures

Figure 1

24 pages, 7613 KiB  
Article
Spatial Distribution Characteristics and Influencing Factors of Public Service Facilities for Children—A Case Study of the Central Urban Area of Shenyang
by Ruiqiu Pang, Jiawei Xiao, Jun Yang and Weisong Sun
Land 2025, 14(7), 1485; https://doi.org/10.3390/land14071485 - 17 Jul 2025
Viewed by 275
Abstract
With the rapid advancement of urbanization, the increasing demand and insufficient supply of public service facilities for children have become urgent problems requiring resolution. This study employs the Shannon diversity index, the location entropy, spatial autocorrelation, and the Geographically Weighted Regression (GWR) to [...] Read more.
With the rapid advancement of urbanization, the increasing demand and insufficient supply of public service facilities for children have become urgent problems requiring resolution. This study employs the Shannon diversity index, the location entropy, spatial autocorrelation, and the Geographically Weighted Regression (GWR) to analyze the spatial distribution characteristics and influencing factors of children’s public service facilities in the central urban area of Shenyang. The findings of the study are as follows: (1) There are significant differences in the spatial distribution of children’s public service facilities. Higher quantity distribution and diversity index are observed in the core area and Hunnan District compared to the peripheral areas. The Gini coefficient of various facilities is below the fair threshold of 0.4, but 90.32% of the study units have location entropy values below 1, indicating a supply–demand imbalance. (2) The spatial distribution of various facilities exhibits significant clustering characteristics, with distinct differences between high-value and low-value cluster patterns. (3) The spatial distribution of facilities is shaped by four factors: population, transportation, economy, and environmental quality. Residential area density and commercial service facility density emerge as the primary positive drivers, whereas road density and average housing price act as the main negative inhibitors. (4) The mechanisms of influencing factors exhibit spatial heterogeneity. Positive driving factors exert significant effects on new urban areas and peripheral zones, while negative factors demonstrate pronounced inhibitory effects on old urban areas. Non-linear threshold effects are observed in factors such as subway station density and public transport station density. Full article
Show Figures

Figure 1

27 pages, 7109 KiB  
Article
The Long-Term Surface Deformation Monitoring and Prediction of Hutubi Gas Storage Reservoir in Xinjiang Based on InSAR and the GWO-VMD-GRU Model
by Wang Huang, Wei Liao, Jie Li, Xuejun Qiao, Sulitan Yusan, Abudutayier Yasen, Xinlu Li and Shijie Zhang
Remote Sens. 2025, 17(14), 2480; https://doi.org/10.3390/rs17142480 - 17 Jul 2025
Viewed by 353
Abstract
Natural gas storage is an effective solution to address the energy supply–demand imbalance, and underground gas storage (UGS) is a primary method for storing natural gas. The overarching goal of this study is to monitor and analyze surface deformation at the Hutubi underground [...] Read more.
Natural gas storage is an effective solution to address the energy supply–demand imbalance, and underground gas storage (UGS) is a primary method for storing natural gas. The overarching goal of this study is to monitor and analyze surface deformation at the Hutubi underground gas storage facility in Xinjiang, China, which is the largest gas storage facility in the country. This research aims to ensure the stable and efficient operation of the facility through long-term monitoring, using remote sensing data and advanced modeling techniques. The study employs the SBAS-InSAR method, leveraging Synthetic Aperture Radar (SAR) data from the TerraSAR and Sentinel-1 sensors to observe displacement time series from 2013 to 2024. The data is processed through wavelet transformation for denoising, followed by the application of a Gray Wolf Optimization (GWO) algorithm combined with Variational Mode Decomposition (VMD) to decompose both surface deformation and gas pressure data. The key focus is the development of a high-precision predictive model using a Gated Recurrent Unit (GRU) network, referred to as GWO-VMD-GRU, to accurately predict surface deformation. The results show periodic surface uplift and subsidence at the facility, with a notable net uplift. During the period from August 2013 to March 2015, the maximum uplift rate was 6 mm/year, while from January 2015 to December 2024, it increased to 12 mm/year. The surface deformation correlates with gas injection and extraction periods, indicating periodic variations. The accuracy of the InSAR-derived displacement data is validated through high-precision GNSS data. The GWO-VMD-GRU model demonstrates strong predictive performance with a coefficient of determination (R2) greater than 0.98 for the gas well test points. This study provides a valuable reference for the future safe operation and management of underground gas storage facilities, demonstrating significant contributions to both scientific understanding and practical applications in underground gas storage management. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Figure 1

27 pages, 2692 KiB  
Article
Spatiotemporal Evolution Characteristics of Green Logistics Level: Evidence from 51 Countries
by Song Wang, Xiaowan Liu and Yige Liu
Sustainability 2025, 17(14), 6418; https://doi.org/10.3390/su17146418 - 14 Jul 2025
Viewed by 368
Abstract
With the current acceleration of climate change, there is a global demand for sustainable development and carbon emission reduction. As a major link in the global supply chain, the logistics industry’s green and low-carbon transformation has become a critical breakthrough in achieving the [...] Read more.
With the current acceleration of climate change, there is a global demand for sustainable development and carbon emission reduction. As a major link in the global supply chain, the logistics industry’s green and low-carbon transformation has become a critical breakthrough in achieving the objective of reducing carbon emissions. This study develops a multidimensional assessment index method for the green logistics level. The study selects 51 major economies worldwide from 2000 to 2022 as research subjects. The cloud model–entropy value–TOPSIS method is applied to measure the green logistics level. The results of the green logistics level are analyzed from the perspectives of developed and developing countries, and their spatiotemporal evolution characteristics are explored. The study shows that (1) the green logistics level in developed countries is relatively high, mainly due to policy-driven, core technology advantages. However, they continue to encounter issues, such as regional imbalance and excessive green costs. (2) The green logistics level in developing countries is in the middle to lower level, limited by technological dependence, outdated infrastructure, and so on. They are generally caught in a “high-carbon lock-in” situation. (3) From the perspective of time, the global level of green logistics shows a rising trend year by year. The peak of the kernel density curve of the green logistics level is characterized by an “I” shape. There is a significant disparity in each country’s green logistics level, although it is narrowing every year. (4) From the spatial perspective, the green logistics level in each country shows a rising trend year by year vertically, while the horizontal disparity between countries is enormous. The development of the green logistics level between continents is unbalanced. The study presents several recommendations, including boosting technology transfer, giving financial support, strengthening international cooperation, and developing green infrastructure, to promote the global logistics industry’s green and low-carbon transformation to accomplish sustainable development goals. Full article
Show Figures

Figure 1

30 pages, 6991 KiB  
Article
A Hybrid EV Charging Approach Based on MILP and a Genetic Algorithm
by Syed Abdullah Al Nahid and Junjian Qi
Energies 2025, 18(14), 3656; https://doi.org/10.3390/en18143656 - 10 Jul 2025
Viewed by 354
Abstract
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a [...] Read more.
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a centralized day-ahead optimal scheduling mechanism and EV shifting process based on mixed-integer linear programming (MILP) and (2) a distributed control strategy based on a genetic algorithm (GA) that dynamically adjusts the charging rate in real-time grid scenarios. The MILP minimizes energy imbalance at overloaded slots by reallocating EVs based on supply–demand mismatch. By combining full and minimum charging strategies with MILP-based shifting, the method significantly reduces network stress due to EV charging. The centralized model schedules time slots using valley-filling and EV-specific constraints, and the local GA-based distributed control adjusts charging currents based on minimum energy, system availability, waiting time, and a priority index (PI). This PI enables user prioritization in both the EV shifting process and power allocation decisions. The method is validated using demand data on a radial feeder with residential and commercial load profiles. Simulation results demonstrate that the proposed hybrid EV charging framework significantly improves grid-level efficiency and user satisfaction. Compared to the baseline without EV integration, the average-to-peak demand ratio is improved from 61% to 74% at Station-A, from 64% to 80% at Station-B, and from 51% to 63% at Station-C, highlighting enhanced load balancing. The framework also ensures that all EVs receive energy above their minimum needs, achieving user satisfaction scores of 88.0% at Stations A and B and 81.6% at Station C. This study underscores the potential of hybrid charging schemes in optimizing energy utilization while maintaining system reliability and user convenience. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

20 pages, 1881 KiB  
Article
Assessment of Regulation Capacity Requirements for Sending-End Grids Considering Frequency Security
by Min Li, Xiaodi Wang, Fang Liu, Xiaming Guo, Dawei Chen and Yunfeng Wen
Energies 2025, 18(13), 3577; https://doi.org/10.3390/en18133577 - 7 Jul 2025
Viewed by 257
Abstract
With the large-scale integration of converter-based renewable energy into power systems and the large-scale construction of HVDC, risks associated with supply–demand imbalance and post-contingency frequency instability of sending-end power grids have significantly escalated. This paper proposes a novel method for evaluating the regulation [...] Read more.
With the large-scale integration of converter-based renewable energy into power systems and the large-scale construction of HVDC, risks associated with supply–demand imbalance and post-contingency frequency instability of sending-end power grids have significantly escalated. This paper proposes a novel method for evaluating the regulation capacity requirements of sending-end grids, addressing both normal-state power balance and post-disturbance frequency security. In normal states, multiple flexible metrics that can quantify the supply–demand imbalance trend are introduced. Then, thermal power units and energy storage serve as the benchmark to quantify the specific capacity requirements. For post-contingencies, frequency security metrics are derived based on the system frequency dynamic model with synchronous generators, renewable energy, and energy storage. The derived frequency security metrics can quantify the credible frequency regulation capacity required to ensure system stability under a predefined disturbance. A multi-objective capacity requirement assessment model for both the normal state and the post-contingency frequency regulation is ultimately formulated to determine the minimum capacity requirements. The effectiveness of the proposed evaluation method is verified using the numerical simulation based on a practical sending-end grid. Full article
(This article belongs to the Special Issue Advances in Sustainable Power and Energy Systems: 2nd Edition)
Show Figures

Figure 1

20 pages, 383 KiB  
Article
Optimization of China’s Child-Friendly City Construction Policy from the Perspective of Policy Tools
by Hanyu Cao, Quansheng Wang and Qi Zhang
Sustainability 2025, 17(13), 6220; https://doi.org/10.3390/su17136220 - 7 Jul 2025
Viewed by 437
Abstract
The construction of child-friendly cities is important for social and economic development. Based on the two-dimensional analysis framework of “Policy Tools–Policy Elements”, this study uses NVIVO 15 qualitative analysis software to code and quantitatively analyze China’s current child-friendly city construction policies. This study [...] Read more.
The construction of child-friendly cities is important for social and economic development. Based on the two-dimensional analysis framework of “Policy Tools–Policy Elements”, this study uses NVIVO 15 qualitative analysis software to code and quantitatively analyze China’s current child-friendly city construction policies. This study examines the formulation strategies and operational characteristics of policy texts on building child-friendly cities in China. The research shows that there are structural imbalances in current policies on child-friendly city construction in China, with too many supply-oriented policy tools and insufficient application of environmental policy and demand-oriented policy tools. The mix of policy instruments is poorly structured, with insufficient attention to children’s rights and social policies and a lack of monitoring and evaluation of policy performance. In the future, China’s children’s urban construction policy should strengthen the balance between the design of policy structures, optimize the structure of policy tools, strengthen the design and protection of laws and policies of children’s rights, and establish a monitoring and evaluation system of policy performance. Full article
Show Figures

Figure 1

27 pages, 1599 KiB  
Article
Optimization of Combined Urban Rail Transit Operation Modes Based on Intelligent Algorithms Under Spatiotemporal Passenger Imbalance
by Weisong Han, Zhihan Shi, Xiaodong Lv and Guangming Zhang
Sustainability 2025, 17(13), 6178; https://doi.org/10.3390/su17136178 - 5 Jul 2025
Viewed by 437
Abstract
With increasing attention to sustainability and energy efficiency in transportation systems, advanced intelligent algorithms provide promising solutions for optimizing urban rail transit operations. This study addresses the challenge of optimizing train operation plans for urban rail transit systems characterized by spatiotemporal passenger flow [...] Read more.
With increasing attention to sustainability and energy efficiency in transportation systems, advanced intelligent algorithms provide promising solutions for optimizing urban rail transit operations. This study addresses the challenge of optimizing train operation plans for urban rail transit systems characterized by spatiotemporal passenger flow imbalance. By exploring a combined short-turning and unpaired train operation mode, a three-objective optimization model was established, aiming to minimize operational costs, reduce passenger waiting times, and enhance load balancing. To effectively solve this complex problem, an Improved GOOSE (IGOOSE) algorithm incorporating elite opposition-based learning, probabilistic exploration based on elite solutions, and golden-sine mutation strategies were developed, significantly enhancing global search capability and solution robustness. A case study based on real operational data adjusted for confidentiality was conducted, and comparative analyses with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO) demonstrated the superiority of IGOOSE. Furthermore, an ablation study validated the effectiveness of each enhancement strategy within the IGOOSE algorithm. The optimized operation planning model reduced passenger waiting times by approximately 12.72%, improved load balancing by approximately 39.30%, and decreased the overall optimization objective by approximately 10.25%, highlighting its effectiveness. These findings provide valuable insights for urban rail transit operation management and indicate directions for future research, underscoring the significant potential for energy savings and emission reductions toward sustainable urban development. Full article
Show Figures

Figure 1

40 pages, 6398 KiB  
Article
A Supply–Demand-Driven Framework for Evaluating Service Effectiveness of University Campus Emergency Shelter: Evidence from Central Tianjin Under Earthquake Scenarios
by Hao Gao, Yuqi Han, Jiahao Zhang, Yuanzhen Song, Tianlin Zhang, Fengliang Tang and Su Sun
Land 2025, 14(7), 1411; https://doi.org/10.3390/land14071411 - 4 Jul 2025
Viewed by 445
Abstract
Urban disaster risks are escalating, and university campus emergency shelters (UCESs) are key to alleviating the supply–demand imbalance in emergency shelter services (ESSs) within high-density central urban areas. However, existing studies lacked the measurement of UCES service effectiveness from a regional supply–demand perspective, [...] Read more.
Urban disaster risks are escalating, and university campus emergency shelters (UCESs) are key to alleviating the supply–demand imbalance in emergency shelter services (ESSs) within high-density central urban areas. However, existing studies lacked the measurement of UCES service effectiveness from a regional supply–demand perspective, limiting the ability to guide planning practices. Therefore, we focused on the capacity of UCESs to improve regional supply–demand relationships and developed a service effectiveness evaluation framework for UCESs in the central urban area of Tianjin under an earthquake scenario. We identified emergency shelter spaces within the campuses and developed a campus–city collaborative shelter capacity model to determine their service supply capacity. Then we quantified regional service demand driven by seismic risk. Finally, we quantified the service effectiveness of each UCES by constructing a service effectiveness evaluation model. Results showed that (1) the total shelter capacity and service coverage of 13 UCESs accounted for approximately 32.1% of the central district’s population and 67.5% of its land area, indicating their strong potential to provide large-scale ESSs. (2) Average seismic risk values ranged from 0.200 to 0.260, exhibiting the characteristic of being higher in the south and lower in the north. (3) Service effectiveness was classified into three levels—higher (1.150–1.257), medium (0.957–0.988), and lower (0.842–0.932)—corresponding to planning interventions that can be implemented based on them. This study aims to reveal differences between different UCESs to improve regional supply–demand relationships by evaluating their service effectiveness and supporting refined emergency management and planning decisions. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

Back to TopTop