Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (946)

Search Parameters:
Keywords = superhydrophobic surfaces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1661 KB  
Article
On the Hydrophobicity, Superhydrophobicity and Icephobicity of Etched Aluminum Surfaces
by Marcella Balordi, Andrea Cammi, Alessandro Casali, Francesco Pini and Giorgio Santucci de Magistris
Coatings 2025, 15(11), 1328; https://doi.org/10.3390/coatings15111328 - 14 Nov 2025
Abstract
Several hydrophobic and superhydrophobic aluminum surfaces were prepared with a three-step process that includes chemical etching, a treatment in hot water and a further coating with fluoroalkysiloxane (FAS). By varying the concentration of the etchant, the immersion time in the etchant and the [...] Read more.
Several hydrophobic and superhydrophobic aluminum surfaces were prepared with a three-step process that includes chemical etching, a treatment in hot water and a further coating with fluoroalkysiloxane (FAS). By varying the concentration of the etchant, the immersion time in the etchant and the boiling time, surfaces characterized by different roughness were obtained, with a wettability ranging from hydrophobic to superhydrophobic values. The icephobic properties were tested and the results reveal important differences among the samples, related to the roughness of the surface and the etching and boiling treatment processes. Full article
(This article belongs to the Special Issue Superhydrophobic Surfaces and Coatings)
Show Figures

Figure 1

20 pages, 3571 KB  
Article
Novel Omniphobic Teflon/PAI Composite Membrane Prepared by Vacuum-Assisted Dip-Coating Strategy for Dissolved Gases Separation from Transformer Oil
by Wei Zhang, Qiwei Yang, Yuanyuan Jin, Yanzong Meng, Leyu Shen, Xuran Zhu, Haifeng Gao and Chuan Chen
Coatings 2025, 15(11), 1319; https://doi.org/10.3390/coatings15111319 - 11 Nov 2025
Viewed by 72
Abstract
Omniphobic membranes have gained extensive attention for mitigating membrane wetting in robust membrane separation owing to the super-repulsion toward water and oil. In this study, a Teflon/PAI composite membrane with omniphobic characteristics was prepared by a vacuum-assisted dip-coating strategy on the PAI hollow [...] Read more.
Omniphobic membranes have gained extensive attention for mitigating membrane wetting in robust membrane separation owing to the super-repulsion toward water and oil. In this study, a Teflon/PAI composite membrane with omniphobic characteristics was prepared by a vacuum-assisted dip-coating strategy on the PAI hollow fiber membrane. A series of characterizations on morphological structure, surface chemical composition, wettability, permeability, mechanical properties, and stability were systematically investigated for pristine PAI and Teflon/PAI composite membranes. Subsequently, the experiment was conducted to explore the oil–gas separation performance of membranes, with standard transformer oil containing dissolved gas as the feed. The results showed that the Teflon AF2400 functional layer was modified, and C-F covalent bonds were introduced on the composite membrane surface. The Teflon/PAI composite membrane exhibited excellent contact angles of 156.3 ± 1.8° and 123.0 ± 2.5° toward DI water and mineral insulating oil, respectively, indicating omniphobicity. After modification, the membrane tensile stress at break increased by 23.0% and the mechanical performance of the composite membrane was significantly improved. In addition, the Teflon/PAI composite membrane presented satisfactory thermal and ultrasonic stability. Compared to the previous membranes, the Teflon/PAI composite membrane presented a thinner Teflon AF2400 separation layer. Furthermore, the omniphobic membrane demonstrated anti-wetting performance by reaching the dynamic equilibrium within 2 h for the dissolved gases separated from the insulating oil. This suggests an omniphobic membrane as a promising alternative for oil–gas separation in monitoring the operating condition of oil-filled electrical equipment online. Full article
(This article belongs to the Special Issue Advances in Polymer Composite Coatings and Films)
Show Figures

Graphical abstract

26 pages, 1743 KB  
Review
Recent Advances in Bio-Inspired Superhydrophobic Coatings Utilizing Hierarchical Nanostructures for Self-Cleaning and Anti-Icing Surfaces
by Florence Acha, Daniel Egbebunmi, Shamsudeen Ahmadu, Aishat Ojuolape and Titus Egbosiuba
Physchem 2025, 5(4), 48; https://doi.org/10.3390/physchem5040048 - 4 Nov 2025
Viewed by 565
Abstract
Bio-inspired superhydrophobic coatings have garnered significant attention in recent years due to their potential in creating self-cleaning and anti-icing surfaces. Drawing inspiration from natural systems such as lotus leaves and insect wings, these coatings leverage hierarchical nanostructures to achieve extreme water repellency and [...] Read more.
Bio-inspired superhydrophobic coatings have garnered significant attention in recent years due to their potential in creating self-cleaning and anti-icing surfaces. Drawing inspiration from natural systems such as lotus leaves and insect wings, these coatings leverage hierarchical nanostructures to achieve extreme water repellency and low surface adhesion. This review explores recent advances in the design, fabrication, and functional performance of bio-inspired superhydrophobic materials, with a focus on hierarchical micro/nanostructured surfaces. We discuss the underlying mechanisms of wettability, the role of surface chemistry, and the integration of durable nanostructures for enhanced durability. Additionally, the paper discusses the latest progress in scalable manufacturing techniques, environmental adaptability, and multifunctional performance, particularly in self-cleaning and anti-icing applications. Emerging trends, such as stimuli-responsive surfaces and smart coatings, are also examined to provide a comprehensive overview of the field. This review discusses the challenges and future directions for translating laboratory-scale innovations into real-world applications, particularly in aerospace, automotive, energy, and infrastructure sectors. Full article
(This article belongs to the Special Issue Nanocomposites for Catalysis and Environment Applications)
Show Figures

Figure 1

18 pages, 12230 KB  
Article
Effects of Two-Level Surface Roughness on Superhydrophobicity
by Yanfei Wang, Mengdan You and Qiang Sun
Coatings 2025, 15(11), 1269; https://doi.org/10.3390/coatings15111269 - 2 Nov 2025
Viewed by 249
Abstract
Biomimetic superhydrophobic surfaces have become a focal point of recent research, driven by their promise in diverse applications. Among these, the lotus and rose effects are of particular interest due to their contrasting adhesion characteristics. Given that superhydrophobicity is closely related to the [...] Read more.
Biomimetic superhydrophobic surfaces have become a focal point of recent research, driven by their promise in diverse applications. Among these, the lotus and rose effects are of particular interest due to their contrasting adhesion characteristics. Given that superhydrophobicity is closely related to the hierarchical structures of these surfaces, investigating the effects of two-level roughness on superhydrophobicity is crucial. In our previous work, we introduced a wetting parameter (WRoughness), strongly correlated with the geometric characteristics of surface roughness, to elucidate the superhydrophobic behavior of solid surfaces. This parameter predicts the existence of a critical wetting parameter (WRoughness,c) during the Wenzel–Cassie transition. For two-level surface roughness composed of primary and secondary roughness, the WRoughness of the two-level surface is influenced by the geometric characteristics of both primary and secondary roughness. Furthermore, when secondary roughness is added to a primary roughness surface in the Wenzel state, the resulting two-level roughness can exhibit various superhydrophobic states, such as the Wenzel state, Wenzel–Cassie transition, or Cassie state, depending on the characteristics of the secondary roughness. To further investigate the influence of two-level roughness on superhydrophobicity, molecular dynamics (MD) simulations were also conducted. Full article
(This article belongs to the Special Issue Superhydrophobic Coatings, 2nd Edition)
Show Figures

Figure 1

19 pages, 4433 KB  
Article
Simple Spray Preparation of Multifunctional Organic–Inorganic Hybrid Coatings for Surface Strengthening of Flat Thin-Sheet Materials
by Xianbo Yu, Huaxin Li, Hu Chen, Shuao Xie, Wei Han, Xiaoxue Xi, Zhongbo Hu, Xian Yue and Junhui Xiang
Coatings 2025, 15(11), 1267; https://doi.org/10.3390/coatings15111267 - 2 Nov 2025
Viewed by 506
Abstract
To enhance the mechanical performance and surface hydrophobicity of flat thin-sheet materials, we have developed a facile, environmentally benign, and low-cost synthesis strategy for fabricating a robust waterborne superhydrophobic coating with excellent mechanical reinforcement, via simple spray coating using a non-fluorinated material system [...] Read more.
To enhance the mechanical performance and surface hydrophobicity of flat thin-sheet materials, we have developed a facile, environmentally benign, and low-cost synthesis strategy for fabricating a robust waterborne superhydrophobic coating with excellent mechanical reinforcement, via simple spray coating using a non-fluorinated material system (waterborne silicone–acrylic copolymer and silica sol). The functional coating exhibited excellent hydrophobicity (water contact angle: 150°) regardless of the compound of the substrates, which is primarily ascribed to the presence of abundant low-surface-energy methyl groups on the coating’s surface, along with the three-dimensional hierarchical network structure formed via the cross-linked silica network. Owing to the stable cross-linked structure and strong interfacial bonding between the acrylic polymer and silica network, the composite coating exhibited exceptional mechanical reinforcement, coupled with ultrahigh mechanical and chemical stability. Specifically, the maximum flexural fracture load of the modified materials increased from 119 N to 192 N, representing a 62.7% enhancement; similarly, the moisture-induced deflection of the samples had a significant increase from −14.5 mm to −3.01 mm, which confirmed that the mechanical properties of the modified sample and its deformation resistance under high humidity conditions have been significantly enhanced. Notably, the coating retained superior hydrophobicity and mechanical performance even after 50 abrasion cycles, as well as exposure to high-intensity UV radiation and corrosive acidic/alkaline environments. Furthermore, the composite functional coating demonstrated excellent self-cleaning and anti-fouling properties. This functional composite coating offers significant potential for large-scale industrial application. Full article
(This article belongs to the Special Issue Smart Coatings: Adapting to the Future)
Show Figures

Figure 1

27 pages, 5027 KB  
Review
Droplets Sliding Down Partially Wetted (Non-Superhydrophobic) Surfaces: A Review
by Silvia Varagnolo
Liquids 2025, 5(4), 29; https://doi.org/10.3390/liquids5040029 - 31 Oct 2025
Viewed by 210
Abstract
Droplets sliding down a partially wetted surface are a ubiquitous phenomenon in nature and everyday life. Despite its apparent simplicity, it hinders complex intricacies for theoretical and numerical descriptions matching the experimental observations, even for the simplest case of a drop sliding down [...] Read more.
Droplets sliding down a partially wetted surface are a ubiquitous phenomenon in nature and everyday life. Despite its apparent simplicity, it hinders complex intricacies for theoretical and numerical descriptions matching the experimental observations, even for the simplest case of a drop sliding down a homogeneous surface. A key aspect to be considered is the distribution of contact angles along the droplet perimeter, which can be challenging to include in the theoretical/numerical analysis. The scenario can become more complex when considering geometrically or chemically patterned surfaces or complex fluids. Indeed, these aspects can provide strategies to passively control the droplet motion in terms of velocity or direction. This review gathers the state of the art of experimental, numerical, and theoretical research about droplets made of Newtonian and non-Newtonian fluids sliding down homogeneous, chemically heterogeneous, or geometrically patterned surfaces. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

1 pages, 131 KB  
Correction
Correction: Hosokawa et al. Preparation of Alginate Hydrogel Beads on a Superhydrophobic Surface with Calcium Salt Powder to Enhance the Mechanical Strength and Encapsulation Efficiency of Ingredients. Materials 2024, 17, 6027
by Yuhei Hosokawa, Takashi Goshima, Takami Kai, Saki Kobaru, Yoshihiro Ohzuno, Susumu Nii, Shiro Kiyoyama, Masahiro Yoshida and Takayuki Takei
Materials 2025, 18(21), 4916; https://doi.org/10.3390/ma18214916 - 28 Oct 2025
Viewed by 174
Abstract
In the original publication [...] Full article
13 pages, 3789 KB  
Article
Enhanced Mechanical Durability of Polymeric Nanowires via Carbyne-Enriched Plasma Coatings for Bactericidal Action
by Dimitrios Nioras, Dionysia Kefallinou, Dimosthenis Ioannou, Luis Antonio Panes-Ruiz, Bergoi Ibarlucea, Gianaurelio Cuniberti, Tianshu Lan, Angeliki Tserepi and Evangelos Gogolides
Coatings 2025, 15(11), 1247; https://doi.org/10.3390/coatings15111247 - 27 Oct 2025
Viewed by 344
Abstract
Carbon-based materials have emerged as promising biomaterials due to their biocompatibility and inherent antibacterial properties. Carbyne, a unique allotrope of carbon, characterized by sp-hybridized carbons forming alternating single and triple bonds, exhibits exceptional toughness. Herein, we explore the potential of carbyne-enriched plasma coatings [...] Read more.
Carbon-based materials have emerged as promising biomaterials due to their biocompatibility and inherent antibacterial properties. Carbyne, a unique allotrope of carbon, characterized by sp-hybridized carbons forming alternating single and triple bonds, exhibits exceptional toughness. Herein, we explore the potential of carbyne-enriched plasma coatings for antibacterial applications in conjunction with micro- and nano-textured polymeric surfaces. We investigate and characterize carbyne-enriched plasma coatings onto superhydrophilic or superhydrophobic poly (methyl methacrylate) (PMMA) plasma micro-nanotextured surfaces. Our analysis evaluates the wetting properties and durability of these surfaces, particularly in liquid immersion conditions. The integration of carbyne-enriched plasma coatings serves a dual purpose: it enhances the chemical bactericidal action and protects surface micro-nanostructures from deformation due to capillary forces thanks to the material’s innate toughness. The results show that the micro-nanotextured and carbyne-enriched coated PMMA surfaces exhibit a significant bactericidal activity as expressed by a bactericidal index of approximately 50%, owing to the combined effect of both the surface topography and the plasma-deposited carbyne coating. Full article
(This article belongs to the Special Issue Emerging Trends in Plasma Coating and Interface Technologies)
Show Figures

Figure 1

18 pages, 5360 KB  
Article
Anti-Icing and Frost Property of Superhydrophobic Micro-Nano Structures with Embossed Micro-Array Channels
by Han Luo, Xiaoliang Wang, Qiwei Li, Honglei Liu, Lei Chen, Debin Shan, Bin Guo and Jie Xu
Materials 2025, 18(20), 4813; https://doi.org/10.3390/ma18204813 - 21 Oct 2025
Viewed by 504
Abstract
Icing on aircraft surfaces during operation poses a threat to flight safety. As a passive anti-icing technology, hydrophobic microstructure can achieve long-term anti-icing. In this work, a composite process combining hot-embossing of PVD-coated punches with a low surface energy fluoride-modification scheme is proposed [...] Read more.
Icing on aircraft surfaces during operation poses a threat to flight safety. As a passive anti-icing technology, hydrophobic microstructure can achieve long-term anti-icing. In this work, a composite process combining hot-embossing of PVD-coated punches with a low surface energy fluoride-modification scheme is proposed to generate nanoscale cluster structures on hundreds of microns array channels to construct a superhydrophobic micro-nano composite structure. The droplet freezing and frosting behavior of the hydrophobic microstructures was analyzed, and it was found that the anti-icing and anti-frost properties of the microstructure surface improved with an increase in the microstructure period size (T). Compared with the original surface, the freezing time of the microstructure at T = 500 μm was delayed by 214.3% (7 s → 22 s), and the frost layer coverage time was delayed by 75.7% (70 s → 123 s). The maximum water contact angle of the superhydrophobic micro-nano composite structure was 153.3°, and the droplet freezing time was delayed to 95 s, which is a 1166.67% difference, indicating that the multi-stage micro-nano composite structure can significantly improve surface anti-icing performance. The main reason for this result is that the bottom of the microstructure can store air pockets, preventing droplet wetting and heat exchange. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

41 pages, 11839 KB  
Review
Recent Progress in Cellulose-Based Aerogels for Sustainable Oil–Water Separation Technologies
by Karvembu Palanisamy, Gowthami Palanisamy, Yeong Min Im, Sadhasivam Thangarasu, Urmila Gupta Phutela and Tae Hwan Oh
Polymers 2025, 17(20), 2723; https://doi.org/10.3390/polym17202723 - 10 Oct 2025
Viewed by 968
Abstract
Polymer-based aerogels have recently received considerable research attention as a favorable option for oil–water separation due to their enhanced porous 3D structure with great specific surface area, low density and outstanding sorption behavior. Additionally, polymer-containing aerogels exhibit more favorable characteristic properties, such as [...] Read more.
Polymer-based aerogels have recently received considerable research attention as a favorable option for oil–water separation due to their enhanced porous 3D structure with great specific surface area, low density and outstanding sorption behavior. Additionally, polymer-containing aerogels exhibit more favorable characteristic properties, such as being lipophilic–hydrophobic (superhydrophobic–superoleophilic), hydrophilic–lipophobic (superhydrophilic–underwater oleophobic), or other specific wetness forms, including anisotropic and dual-wettability. In this review, cellulose and cellulose-based materials used as an aerogel for oil–water separation are comprehensively reviewed. This review highlights the significance of cellulose and cellulose-based combinations through structure–property interactions, surface modifications (using different hydrophilic and hydrophobic agents), and aerogel formation, focusing on the light density and high surface area of aerogels for effective oil–water separation. This article provides an in-depth review of four primary classifications of cellulose-based aerogels, namely, cellulose aerogels (regenerated cellulose and bacterial cellulose), cellulose with biopolymer-based aerogels (chitosan, lignin, and alginate), cellulose with synthetic polymer aerogels (polyvinyl alcohol, polyetherimide, polydopamine and others), and cellulose with organic/inorganic (such as SiO2, MTMS, and tannic acid) material-based aerogels. Furthermore, the aspects of performance, scalability, and durability have been explained, alongside potential prospect directions for the advancement of cellulose aerogels aimed at their widespread application. This review article stands apart from previously published review works and represents the comprehensive review on cellulose-based aerogels for oil–water separation, featuring wide-ranging classifications. Full article
(This article belongs to the Special Issue Polymer-Based Materials for Energy and Environment Applications)
Show Figures

Figure 1

28 pages, 1951 KB  
Review
Badminton Racket Coatings and Athletic Performance: Review Based on Functional Coatings
by Houwei Tian and Guoyuan Huang
Coatings 2025, 15(10), 1186; https://doi.org/10.3390/coatings15101186 - 9 Oct 2025
Viewed by 993
Abstract
As a key piece of equipment in badminton, the surface treatment technology of rackets has garnered significant attention in the fields of material science and sports engineering. This study is the first to systematically review research on racket coatings, integrating interdisciplinary knowledge on [...] Read more.
As a key piece of equipment in badminton, the surface treatment technology of rackets has garnered significant attention in the fields of material science and sports engineering. This study is the first to systematically review research on racket coatings, integrating interdisciplinary knowledge on the classification of functional coatings, their performance-enhancing principles, and their relationship with competitive levels, thereby addressing a gap in theoretical research in this field. This study focuses on four major functional coating systems: superhydrophobic coatings (to improve environmental adaptability and reduce air resistance), anti-scratch coatings (to prolong the life of the equipment), vibration-damping coatings (to optimise vibration damping performance), and strength-enhancing coatings (to safeguard structural stability). In badminton, differences in player skill levels and usage scenarios lead to variations in racket materials, which, in turn, result in different preparation processes and performance effects. The use of vibration-damping materials alleviates the impact force on the wrist, effectively preventing sports injuries caused by prolonged training; leveraging the aerodynamic properties of superhydrophobic technology enhances racket swing speed, thereby improving hitting power and accuracy. From the perspective of performance optimization, coating technology improves athletic performance in three ways: nanocomposite coatings enhance the fatigue resistance of the racket frame; customized damping layers reduce muscle activation delays; and surface energy regulation technology improves grip stability. Challenges remain in the industrial application of environmentally friendly water-based coatings and the evaluation system for coating lifespan under multi-field coupling conditions. Future research should integrate intelligent algorithms to construct a tripartite optimization system of “racket-coating-user” and utilize digital sports platforms to analyze its mechanism of influence on professional athletes’ tactical choices, providing a theoretical paradigm and technical roadmap for the targeted development of next-generation smart badminton rackets. Full article
Show Figures

Figure 1

14 pages, 3409 KB  
Article
Synergistic ATO/SiO2 Composite Coatings for Transparent Superhydrophobic and Thermal-Insulating Performance
by Guodong Qin, Lei Li and Qier An
Coatings 2025, 15(10), 1160; https://doi.org/10.3390/coatings15101160 - 4 Oct 2025
Viewed by 615
Abstract
Multifunctional coatings integrating high transparency, thermal insulation, and self-cleaning properties are critically needed for optical devices and energy-saving applications, yet simultaneously optimizing these functions remains challenging due to material and structural limitations. This study designed a superhydrophobic transparent thermal insulation coating via synergistic [...] Read more.
Multifunctional coatings integrating high transparency, thermal insulation, and self-cleaning properties are critically needed for optical devices and energy-saving applications, yet simultaneously optimizing these functions remains challenging due to material and structural limitations. This study designed a superhydrophobic transparent thermal insulation coating via synergistic co-construction of micro–nano structures using antimony-doped tin oxide (ATO) and SiO2 nanoparticles dispersed in an epoxy resin matrix, with surface modification by perfluorodecyltriethoxysilane (PFDTES) and γ-glycidyl ether oxypropyltrimethoxysilane (KH560). The optimal superhydrophobic transparent thermal insulating (SHTTI) coating, prepared with 0.6 g SiO2 and 0.8 g ATO (SHTTI-0.6-0.8), achieved a water contact angle (WCA) of 162.4°, sliding angle (SA) of 3°, and visible light transmittance of 72% at 520 nm. Under simulated solar irradiation, it reduced interior temperature by 7.3 °C compared to blank glass. The SHTTI-0.6-0.8 coating demonstrated robust mechanical durability by maintaining superhydrophobicity through 40 abrasion cycles, 30 tape-peel tests, and sand impacts, combined with chemical stability, effective self-cleaning capability, and exceptional anti-icing performance that prolonged freezing time to 562 s versus 87 s for blank glass. This work provides a viable strategy for high-performance multifunctional coatings through rational component ratio optimization. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

17 pages, 6075 KB  
Article
Development of Photoresponsive Water-Soluble Superhydrophobic Coatings and Properties of the Modified Paper
by Shangjie Jiang and Yonghui Zuo
Polymers 2025, 17(19), 2615; https://doi.org/10.3390/polym17192615 - 27 Sep 2025
Viewed by 356
Abstract
In this study, a highly stable light-responsive superhydrophobic paper was successfully fabricated. The process involved polymerizing the synthesized light-responsive monomer PAPAE with the hydrophilic monomer 2-hydroxyethyl methacrylate(HEMA), the fluorine-containing monomer hexafluorobutyl methacrylate(HFMA),and 3-trimethoxysilyl-propyl methacrylate(TSPM), followed by grafting (3-Aminopropyl) triethoxysilane (APTES)-modified SiO2 nanoparticles [...] Read more.
In this study, a highly stable light-responsive superhydrophobic paper was successfully fabricated. The process involved polymerizing the synthesized light-responsive monomer PAPAE with the hydrophilic monomer 2-hydroxyethyl methacrylate(HEMA), the fluorine-containing monomer hexafluorobutyl methacrylate(HFMA),and 3-trimethoxysilyl-propyl methacrylate(TSPM), followed by grafting (3-Aminopropyl) triethoxysilane (APTES)-modified SiO2 nanoparticles onto the polymer to enhance surface roughness, and subsequently applying this composite to the paper surface. When the monomer ratio in the polymer was HFMA:TSPM:PAPAE:HEMA = 0.2:0.2:0.4:0.2, the resulting coating exhibited good water solubility, enabling the modified paper to achieve reversible wettability transitions under light irradiation. At a SiO2-to-polymer ratio of 0.3, the contact angle variation range reached its maximum (96–156.8°). The proposed method for fabricating superhydrophobic paper not only offers relative simplicity, low cost, and strong versatility but also imparts the paper with excellent weather resistance, abrasion resistance, and ultrasonic durability, highlighting its great potential for practical applications. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

15 pages, 2750 KB  
Article
Study on the Spreading Dynamics of Droplet Pairs near Walls
by Jing Li, Junhu Yang, Xiaobin Liu and Lei Tian
Fluids 2025, 10(10), 252; https://doi.org/10.3390/fluids10100252 - 26 Sep 2025
Viewed by 341
Abstract
This study develops an incompressible two-phase flow solver based on the open-source OpenFOAM platform, employing the volume-of-fluid (VOF) method to track the gas–liquid interface and utilizing the MULES algorithm to suppress numerical diffusion. This study provides a comprehensive investigation of the spreading dynamics [...] Read more.
This study develops an incompressible two-phase flow solver based on the open-source OpenFOAM platform, employing the volume-of-fluid (VOF) method to track the gas–liquid interface and utilizing the MULES algorithm to suppress numerical diffusion. This study provides a comprehensive investigation of the spreading dynamics of droplet pairs near walls, along with the presentation of a corresponding mathematical model. The numerical model is validated through a two-dimensional axisymmetric computational domain, demonstrating grid independence and confirming its reliability by comparing simulation results with experimental data in predicting drConfirmedoplet collision, spreading, and deformation dynamics. The study particularly investigates the influence of surface wettability on droplet impact dynamics, revealing that increased contact angle enhances droplet retraction height, leading to complete rebound on superhydrophobic surfaces. Finally, a mathematical model is presented to describe the relationship between spreading length, contact angle, and Weber number, and the study proves its accuracy. Analysis under logarithmic coordinates reveals that the contact angle exerts a significant influence on spreading length, while a constant contact angle condition yields a slight monotonic increase in spreading length with the Weber number. These findings provide an effective numerical and mathematical tool for analyzing the spreading dynamics of droplet pairs. Full article
Show Figures

Figure 1

21 pages, 5935 KB  
Article
A Superhydrophobic Gel Fracturing Fluid with Enhanced Structural Stability and Low Reservoir Damage
by Qi Feng, Quande Wang, Naixing Wang, Guancheng Jiang, Jinsheng Sun, Jun Yang, Tengfei Dong and Leding Wang
Gels 2025, 11(10), 772; https://doi.org/10.3390/gels11100772 - 25 Sep 2025
Viewed by 409
Abstract
Conventional fracturing fluids, while essential for large-volume stimulation of unconventional reservoirs, often induce significant reservoir damage through water retention and capillary trapping. To address this problem, this study developed a novel superhydrophobic nano-viscous drag reducer (SN-DR), synthesized through a multi-monomer copolymerization and silane [...] Read more.
Conventional fracturing fluids, while essential for large-volume stimulation of unconventional reservoirs, often induce significant reservoir damage through water retention and capillary trapping. To address this problem, this study developed a novel superhydrophobic nano-viscous drag reducer (SN-DR), synthesized through a multi-monomer copolymerization and silane modification strategy, which enhances structural stability and minimizes reservoir damage. The structure and thermal stability of SN-DR were characterized by FT-IR, 1H NMR, and TGA. Rheological evaluations demonstrated that the gel fracturing fluid exhibits a highly stable three-dimensional network structure, with a G′ maintained at approximately 3000 Pa and excellent shear recovery under cyclic stress. Performance tests showed that a 0.15% SN-DR achieved a drag reduction rate of 78.1% at 40 L/min, reduced oil–water interfacial tension to 0.91 mN·m−1, and yielded a water contact angle of 152.07°, confirming strong hydrophobicity. Core flooding tests revealed a flowback rate exceeding 50% and an average permeability recovery of 86%. SEM and EDS indicated that the gel formed nanoscale, tightly packed papillary structures on core surfaces, enhancing roughness and reducing water intrusion. The study demonstrates that gel fracturing fluid enhances structural stability, alters wettability, and mitigates water-blocking damage. These findings offer a new strategy for designing high-performance fracturing fluids with integrated drag reduction and reservoir protection properties, providing significant theoretical insights for improving hydraulic fracturing efficiency. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

Back to TopTop