A Superhydrophobic Gel Fracturing Fluid with Enhanced Structural Stability and Low Reservoir Damage
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of SN-DR
2.1.1. Fourier Transform Infrared Spectroscopy Analysis
2.1.2. 1H Nuclear Magnetic Resonance Spectroscopy Analysis
2.1.3. Thermogravimetric Analysis
2.1.4. Microscopic Morphology
2.2. Rheological Properties of Gel Fracturing Fluid
2.3. Thixotropic Properties of Gel Fracturing Fluid
2.4. Drag Reduction Performance
2.5. Surface Tension and Oil–Water Interface Tension
2.6. Capillary Experiment
2.7. Surface Wettability
2.8. Natural Imbibition
2.9. Flowback Rate Experiment
2.10. Evaluation of Core Damage Performance
2.11. Scanning Electron Microscope
2.12. Mechanism Analysis
3. Conclusions
- (1)
- Successful Synthesis and Robust Structure: SN-DR was successfully synthesized via multi-monomer copolymerization and silane modification, as confirmed by FT-IR and 1H NMR analyses. The material demonstrated good thermal stability.
- (2)
- Enhanced Rheological Properties: The gel fracturing fluid formulated with SN-DR exhibited a highly stable three-dimensional network structure, characterized by a high storage modulus (3000 Pa) that was significantly greater than that of conventional polyacrylamide fluid. It demonstrated exceptional shear recovery and thixotropic behavior under cyclic stress, indicating superior structural stability and self-healing capability.
- (3)
- Excellent Drag Reduction and Interfacial Activity: A low concentration of 0.15% SN-DR achieved a high drag reduction rate of 78.1% at 40 L/min. Furthermore, it effectively reduced the surface tension (to 22.07 mN·m−1) and oil–water interfacial tension (to 0.91 mN·m−1), facilitating flowback and reducing capillary pressure.
- (4)
- Effective Wettability Alteration and Water Block Mitigation: SN-DR significantly altered the wettability of the core surface to superhydrophobic, achieving a water contact angle of 152.07°. This led to a 57.5% reduction in spontaneous water imbibition and a marked decrease in capillary rise height, confirming its efficacy in mitigating water-blocking damage.
- (5)
- Superior Reservoir Protection Performance: Core flooding tests demonstrated outstanding reservoir protection, with an average permeability recovery value of 86.0% and a flowback rate exceeding 50%. Microscopic analysis (SEM/EDS) revealed that SN-DR formed nanoscale, tightly-packed papillary structures on the core surface, increasing roughness and forming a protective barrier that hinders water intrusion without plugging pore throats.
4. Materials and Methods
4.1. Materials
4.2. Synthesis of SN-DR
4.3. Preparation of Superhydrophobic Gel Fracturing Fluid
4.4. Characterization Method
4.4.1. Fourier Transform Infrared Spectroscopy
4.4.2. 1H Nuclear Magnetic Resonance Spectroscopy
4.4.3. Thermogravimetric Analysis
4.5. Geological Background of the Studied Shale
4.6. Measurement of Surface Tension and Oil–Water Interfacial Tension
4.7. Capillary Experiment
4.8. Surface Wetting Performance
4.9. Natural Imbibition Experiment
4.10. Formation Flowback Rate
4.11. Core Damage Performance Experiment
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Symbol | Description |
SN-DR | Superhydrophobic nano-viscous drag reducer |
FT-IR | Fourier transform infrared spectroscopy |
1H NMR | 1H Nuclear magnetic resonance spectroscopy |
TGA | Thermogravimetric analysis |
SEM | Scanning electron microscope |
EDS | Energy Dispersive X-ray Spectroscopy |
G′ | Storage modulus (Unit: Pa) |
G″ | Loss modulus (Unit: Pa) |
References
- Liu, L.; Li, L.; Jiao, K.; Fang, J.; Luo, Y. A novel fracturing fluid with high-temperature resistance for ultra-deep reservoirs. Fluid Dyn. Mater. Process. 2024, 20, 975–987. [Google Scholar] [CrossRef]
- Sun, J.; Xu, C.; Kang, Y.; Jing, H.; Zhang, J.; Yang, B.; You, L.; Zhang, H.; Long, Y. Formation damage mechanism and control strategy of the compound function of drilling fluid and fracturing fluid in shale reservoirs. Pet. Explor. Dev. 2024, 51, 430–439. [Google Scholar] [CrossRef]
- Peng, S.; Tian, D.; Miao, X.; Yang, X.; Deng, W. Designing robust alumina nanowires-on-nanopores structures: Superhydrophobic surfaces with slippery or sticky water adhesion. J. Colloid Interface Sci. 2013, 409, 18–24. [Google Scholar] [CrossRef]
- Cai, J.; Ma, X.; Zhang, L.; Wang, R.; Yu, X.; Fu, H.; Zheng, C. Preparation of W/W suspension drag reducer and study on the properties of integrated slippery water. Colloids Surf. A Physicochem. Eng. Asp. 2023, 674, 131832. [Google Scholar] [CrossRef]
- Zhao, M.; Ma, Z.; Dai, C.; Wu, W.; Sun, Y.; Song, X.; Cheng, Y.; Wang, X. Preparation and performance evaluation of the fracturing fluid using novel polymeric drag reducing agent with high temperature and shear resistance ability. Pet. Sci. 2024, 21, 1113–1121. [Google Scholar] [CrossRef]
- Lu, Z.; You, L.; Kang, Y.; Wang, Y.; Chen, Y. Formation damage induced by working fluids sequentially interacting with tight sandstone oil reservoirs. Geoenergy Sci. Eng. 2024, 233, 212482. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Jaafar, M.Z.; Yusof, M.A.M.; Idris, A.K. A review on the effect of nanoparticle in drilling fluid on filtration and formation damage. J. Pet. Sci. Eng. 2022, 217, 110922. [Google Scholar] [CrossRef]
- Li, Y.; Xia, C.; Liu, X. Water-based drilling fluids containing hydrophobic nanoparticles for minimizing shale hydration and formation damage. Heliyon 2023, 9, 22990. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Ning, F.; Dou, B.; Li, T.; Zhou, Q. Particle migration and formation damage during geothermal exploitation from weakly consolidated sandstone reservoirs via water and CO2 recycling. Energy 2022, 240, 122507. [Google Scholar] [CrossRef]
- Xu, B.; Li, L.; He, Q.; Luo, Y.; Zhang, Y.; Li, G. Fracture fluid damage mechanism in tight sandstone reservoir. Fault Block Oil Gas Field 2013, 20, 639–643. [Google Scholar]
- Wang, T.; Cao, H.; Luo, Z.; Zhang, Z. Experimental study of shale reservoir microstructure response under static adsorption of fracturing fluid. J. Eng. Geol. 2018, 26, 639–645. [Google Scholar]
- Zhou, M.; Yang, X.; Gao, Z.; Wu, X.; Li, L.; Guo, X.; Yang, Y. Preparation and performance evaluation of nanoparticle modified clean fracturing fluid. Colloids Surf. A Physicochem. Eng. Asp. 2022, 636, 128117. [Google Scholar] [CrossRef]
- Wang, J.; Guo, P.; Jiang, H.; Zhou, F. A novel multifunction fracturing fluid compounding of nano-emulsion and viscous fracturing fluid for unconventional gas and oil. Arab. J. Chem. 2022, 15, 103749. [Google Scholar] [CrossRef]
- Dong, X.; Sun, J.; Huang, X.; Lv, K.; Geng, Y.; Liu, F.; Wang, Z.; Zhang, X. Development of temperature- and salt-resistant viscosifier with dual skeleton structure of microcrosslinking and hydrophobic association structures and its application in water-based drilling fluids. Colloids Surf. A Physicochem. Eng. Asp. 2024, 684, 133017. [Google Scholar] [CrossRef]
- Pang, S.; Xuan, Y.; Zhu, L.; An, Y. Zwitterionic polymer grafted nano-SiO2 as fluid loss agent for high temperature water-based drilling fluids. J. Mol. Liq. 2025, 417, 126542. [Google Scholar] [CrossRef]
- Liu, F.; Xu, K.; Qin, W.; Weng, D.; Liu, C.; Fang, B.; Shi, Y.; Zheng, C. Preparation of two-component polyacrylamide inverse emulsion drag reducer for slick water and investigation of its rheological and drag reduction properties. Geoenergy Sci. Eng. 2023, 224, 211632. [Google Scholar] [CrossRef]
- Ge, J.; Wu, Q.; Ding, L.; Guo, H.; Zhao, A. Preparation and rheological Evaluation of a thixotropic polymer gel for water shutoff in fractured tight reservoirs. J. Pet. Sci. Eng. 2022, 208, 109542. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, J.; Sun, J.; Shang, X.; Han, J. Self-filling and plugging performance of a thixotropic polymer gel for lost circulation control in fractured formation. Geoenergy Sci. Eng. 2023, 225, 211717. [Google Scholar] [CrossRef]
- Guo, C.; Jiang, G.; Guan, J.; Huang, S.; Guo, Y.; He, Y.; Yang, L.; Dong, T. Preparation and performance evaluation of a thixotropic polymer gel for loss circulation control. Fuel 2024, 371, 132148. [Google Scholar] [CrossRef]
- Ye, L.; Lv, Q.; Sun, X.; Liang, Y.; Fang, P.; Yuan, X.; Li, M.; Zhang, X.; Shang, X.; Liang, H. Fully physically cross-linked double network hydrogels with strong mechanical properties, good recovery and self-healing properties. Soft Matter 2020, 16, 1840–1849. [Google Scholar] [CrossRef]
- Rolando, B.; Daniela, P.; Roberto, F.; Giuseppe, P. A thixotropic hydrogel from chemically cross-linked guar gum: Synthesis, characterization and rheological behaviour. Carbohydr. Res. 2008, 343, 3058–3065. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhao, L.; Wang, J.; Wang, S.; Liu, Y.; Liu, X. High-strength and high-toughness sodium alginate/polyacrylamide double physically crosslinked network hydrogel with superior self-healing and self-recovery properties prepared by a one-pot method. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124402. [Google Scholar] [CrossRef]
- Wei, Y.; Hu, Y.; Liang, Z.; Ma, L. PDMS@SiO2 surface modified superhydrophobic melamine sponges for enhanced drag reduction. Surf. Coat. Technol. 2025, 509, 132200. [Google Scholar] [CrossRef]
- Huang, S.; Jiang, G.; Guo, C.; Feng, Q.; Yang, J.; Dong, T.; He, Y.; Yang, L. Experimental study of adsorption/desorption and enhanced recovery of shale oil and gas by zwitterionic surfactants. Chem. Eng. J. 2024, 487, 150628. [Google Scholar] [CrossRef]
- Ni, X.; Jiang, G.; Li, Y.; Yang, L.; Li, W.; Wang, K.; Deng, Z. Synthesis of superhydrophobic nanofluids as shale inhibitor and study of the inhibition mechanism. Appl. Surf. Sci. 2019, 484, 957–965. [Google Scholar] [CrossRef]
- Hua, N.; Zhang, T.; Zhang, L. Application of self-assembly methods in the preparation of superhydrophobic surfaces: A review. Surf. Interfaces 2024, 51, 104765. [Google Scholar]
- Chang, X.; Wang, Q.; Hu, J.; Sun, Y.; Chen, S.; Gu, X.; Chen, G. Preparation and application of new polyhydroxy ammonium shale hydration inhibitor. Processes 2023, 11, 3102. [Google Scholar] [CrossRef]
- Zhang, T.; Chang, X.; Wen, X.; Li, Z.; Yang, Q.; Li, Z.; Gao, M.; You, Q. Development and performance evaluation of a novel SiO2-enhanced seawater-based temperature-resistant clean fracturing fluid. Colloids Surf. A-Physicochem. Eng. Asp. 2024, 693, 133963. [Google Scholar] [CrossRef]
- Wu, X.; Pu, H.; Zhu, K.; Lu, S. Formation damage mechanisms and protection technology for Nanpu nearshore tight gas reservoir. J. Pet. Sci. Eng. 2017, 158, 509–515. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, M.; Liu, J.; Zhang, Y.; Gao, M.; Song, X.; Sun, N.; Li, L.; Wu, Y.; Dai, C. Study on formation process and reservoir damage mechanism of blockages caused by polyacrylamide fracturing fluid in production wells. Fuel 2024, 358, 130154. [Google Scholar] [CrossRef]
- Maribel, F.A.; Richard, D.Z.; Sergio, H.L.; Camilo, A.F.; Farid, B.C. Ca-DTPMP nanoparticles-based nanofluids for the inhibition and remediation of formation damage due to CaCO3 scaling in tight gas-condensate reservoirs. J. Pet. Sci. Eng. 2018, 169, 636–645. [Google Scholar]
- Yan, Y.; Cui, M.; Jiang, W.; He, A.; Liang, C. Drag reduction in reservoir rock surface: Hydrophobic modification by SiO2 nanofluids. Appl. Surf. Sci. 2017, 396, 1556–1561. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Wang, K.; Foster, G.; Wang, G.; Tang, L.; Rong, X. The effect of N-ethyl-N-hydroxyethyl perfluorooctanoamide on wettability alteration of shale reservoir. Sci. Rep. 2018, 8, 6941. [Google Scholar] [CrossRef]
- Yun, Q.; Sun, Y.; Li, B.; Shan, H.; Shen, Y.; Zhang, G. Permeability damage and hydrate dissociation barrier caused by invaded fracturing fluid during hydrate reservoir stimulation. Gas Sci. Eng. 2023, 116, 205051. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, W.; Wang, D.; Wang, J. Fluor-silane modified nano-calcium carbonate (CaCO3) as a hydrophobic coating for the conservation of sandstone via bio-inspired design. Biogeotechnics 2024, 2, 100064. [Google Scholar] [CrossRef]
- Gao, X.; Yang, J.; Han, H.; Peng, H.; Chen, M.; Gou, X. Experimental study on reservoir particle migration induced by the injection-production process of underground gas storage. Heliyon 2024, 10, 34989. [Google Scholar] [CrossRef]
- Tan, Q.; You, L.; Kang, Y.; Xu, C. Formation damage mechanisms in tight carbonate reservoirs: The typical illustrations in Qaidam Basin and Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2021, 95, 104193. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, M.; Li, Z.; Wen, X.; Li, Z.; Wang, L.; Yang, Q.; You, Q. The imbibition mechanism for enhanced oil recovery by gel breaking fluid of SiO2-enhanced seawater-based VES fracturing fluid in offshore low permeability reservoir. Geoenergy Sci. Eng. 2025, 244, 213403. [Google Scholar] [CrossRef]
- You, L.; Xie, Y.; Chen, Y.; Kang, Y.; Huang, C.; Zhai, H. Development directions of formation damage evaluation and fracturing fluids in tight and shale oil reservoirs. Petroleum 2025, 11, 125–142. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, J.; Li, Z.; Gao, M.; You, Q. Nano-SiO2 enhanced fracturing fluid fracturing fluid for improved imbibition recovery in tight gas reservoirs: Performance and mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2025, 707, 135840. [Google Scholar] [CrossRef]
- Xin, H.; You, Y.; Yue, X.; Feng, S.; An, W.; Li, Q.; Liang, X. Impact of fracturing fluid retention and flowback on development effect after large scale fracturing in shale oil wells: A case study from the shale oil of Chang 7 Member, Yanchang Formation, Ordos Basin. Unconv. Resour. 2024, 4, 100060. [Google Scholar] [CrossRef]
- Feng, Q.; Jiang, G.; Zhang, S.; Huang, S.; Wang, Q.; Wang, W. Preparation and application of superhydrophobic multifunctional drag reducing agents for fracturing fluid fracturing fluids. Drill. Fluid Complet. Fluid. 2024, 41, 405–413. [Google Scholar]
- SY/T5370-2018; Surface and Interface Tension Measurement Method. National Energy Administration: Beijing, China, 2019.
- Su, G.; Yang, L.; Liu, S.; Song, J.; Jiang, W.; Jin, X. Review on factors affecting nanofluids surface tension and mechanism analysis. J. Mol. Liq. 2024, 407, 125159. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Wang, Q.; Li, Q.; Zhang, Y.; Yuan, L. Synthesis and evaluation of properties of N,N-bis(perfluorooctyl)imine acetate sodium as a gas wetting alteration agent. RSC Adv. 2018, 8, 7924–7931. [Google Scholar] [CrossRef]
- Sun, X.; Dai, C.; Sun, Y.; Du, M.; Wang, T.; Zou, C.; He, J. Wettability alteration study of supercritical CO2 fracturing fluid on low permeability oil reservoir. Energy Fuels 2017, 31, 13364–13373. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Jin, J.; Wang, K.; Tang, L.; Zhang, Y.; Wang, G.; Dai, C. Synthesis and evaluation of two Gas-Wetting alteration agents for a shale reservoir. Energy Fuels 2018, 32, 1515–1524. [Google Scholar] [CrossRef]
- Dai, X.; Li, L.; Zhang, X.; Cheng, Z. Experimental study on the flowback of a carboxymethyl hydroxypropyl guar gum fracturing fluid with good temperature resistance. J. Theor. Appl. Mech. 2022, 4, 733–744. [Google Scholar] [CrossRef]
- SY/T 5107-2016; Performance Evaluation Method for Water-Based Fracturing Fluid. National Energy Administration: Beijing, China, 2017.
Number | Initial Permeability/mD | Permeability After Pollution/mD | Permeability Recovery Value/% | Average Permeability Recovery Value/% |
---|---|---|---|---|
1# | 7.6068 | 6.4821 | 85.2 | 86.0 |
2# | 10.2030 | 8.7590 | 85.8 | |
3# | 12.1380 | 10.5607 | 87.0 |
Well Depth/m | Mineral Content/% | |||||||
---|---|---|---|---|---|---|---|---|
Quartz | Potassium Feldspar | Plagioclase | Calcite | Dolomite | Analcime | Barite | Clay Mineral | |
3880–3920 | 14.3 | / | 1.6 | 3.2 | 9.6 | / | 33.4 | 37.9 |
Well Depth/m | Relative Content of Clay Minerals/% | Mixed Layer Ratio | ||||||
---|---|---|---|---|---|---|---|---|
S | I/S | It | Kao | C | C/S | I/S | C/S | |
3880–3920 | / | 36 | 31 | 16 | 17 | / | 5 | / |
Core Number | Dry Weight/g | Surface Area/cm2 | Volume/cm3 |
---|---|---|---|
1 | 13.626 | 19.7127 | 6.1551 |
2 | 14.316 | 19.5188 | 6.0259 |
3 | 13.942 | 21.3260 | 6.2448 |
4 | 13.525 | 21.5859 | 6.3887 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Q.; Wang, Q.; Wang, N.; Jiang, G.; Sun, J.; Yang, J.; Dong, T.; Wang, L. A Superhydrophobic Gel Fracturing Fluid with Enhanced Structural Stability and Low Reservoir Damage. Gels 2025, 11, 772. https://doi.org/10.3390/gels11100772
Feng Q, Wang Q, Wang N, Jiang G, Sun J, Yang J, Dong T, Wang L. A Superhydrophobic Gel Fracturing Fluid with Enhanced Structural Stability and Low Reservoir Damage. Gels. 2025; 11(10):772. https://doi.org/10.3390/gels11100772
Chicago/Turabian StyleFeng, Qi, Quande Wang, Naixing Wang, Guancheng Jiang, Jinsheng Sun, Jun Yang, Tengfei Dong, and Leding Wang. 2025. "A Superhydrophobic Gel Fracturing Fluid with Enhanced Structural Stability and Low Reservoir Damage" Gels 11, no. 10: 772. https://doi.org/10.3390/gels11100772
APA StyleFeng, Q., Wang, Q., Wang, N., Jiang, G., Sun, J., Yang, J., Dong, T., & Wang, L. (2025). A Superhydrophobic Gel Fracturing Fluid with Enhanced Structural Stability and Low Reservoir Damage. Gels, 11(10), 772. https://doi.org/10.3390/gels11100772