Synergistic ATO/SiO2 Composite Coatings for Transparent Superhydrophobic and Thermal-Insulating Performance
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of the Composite Coating
2.3. Characterization
3. Results and Discussion
3.1. Surface Morphology and Wettability Analysis
3.2. Thermal Insulation
3.3. Mechanical Durability and Chemical Stability of Coatings
3.4. Self-Cleaning Ability
3.5. Anti-Icing Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, Y.; Zhang, H.; Shao, Y.; Sun, J.; Liu, S. Recent progresses of superhydrophobic coatings in different application fields: An overview. Coatings 2021, 11, 116. [Google Scholar] [CrossRef]
- Ebert, D.; Bhushan, B. Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles. Langmuir 2012, 28, 11391–11399. [Google Scholar] [CrossRef]
- Parent, O.; Ilinca, A. Anti-icing and de-icing techniques for wind turbines: Critical review. Cold Reg. Sci. Technol. 2011, 65, 88–96. [Google Scholar] [CrossRef]
- Yong, H.; Li, Z.; Huang, X.; Zhang, L.; Wang, J. Superhydrophobic materials: Versatility and translational applications. Adv. Mater. Interfaces 2022, 9, 2200435. [Google Scholar] [CrossRef]
- Tong, W.; Wu, Z.; Xiong, D.X. Transparent superhydrophobic coating based on a carbonaceous soot framework for the self-cleaning of glass. Sustain. Mater. Technol. 2023, 37, e00693. [Google Scholar] [CrossRef]
- Borrebaek, P.O.A.; Jelle, B.P.; Zhang, Z. Avoiding snow and ice accretion on building integrated photovoltaics–challenges, strategies, and opportunities. Sol. Energy Mater. Sol. Cells 2020, 206, 110306. [Google Scholar] [CrossRef]
- Nomeir, B.; Lakhouil, S.; Boukheir, S.; Ait Ali, M.; Naamane, S. Recent progress on transparent and self-cleaning surfaces by superhydrophobic coatings deposition to optimize the cleaning process of solar panels. Sol. Energy Mater. Sol. Cells 2023, 257, 112347. [Google Scholar] [CrossRef]
- Gao, Y.; Gereige, I.; El Labban, A.; Cha, D.; Isimjan, T.T.; Beaujuge, P.M. Highly transparent and UV-resistant superhydrophobic SiO2-coated ZnO nanorod arrays. ACS Appl. Mater. Interfaces 2014, 6, 2219–2223. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Tian, N.; Wang, W.; Zhang, X.; Chen, Y. Highly transparent superhydrophobic coatings for prevention of raindrop adhesion on rearview mirrors. Langmuir 2025, 41, 2916–2923. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Yan, S.; Ming, T.; Zhao, X.; Zhang, N. Analysis and modeling of dust accumulation-composed spherical and cubic particles on PV module relative transmittance. Sustain. Energy Technol. Assess. 2021, 44, 101015. [Google Scholar] [CrossRef]
- Niu, H.; Yao, X.; Luo, S.; Zhang, Q.; Liu, Y. Composite superhydrophobic coating with transparency and thermal insulation for glass curtain walls. ACS Appl. Mater. Interfaces 2024, 16, 48374–48385. [Google Scholar] [CrossRef]
- Lu, X.; Yu, G.; Tan, Q.; Hu, B.; Zhang, J.; Dong, Q. Preparation and characterization of transparent fluorocarbon emulsion doped with antimony tin oxide and TiO2 as thermal-insulating and self-cleaning coating. J. Coat. Technol. Res. 2014, 11, 567–574. [Google Scholar] [CrossRef]
- Nomeir, B.; Lakhouil, S.; Boukheir, S.; Abdallah, N.; Naamane, S.; Ait Ali, M. Synthesis of a novel high-performance siloxene-based 2D material for durable and transparent superhydrophobic coatings with self-cleaning and anti-icing properties. Ind. Eng. Chem. Res. 2025, 64, 6460–6474. [Google Scholar] [CrossRef]
- Seo, T.W.; Jeon, Y.; Park, C.; Kim, J. Survey on glass and façade-cleaning robots: Climbing mechanisms, cleaning methods, and applications. Int. J. Precis. Eng. Manuf.-Green Technol. 2019, 6, 367–376. [Google Scholar] [CrossRef]
- Dalawai, S.P.; Aly, M.A.S.; Latthe, S.S.; Xing, R.; Sutar, R.S.; Nagappan, S.; Ha, C.-S.; Sadasivuni, K.K.; Liu, S. Recent advances in durability of superhydrophobic self-cleaning technology: A critical review. Prog. Org. Coat. 2020, 138, 105381. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Du, F.; Zhang, S. Rational design of self-cleaning superhydrophobic coating with outstanding abrasion resistance and weatherability: Towards highly efficient oil–water separation and anti-corrosion application. Prog. Org. Coat. 2023, 179, 107439. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, H.; Huang, W.; Lai, X.; Zeng, X. Facile fabrication of superhydrophobic wood aerogel by vapor deposition method for oil–water separation. Surf. Interfaces 2023, 37, 102746. [Google Scholar] [CrossRef]
- Liu, Y.; Han, X.; Chen, C.; Huang, C.; Long, L.; He, Y.; Yang, G.; Shen, F.; Zhang, X.; Zhang, Y. A fluorine-free and nanoparticle-free superhydrophobic coating: A mechanism and self-cleaning application investigation. Appl. Surf. Sci. 2023, 608, 155103. [Google Scholar] [CrossRef]
- Mendoza, A.I.; Larroche, P.; Nilsson, F.; Hedenqvist, M.; Strömberg, E.; Hillborg, H.; Morian, R. Image analysis of PDMS/ZnO nanocomposite surfaces for optimized superhydrophobic and self-cleaning surface design. Surf. Interfaces 2023, 37, 102733. [Google Scholar] [CrossRef]
- Li, X.M.; Reinhoudt, D.; Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 2007, 36, 1350–1368. [Google Scholar]
- Ma, M.; Hill, R.M. Superhydrophobic surfaces. Curr. Opin. Colloid Interface Sci. 2006, 11, 193–202. [Google Scholar] [CrossRef]
- Ke, C.; Fang, Y.; Zhou, Z.; Wang, G.; Liu, Y.; Wu, W.; Xiao, L.; Zhang, M.; Hu, H.; Liu, J. Superhydrophobic composite coating with excellent mechanical durability. Coatings 2022, 12, 185. [Google Scholar] [CrossRef]
- Chang, G.; Zhou, B.; Li, C.; Wu, S.; Yang, T.; Tang, J.; Liu, L.; Wang, J.; Yang, Y. Highly transparent and superhydrophobic SiO2 coating with nanoscale structures by one-step spraying technology for applications as self-cleaning coatings. ACS Appl. Nano Mater. 2024, 7, 24592–24602. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Y.; Li, J.; Su, J.; Huang, S.; Zhang, Y.; Su, F. Synthesis of transparent and flexible superhydrophobic PDMS-EP/SiO2 coating with excellent mechanical and chemical durability. Appl. Surf. Sci. 2025, 707, 163586. [Google Scholar] [CrossRef]
- Li, H.; Tu, S.; Tu, H.; Chen, M.; Zhou, S.; Wu, L. Construction of transparent, robust and haze-selectable superhydrophobic coatings with honeycomb structure. Chem. Eng. J. 2024, 483, 149319. [Google Scholar] [CrossRef]
- Shih, G.H.; Allen, C.G.; Potter, B.G., Jr. RF-sputtered Ge–ITO nanocomposite thin films for photovoltaic applications. Sol. Energy Mater. Sol. Cells 2010, 94, 797–802. [Google Scholar] [CrossRef]
- Sun, H.; Liu, X.; Liu, B.; Yin, Z. Preparation and properties of antimony doped tin oxide nanopowders and their conductivity. Mater. Res. Bull. 2016, 83, 354–359. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, Y.; Jiang, F.; Han, Z.; Chen, J. Electrodeposition of silver nanoparticle arrays on transparent conductive oxides. Appl. Surf. Sci. 2016, 369, 178–182. [Google Scholar] [CrossRef]
- Qi, S.; Xiao, X.; Lu, Y.; Cong, S.; Huan, C.; Liu, H.; Xu, G.; Iqbal, J. Preparation and energy consumption evaluation of bifunctional energy-efficient glass with superior superhydrophobic and heat shielding properties. Energy Build. 2020, 215, 109913. [Google Scholar] [CrossRef]
- Gao, W.; Ma, F.; Yin, Y.; Li, J. Robust and durable transparent superhydrophobic F-TNTs/TiN coating fabricated by structure tuning on surface of TiN hard coating. Appl. Surf. Sci. 2023, 613, 155967. [Google Scholar] [CrossRef]
- Li, Q.; Liang, H.; Song, J.; Guo, C.; Tang, J. Preparation of transparent sandwich-like superhydrophobic coating on glass with high stability and self-cleaning properties. Coatings 2022, 12, 228. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, Z.; Zhang, M.; Zhang, Z.; Li, T.; Chen, M.; Dong, W. Flexible core–shell CsₓWO3-based films with high UV/NIR filtration efficiency and stability. Nanoscale Adv. 2021, 3, 3177–3183. [Google Scholar] [CrossRef]
- Tan, Y.; Lyu, J.; Zhang, D.; Duan, X. RbxCsyWO3 based superhydrophobic transparent thermal insulation film for energy saving. Colloids Surf. A Physicochem. Eng. Asp. 2024, 692, 133994. [Google Scholar] [CrossRef]
- Ke, C.; Zhang, C.; Pan, L.; Jiang, Y. Transparent superhydrophobic and thermal insulating dual-functional coatings fabricated by a rapid thermal process. Int. J. Appl. Ceram. Technol. 2025, 22, e15121. [Google Scholar] [CrossRef]
- Han, T.; Yan, Y.; Wang, Y.; Yang, P.; Li, X.; Zhang, R.; Zu, C. Enhanced and tunable visible-light and near-infrared transmittance of VO2/ATO composite coatings for smart windows. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2025, 40, 627–634. [Google Scholar] [CrossRef]
- Yu, L.; Ma, K.; Yin, H.; Zhou, C.; He, W.; Yu, G.; Zhang, Q.; Liu, Q.; Zhao, Y. Superhydrophobic coating based on nano-silica modification for antifog application of partition glass. Coatings 2024, 14, 1375. [Google Scholar] [CrossRef]
- Jing, C.; Wang, T.; Zhang, J.; Ma, J.; Chen, J. Superhydrophobic, superoleophobic, robust and sprayable radiative cooling nanocomposites via multifluorination and multilevel interfacial regulation strategy. Adv. Funct. Mater. 2025, 35, 2422260. [Google Scholar] [CrossRef]
- Aldwais, S.; Al-Muntaser, A.A.; Chen, C.; Robles, J.; Pal, A.; Abiade, J.T. Enhancing the Adhesion of Polyaniline on Steel Substrates without a Binding Agent: Evaluated by ASTM D3359 Tape Test and Sodium Chloride (NaCl) Exposure. Polymers 2025, 17, 1082. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Ou, J.; He, Y.; Hu, Y.; Wang, F.; Fang, X.; Li, W.; Amirfazli, A. Robust superhydrophobic coating with carbon nanotubes and silica nanoparticles in the matrix of fluorinated polyurethane. Surf. Interfaces 2024, 45, 103890. [Google Scholar] [CrossRef]
Sample | SiO2 (g) | ATO (g) |
---|---|---|
SHTTI-0-0.8 | 0 | 0.8 |
SHTTI-0.5-0.8 | 0.5 | 0.8 |
SHTTI-0.6-0.8 | 0.6 | 0.8 |
SHTTI-0.7-0.8 | 0.7 | 0.8 |
SHTTI-0.6-0 | 0.6 | 0 |
SHTTI-0.6-0.6 | 0.6 | 0.6 |
SHTTI-0.6-1.0 | 0.6 | 1.0 |
Element | Atomic% |
---|---|
C | 44.9 |
O | 36.9 |
Si | 8.7 |
Sb | 0.9 |
Sn | 6.6 |
F | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, G.; Li, L.; An, Q. Synergistic ATO/SiO2 Composite Coatings for Transparent Superhydrophobic and Thermal-Insulating Performance. Coatings 2025, 15, 1160. https://doi.org/10.3390/coatings15101160
Qin G, Li L, An Q. Synergistic ATO/SiO2 Composite Coatings for Transparent Superhydrophobic and Thermal-Insulating Performance. Coatings. 2025; 15(10):1160. https://doi.org/10.3390/coatings15101160
Chicago/Turabian StyleQin, Guodong, Lei Li, and Qier An. 2025. "Synergistic ATO/SiO2 Composite Coatings for Transparent Superhydrophobic and Thermal-Insulating Performance" Coatings 15, no. 10: 1160. https://doi.org/10.3390/coatings15101160
APA StyleQin, G., Li, L., & An, Q. (2025). Synergistic ATO/SiO2 Composite Coatings for Transparent Superhydrophobic and Thermal-Insulating Performance. Coatings, 15(10), 1160. https://doi.org/10.3390/coatings15101160