Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = super-resolution confocal microscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 9187 KiB  
Article
The Plus End-Directed Microtubule (Kinesin-3 Family) Motor Protein KIF13B Is Associated with the Photoreceptor Synaptic Ribbon Complex
by Shweta Suiwal, Karin Schwarz, Stephan Maxeiner and Frank Schmitz
Int. J. Mol. Sci. 2025, 26(13), 6044; https://doi.org/10.3390/ijms26136044 - 24 Jun 2025
Viewed by 440
Abstract
Retinal ribbon synapses are continuously active chemical synapses. The eponymous synaptic ribbon is anchored to the active zone neurotransmitter release sites of ribbon synapses, recruits synaptic vesicles and guides ribbon-associated synaptic vesicles to the release sites. RIBEYE is the major protein component of [...] Read more.
Retinal ribbon synapses are continuously active chemical synapses. The eponymous synaptic ribbon is anchored to the active zone neurotransmitter release sites of ribbon synapses, recruits synaptic vesicles and guides ribbon-associated synaptic vesicles to the release sites. RIBEYE is the major protein component of synaptic ribbons. But likely, additional proteins contribute to ribbon synapse function. The synaptic ribbon of photoreceptor synapses is embedded into a highly polarized microtubule cytoskeleton. Interestingly, proteins of the photoreceptor primary cilium, such as NPHP4 and other ciliary proteins, including KIF3A, were shown to be localized to photoreceptor synaptic ribbons. Previous studies demonstrated that the microtubule motor protein KIF13B catalyzes secretory vesicle transport to the plus ends of microtubules and identified an interaction of KIF13B with NPHP4 at primary cilia. However, the localization of KIF13B, a kinesin-3 family motor protein, in the retina is still unknown. In the present study, we used two different antibodies against KIF13B and high-resolution confocal microscopy, super-resolution structured illumination microscopy (SR-SIM), and post-embedding immunogold electron microscopy to determine the localization of KIF13B in retinal photoreceptors. Apart from its localization at the primary photoreceptor cilium, we found a strong enrichment of KIF13B at photoreceptor synaptic ribbons. The synaptic ribbon is needed for the synaptic enrichment of KIF13B as shown by analyses of synaptic ribbon-deficient RIBEYE knockout mice. These findings suggest that KIF13B performs vesicle trafficking functions at the photoreceptor synaptic ribbon complex at the interface between the synaptic ribbon and the presynaptic microtubule transport system. Full article
(This article belongs to the Topic New Insights into Cytoskeleton)
Show Figures

Figure 1

12 pages, 2897 KiB  
Brief Report
Visible Exocytosis of the Non-Photic Signal Neuropeptide Y to the Suprachiasmatic Nucleus in Fasted Transgenic Mice Throughout Their Circadian Rhythms
by Kazuo Nakazawa, Minako Matsuo, Kazuki Nakao, Shigenori Nonaka and Rika Numano
Bioengineering 2025, 12(2), 192; https://doi.org/10.3390/bioengineering12020192 - 17 Feb 2025
Viewed by 822
Abstract
Organisms maintain circadian rhythms corresponding to approximately 24 h in the absence of external environmental cues, and they synchronize the phases of their autonomous circadian clocks to light–dark cycles, feeding timing, and other factors. The suprachiasmatic nucleus (SCN) occupies the top position of [...] Read more.
Organisms maintain circadian rhythms corresponding to approximately 24 h in the absence of external environmental cues, and they synchronize the phases of their autonomous circadian clocks to light–dark cycles, feeding timing, and other factors. The suprachiasmatic nucleus (SCN) occupies the top position of the hierarchy in the mammalian circadian system and functions as a photic-dependent oscillator, while the food-entrainable circadian oscillator (FEO) entrains the clocks of the digestive peripheral tissues and behaviors according to feeding timing. In mammals, neuropeptide Y (NPY) from the intergeniculate leaflet (IGL) neurons projected onto the SCN plays an important role in entraining circadian rhythms to feeding conditions. However, the relationship between the FEO and SCN has been unclear under various feeding conditions. In this study, novel NPY::Venus transgenic (Tg) mice, which expressed the NPY fused to Venus fluorescent protein, were generated to investigate the secretion of NPY on the SCN from the IGL. NPY-containing secretory granules with Venus signals in the SCN slices of the Tg mice could be observed using confocal and super-resolution microscopy. We observed that the number of NPY secretory granules released on the SCNs increased during fasting, and these mice were valuable tools for further investigating the role of NPY secretion from the IGL to the SCN in mediating interactions between the FEO and the SCN. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

11 pages, 7663 KiB  
Article
Visualization of Stress Fiber Formation Induced by Photodynamic Therapy with Porphylipoprotein
by Atsushi Taninaka, Hiromi Kurokawa, Mayuka Kamiyanagi, Osamu Takeuchi, Hirofumi Matsui and Hidemi Shigekawa
Nanomaterials 2024, 14(23), 1862; https://doi.org/10.3390/nano14231862 - 21 Nov 2024
Viewed by 945
Abstract
We investigated stress fiber formation induced by photodynamic therapy (PDT) with porphylipoprotein (PLP) by observing actin filaments by super-resolution confocal microscopy and measuring the cellular elastic modulus by atomic force microscopy. We identified different intracellular mechanisms of stress fiber formation between RGM1 epithelial [...] Read more.
We investigated stress fiber formation induced by photodynamic therapy (PDT) with porphylipoprotein (PLP) by observing actin filaments by super-resolution confocal microscopy and measuring the cellular elastic modulus by atomic force microscopy. We identified different intracellular mechanisms of stress fiber formation between RGM1 epithelial cells, which were derived from rat gastric mucosa, and RGK1 cells, which were cancer-like mutants of RGM1. Our findings show that when PLP is used as a photosensitizer in PDT, it selectively induces necrosis in tumors with minimal impact on the surrounding normal tissues, as it is less likely to cause blood flow obstruction. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

15 pages, 3046 KiB  
Article
β-Galactosidase- and Photo-Activatable Fluorescent Probes for Protein Labeling and Super-Resolution STED Microscopy in Living Cells
by Taukeer A. Khan, Stefan Stoldt, Mariano L. Bossi, Vladimir N. Belov and Stefan W. Hell
Molecules 2024, 29(15), 3596; https://doi.org/10.3390/molecules29153596 - 30 Jul 2024
Viewed by 2123
Abstract
We report on the synthesis of two fluorescent probes which can be activated by β-Galactosidase (β-Gal) enzymes and/or light. The probes contained 2-nitro-4-oxybenzyl and 3-nitro-4-oxybenzyl fragments, with β-Gal residues linked to C-4. We performed the enzymatic and photoactivation of the probes in a [...] Read more.
We report on the synthesis of two fluorescent probes which can be activated by β-Galactosidase (β-Gal) enzymes and/or light. The probes contained 2-nitro-4-oxybenzyl and 3-nitro-4-oxybenzyl fragments, with β-Gal residues linked to C-4. We performed the enzymatic and photoactivation of the probes in a cuvette and compared them, prior to the labeling of Vimentin–Halo fusion protein in live cells with overexpressed β-galactosidase. The dye fluorescence afforded the observation of enzyme activity by means of confocal and super-resolution optical microscopy based on stimulated emission depletion (STED). The tracing of enzymatic activity with the retention of activated fluorescent products inside cells was combined with super-resolution imaging as a tool for use in biomedicine and life science. Full article
(This article belongs to the Special Issue Fluorescence Detection of Biomolecules)
Show Figures

Graphical abstract

16 pages, 15649 KiB  
Article
3D Computational Modeling of Defective Early Endosome Distribution in Human iPSC-Based Cardiomyopathy Models
by Hafiza Nosheen Saleem, Nadezda Ignatyeva, Christiaan Stuut, Stefan Jakobs, Michael Habeck and Antje Ebert
Cells 2024, 13(11), 923; https://doi.org/10.3390/cells13110923 - 27 May 2024
Cited by 1 | Viewed by 1973
Abstract
Intracellular cargo delivery via distinct transport routes relies on vesicle carriers. A key trafficking route distributes cargo taken up by clathrin-mediated endocytosis (CME) via early endosomes. The highly dynamic nature of the endosome network presents a challenge for its quantitative analysis, and theoretical [...] Read more.
Intracellular cargo delivery via distinct transport routes relies on vesicle carriers. A key trafficking route distributes cargo taken up by clathrin-mediated endocytosis (CME) via early endosomes. The highly dynamic nature of the endosome network presents a challenge for its quantitative analysis, and theoretical modelling approaches can assist in elucidating the organization of the endosome trafficking system. Here, we introduce a new computational modelling approach for assessment of endosome distributions. We employed a model of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with inherited mutations causing dilated cardiomyopathy (DCM). In this model, vesicle distribution is defective due to impaired CME-dependent signaling, resulting in plasma membrane-localized early endosomes. We recapitulated this in iPSC-CMs carrying two different mutations, TPM1-L185F and TnT-R141W (MUT), using 3D confocal imaging as well as super-resolution STED microscopy. We computed scaled distance distributions of EEA1-positive vesicles based on a spherical approximation of the cell. Employing this approach, 3D spherical modelling identified a bi-modal segregation of early endosome populations in MUT iPSC-CMs, compared to WT controls. Moreover, spherical modelling confirmed reversion of the bi-modal vesicle localization in RhoA II-treated MUT iPSC-CMs. This reflects restored, homogeneous distribution of early endosomes within MUT iPSC-CMs following rescue of CME-dependent signaling via RhoA II-dependent RhoA activation. Overall, our approach enables assessment of early endosome distribution in cell-based disease models. This new method may provide further insight into the dynamics of endosome networks in different physiological scenarios. Full article
Show Figures

Figure 1

16 pages, 3014 KiB  
Article
Far-Field Super-Resolution Optical Microscopy for Nanostructures in a Reflective Substrate
by Aiqin Zhang, Kunyang Li, Guorong Guan, Haowen Liang, Xiangsheng Xie and Jianying Zhou
Photonics 2024, 11(5), 409; https://doi.org/10.3390/photonics11050409 - 27 Apr 2024
Cited by 1 | Viewed by 2382
Abstract
The resolution of an optical microscope is determined by the overall point spread function of the system. When examining structures significantly smaller than the wavelength of light, the contribution of the background or surrounding environment can profoundly affect the point spread function. This [...] Read more.
The resolution of an optical microscope is determined by the overall point spread function of the system. When examining structures significantly smaller than the wavelength of light, the contribution of the background or surrounding environment can profoundly affect the point spread function. This research delves into the impact of reflective planar substrate structures on the system’s resolution. We establish a comprehensive forward imaging model for a reflection-type confocal laser scanning optical microscope, incorporating vector field manipulation to image densely packed nanoparticle clusters. Both theoretical and experimental findings indicate that the substrate causes an interference effect between the background field and the scattered field from the nanoparticles, markedly enhancing the overall spatial resolution. The integration of vector field manipulation with an interferometric scattering approach results in superior spatial resolution for imaging isolated particles and densely distributed nanoscale particle clusters even with deep subwavelength gaps as small as 20 nm between them. However, the method still struggles to resolve nanoparticles positioned directly next to each other without any gap, necessitating further work to enhance the resolving ability. This may involve techniques like deconvolution or machine learning-based post-processing methods. Full article
(This article belongs to the Special Issue Design and Applications of Optical Microscopes)
Show Figures

Figure 1

16 pages, 9178 KiB  
Article
The Remodulation of Actin Bundles during the Stimulation of Mitochondria in Adult Human Fibroblasts in Response to Light
by Soňa Olejárová, Denis Horváth and Veronika Huntošová
Pharmaceutics 2024, 16(1), 20; https://doi.org/10.3390/pharmaceutics16010020 - 22 Dec 2023
Cited by 1 | Viewed by 1720
Abstract
β-actin belongs to cytoskeletal structures that change dynamically in cells according to various stimuli. Human skin can be considered as an organ that is very frequently exposed to various stress factors, of which light plays an important role. The present study focuses on [...] Read more.
β-actin belongs to cytoskeletal structures that change dynamically in cells according to various stimuli. Human skin can be considered as an organ that is very frequently exposed to various stress factors, of which light plays an important role. The present study focuses on adult human fibroblasts exposed to two types of light stress. Orange light with a wavelength of 590 nm was used here to stimulate the photosensitizer localized in the cells as a residual dose of photodynamic therapy (PDT). On the other hand, near-infrared light with a wavelength of 808 nm was considered for photobiomodulation (PBM), which is often used in healing processes. Confocal fluorescence microscopy was used to observe changes in intercellular communication, mitochondrial structures, and cytoskeletal dynamics defined by the remodulation of β-actin of fibroblasts. The number of β-actin bundles forming spherical structures was detected after light exposure. These structures as β-actin oligomers were confirmed with super-resolution microscopy. While PDT led to the disintegration of actin oligomers, PBM increased their number. The interaction of β-actin with mitochondria was observed. The combination of PDT and PBM treatments is important to minimize the side effects of cancer treatment with PDT on healthy cells, as shown by the cell metabolism assay in this work. In this work, β-actin is presented as an important parameter that changes and is involved in the response of cells to PDT and PBM. Full article
(This article belongs to the Special Issue Combination Approaches in Photodynamic Therapies for Cancer)
Show Figures

Graphical abstract

13 pages, 3868 KiB  
Article
Advanced Optical Microscopy: Unveiling Functional Insights Regarding a Novel PPP2R1A Variant and Its Unreported Phenotype
by Mònica Roldán, Gregorio Alexander Nolasco, Lluís Armengol, Marcos Frías, Marta Morell, Manel García-Aragonés, Florencia Epifani, Jordi Muchart, María Luisa Ramírez-Almaraz, Loreto Martorell, Cristina Hernando-Davalillo, Roser Urreizti and Mercedes Serrano
Int. J. Mol. Sci. 2023, 24(18), 13699; https://doi.org/10.3390/ijms241813699 - 5 Sep 2023
Cited by 1 | Viewed by 1621
Abstract
The number of genes implicated in neurodevelopmental conditions is rapidly growing. Recently, variants in PPP2R1A have been associated with syndromic intellectual disability and a consistent, but still expanding, phenotype. The PPP2R1A gene encodes a protein subunit of the serine/threonine protein phosphatase 2A enzyme, [...] Read more.
The number of genes implicated in neurodevelopmental conditions is rapidly growing. Recently, variants in PPP2R1A have been associated with syndromic intellectual disability and a consistent, but still expanding, phenotype. The PPP2R1A gene encodes a protein subunit of the serine/threonine protein phosphatase 2A enzyme, which plays a critical role in cellular function. We report an individual showing pontocerebellar hypoplasia (PCH), microcephaly, optic and peripheral nerve abnormalities, and an absence of typical features like epilepsy and an abnormal corpus callosum. He bears an unreported variant in an atypical region of PPP2R1A. In silico studies, functional analysis using immunofluorescence, and super-resolution microscopy techniques were performed to investigate the pathogenicity of the variant. This analysis involved a comparative analysis of the patient’s fibroblasts with both healthy control cells and cells from an individual with the previously described phenotype. The results showed reduced expression of PPP2R1A and the presence of aberrant protein aggregates in the patient’s fibroblasts, supporting the pathogenicity of the variant. These findings suggest a potential association between PPP2R1A variants and PCH, expanding the clinical spectrum of PPP2R1A-related neurodevelopmental disorder. Further studies and descriptions of additional patients are needed to fully understand the genotype–phenotype correlation and the underlying mechanisms of this novel phenotype. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Neurobiology in Spain)
Show Figures

Figure 1

15 pages, 9928 KiB  
Article
Acetylated α-Tubulin and α-Synuclein: Physiological Interplay and Contribution to α-Synuclein Oligomerization
by Alessandra Maria Calogero, Milo Jarno Basellini, Huseyin Berkcan Isilgan, Francesca Longhena, Arianna Bellucci, Samanta Mazzetti, Chiara Rolando, Gianni Pezzoli and Graziella Cappelletti
Int. J. Mol. Sci. 2023, 24(15), 12287; https://doi.org/10.3390/ijms241512287 - 31 Jul 2023
Cited by 9 | Viewed by 2424
Abstract
Emerging evidence supports that altered α-tubulin acetylation occurs in Parkinson’s disease (PD), a neurodegenerative disorder characterized by the deposition of α-synuclein fibrillary aggregates within Lewy bodies and nigrostriatal neuron degeneration. Nevertheless, studies addressing the interplay between α-tubulin acetylation and α-synuclein are lacking. Here, [...] Read more.
Emerging evidence supports that altered α-tubulin acetylation occurs in Parkinson’s disease (PD), a neurodegenerative disorder characterized by the deposition of α-synuclein fibrillary aggregates within Lewy bodies and nigrostriatal neuron degeneration. Nevertheless, studies addressing the interplay between α-tubulin acetylation and α-synuclein are lacking. Here, we investigated the relationship between α-synuclein and microtubules in primary midbrain murine neurons and the substantia nigra of post-mortem human brains. Taking advantage of immunofluorescence and Proximity Ligation Assay (PLA), a method allowing us to visualize protein–protein interactions in situ, combined with confocal and super-resolution microscopy, we found that α-synuclein and acetylated α-tubulin colocalized and were in close proximity. Next, we employed an α-synuclein overexpressing cellular model and tested the role of α-tubulin acetylation in α-synuclein oligomer formation. We used the α-tubulin deacetylase HDAC6 inhibitor Tubacin to modulate α-tubulin acetylation, and we evaluated the presence of α-synuclein oligomers by PLA. We found that the increase in acetylated α-tubulin significantly induced α-synuclein oligomerization. In conclusion, we unraveled the link between acetylated α-tubulin and α-synuclein and demonstrated that α-tubulin acetylation could trigger the early step of α-synuclein aggregation. These data suggest that the proper regulation of α-tubulin acetylation might be considered a therapeutic strategy to take on PD. Full article
(This article belongs to the Special Issue Understanding Parkinson's Disease)
Show Figures

Figure 1

17 pages, 3748 KiB  
Article
Super-Resolution Imaging Reveals the Nanoscale Distributions of Dystroglycan and Integrin Itga7 in Zebrafish Muscle Fibers
by Komala Shivanna, Mary Astumian, Prakash Raut, Vinh-Nhan Ngo, Samuel T. Hess and Clarissa Henry
Biomedicines 2023, 11(7), 1941; https://doi.org/10.3390/biomedicines11071941 - 8 Jul 2023
Viewed by 2142
Abstract
Cell signaling is determined partially by the localization and abundance of proteins. Dystroglycan and integrin are both transmembrane receptors that connect the cytoskeleton inside muscle cells to the extracellular matrix outside muscle cells, maintaining proper adhesion and function of muscle. The position and [...] Read more.
Cell signaling is determined partially by the localization and abundance of proteins. Dystroglycan and integrin are both transmembrane receptors that connect the cytoskeleton inside muscle cells to the extracellular matrix outside muscle cells, maintaining proper adhesion and function of muscle. The position and abundance of Dystroglycan relative to integrins is thought to be important for muscle adhesion and function. The subcellular localization and quantification of these receptor proteins can be determined at the nanometer scale by FPALM super-resolution microscopy. We used FPALM to determine localizations of Dystroglycan and integrin proteins in muscle fibers of intact zebrafish (Danio rerio). Results were consistent with confocal imaging data, but illuminate further details at the nanoscale and show the feasibility of using FPALM to quantify interactions of two proteins in a whole organism. Full article
(This article belongs to the Special Issue Zebrafish Models for Development and Disease 4.0)
Show Figures

Figure 1

16 pages, 2619 KiB  
Article
CD28 and 41BB Costimulatory Domains Alone or in Combination Differentially Influence Cell Surface Dynamics and Organization of Chimeric Antigen Receptors and Early Activation of CAR T Cells
by Marianna Mezősi-Csaplár, Árpád Szöőr and György Vereb
Cancers 2023, 15(12), 3081; https://doi.org/10.3390/cancers15123081 - 7 Jun 2023
Cited by 12 | Viewed by 4257
Abstract
Chimeric antigen receptor (CAR)-modified T cells brought a paradigm shift in the treatment of chemotherapy-resistant lymphomas. Conversely, clinical experience with CAR T cells targeting solid tumors has been disheartening, indicating the necessity of their molecular-level optimization. While incorporating CD28 or 41BB costimulatory domains [...] Read more.
Chimeric antigen receptor (CAR)-modified T cells brought a paradigm shift in the treatment of chemotherapy-resistant lymphomas. Conversely, clinical experience with CAR T cells targeting solid tumors has been disheartening, indicating the necessity of their molecular-level optimization. While incorporating CD28 or 41BB costimulatory domains into CARs in addition to the CD3z signaling domain improved the long-term efficacy of T cell products, their influence on early tumor engagement has yet to be elucidated. We studied the antigen-independent self-association and membrane diffusion kinetics of first- (.z), second- (CD28.z, 41BB.z), and third- (CD28.41BB.z) generation HER2-specific CARs in the resting T cell membrane using super-resolution AiryScan microscopy and fluorescence correlation spectroscopy, in correlation with RoseTTAFold-based structure prediction and assessment of oligomerization in native Western blot. While .z and CD28.z CARs formed large, high-density submicron clusters of dimers, 41BB-containing CARs formed higher oligomers that assembled into smaller but more numerous membrane clusters. The first-, second-, and third-generation CARs showed progressively increasing lateral diffusion as the distance of their CD3z domain from the membrane plane increased. Confocal microscopy analysis of immunological synapses showed that both small clusters of highly mobile CD28.41BB.z and large clusters of less mobile .z CAR induced more efficient CD3ζ and pLck phosphorylation than CD28.z or 41BB.z CARs of intermediate mobility. However, electric cell-substrate impedance sensing revealed that the CD28.41BB.z CAR performs worst in sequential short-term elimination of adherent tumor cells, while the .z CAR is superior to all others. We conclude that the molecular structure, membrane organization, and mobility of CARs are critical design parameters that can predict the development of an effective immune synapse. Therefore, they need to be taken into account alongside the long-term biological effects of costimulatory domains to achieve an optimal therapeutic effect. Full article
Show Figures

Figure 1

12 pages, 7528 KiB  
Communication
Structured Illumination Microscopy Improves Spot Detection Performance in Spatial Transcriptomics
by Alejandro Linares, Carlo Brighi, Sergio Espinola, Francesco Bacchi and Álvaro H. Crevenna
Cells 2023, 12(9), 1310; https://doi.org/10.3390/cells12091310 - 4 May 2023
Cited by 6 | Viewed by 3578
Abstract
Spatial biology is a rapidly growing research field that focuses on the transcriptomic or proteomic profiling of single cells within tissues with preserved spatial information. Imaging-based spatial transcriptomics uses epifluorescence microscopy, which has shown remarkable results for the identification of multiple targets in [...] Read more.
Spatial biology is a rapidly growing research field that focuses on the transcriptomic or proteomic profiling of single cells within tissues with preserved spatial information. Imaging-based spatial transcriptomics uses epifluorescence microscopy, which has shown remarkable results for the identification of multiple targets in situ. Nonetheless, the number of genes that can be reliably visualized is limited by the diffraction of light. Here, we investigate the effect of structured illumination (SIM), a super-resolution microscopy approach, on the performance of single-gene transcript detection in spatial transcriptomics experiments. We performed direct mRNA-targeted hybridization in situ sequencing for multiple genes in mouse coronal brain tissue sections. We evaluated spot detection performance in widefield and confocal images versus those with SIM in combination with 20×, 25× and 60× objectives. In general, SIM increases the detection efficiency of gene transcript spots compared to widefield and confocal modes. For each case, the specific fold increase in localizations is dependent on gene transcript density and the numerical aperture of the objective used, which has been shown to play an important role, especially for densely clustered spots. Taken together, our results suggest that SIM has the capacity to improve spot detection and overall data quality in spatial transcriptomics. Full article
(This article belongs to the Special Issue Combined and Correlated Microscopy for Structure-Function Biology)
Show Figures

Graphical abstract

14 pages, 10783 KiB  
Article
Beyond the Limits of Light: An Application of Super-Resolution Confocal Microscopy (sCLSM) to Investigate Eocene Amber Microfossils
by Dmitry D. Vorontsov, Vasiliy B. Kolesnikov, Elena E. Voronezhskaya, Evgeny E. Perkovsky, Marielle M. Berto, Joseph Mowery, Ronald Ochoa and Pavel B. Klimov
Life 2023, 13(4), 865; https://doi.org/10.3390/life13040865 - 23 Mar 2023
Cited by 8 | Viewed by 2700
Abstract
Amber is known as one of the best sources of fossil organisms preserved with exceptional fidelity. Historically, different methods of imaging have been applied to amber, including optical microscopy and microtomography. These methods are sufficient to resolve millimeter-scaled fossils. However, microfossils, such as [...] Read more.
Amber is known as one of the best sources of fossil organisms preserved with exceptional fidelity. Historically, different methods of imaging have been applied to amber, including optical microscopy and microtomography. These methods are sufficient to resolve millimeter-scaled fossils. However, microfossils, such as microarthropods, require another resolution. Here, we describe a non-destructive method of super resolution confocal microscopy (sCLSM) to study amber-preserved microfossils, using a novel astigmatid mite species (genus Histiogaster, Acaridae) from Eocene Rovno amber as a model. We show that the resolution obtained with sCLSM is comparable to that of scanning electron microscopy (SEM) routinely used to study modern mites. We compare sCLSM imaging to other methods that are used to study amber inclusions and emphasize its advantages in examination of unique fossil specimens. Furthermore, we show that the deterioration of amber, which manifests in its darkening, positively correlates with its increased fluorescence. Our results demonstrate a great potential of the sCLSM method for imaging of the tiniest organisms preserved in amber. Full article
(This article belongs to the Special Issue Recent Research on Palaeontology)
Show Figures

Graphical abstract

21 pages, 4658 KiB  
Article
StaR Is a Positive Regulator of Topoisomerase I Activity Involved in Supercoiling Maintenance in Streptococcus pneumoniae
by Antonio A. de Vasconcelos Junior, Jose M. Tirado-Vélez, Antonio J. Martín-Galiano, Diego Megias, María-José Ferrándiz, Pablo Hernández, Mónica Amblar and Adela G. de la Campa
Int. J. Mol. Sci. 2023, 24(6), 5973; https://doi.org/10.3390/ijms24065973 - 22 Mar 2023
Cited by 4 | Viewed by 2441
Abstract
The DNA topoisomerases gyrase and topoisomerase I as well as the nucleoid-associated protein HU maintain supercoiling levels in Streptococcus pneumoniae, a main human pathogen. Here, we characterized, for the first time, a topoisomerase I regulator protein (StaR). In the presence of sub-inhibitory [...] Read more.
The DNA topoisomerases gyrase and topoisomerase I as well as the nucleoid-associated protein HU maintain supercoiling levels in Streptococcus pneumoniae, a main human pathogen. Here, we characterized, for the first time, a topoisomerase I regulator protein (StaR). In the presence of sub-inhibitory novobiocin concentrations, which inhibit gyrase activity, higher doubling times were observed in a strain lacking staR, and in two strains in which StaR was over-expressed either under the control of the ZnSO4-inducible PZn promoter (strain ΔstaRPZnstaR) or of the maltose-inducible PMal promoter (strain ΔstaRpLS1ROMstaR). These results suggest that StaR has a direct role in novobiocin susceptibility and that the StaR level needs to be maintained within a narrow range. Treatment of ΔstaRPZnstaR with inhibitory novobiocin concentrations resulted in a change of the negative DNA supercoiling density (σ) in vivo, which was higher in the absence of StaR (σ = −0.049) than when StaR was overproduced (σ = −0.045). We have located this protein in the nucleoid by using super-resolution confocal microscopy. Through in vitro activity assays, we demonstrated that StaR stimulates TopoI relaxation activity, while it has no effect on gyrase activity. Interaction between TopoI and StaR was detected both in vitro and in vivo by co-immunoprecipitation. No alteration of the transcriptome was associated with StaR amount variation. The results suggest that StaR is a new streptococcal nucleoid-associated protein that activates topoisomerase I activity by direct protein-protein interaction. Full article
Show Figures

Figure 1

10 pages, 2324 KiB  
Article
Organic Anion Transporting Polypeptide 3A1 (OATP3A1)-Gated Bio-Orthogonal Labeling of Intracellular Proteins
by Krisztina Németh, Zsófia László, Adrienn Biró, Ágnes Szatmári, Gergely B. Cserép, György Várady, Éva Bakos, Csilla Özvegy-Laczka and Péter Kele
Molecules 2023, 28(6), 2521; https://doi.org/10.3390/molecules28062521 - 9 Mar 2023
Viewed by 1993
Abstract
Organic anion transporting polypeptides (OATPs) were found to readily deliver membrane impermeable, tetrazine bearing fluorescent probes into cells. This feature was explored in OATP3A1 conditioned bio-orthogonal labeling schemes of various intracellular proteins in live cells. Confocal microscopy and super-resolution microscopy (STED) studies have [...] Read more.
Organic anion transporting polypeptides (OATPs) were found to readily deliver membrane impermeable, tetrazine bearing fluorescent probes into cells. This feature was explored in OATP3A1 conditioned bio-orthogonal labeling schemes of various intracellular proteins in live cells. Confocal microscopy and super-resolution microscopy (STED) studies have shown that highly specific and efficient staining of the selected intracellular proteins can be achieved with the otherwise non-permeable probes when OATP3A1 is present in the cell membrane of cells. Such a transport protein linked bio-orthogonal labeling scheme is believed to be useful in OATP3A1 activity-controlled protein expression studies in the future. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

Back to TopTop