Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,343)

Search Parameters:
Keywords = sufficient consumption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1858 KiB  
Article
Securing a Renewable Energy Supply for a Single-Family House Using a Photovoltaic Micro-Installation and a Pellet Boiler
by Jakub Stolarski, Ewelina Olba-Zięty, Michał Krzyżaniak and Mariusz Jerzy Stolarski
Energies 2025, 18(15), 4072; https://doi.org/10.3390/en18154072 (registering DOI) - 31 Jul 2025
Abstract
Photovoltaic (PV) micro-installations producing renewable electricity and automatic pellet boilers producing renewable heat energy are promising solutions for single-family houses. A single-family house equipped with a prosumer 7.56 kWp PV micro-installation and a 26 kW pellet boiler was analyzed. This study aimed to [...] Read more.
Photovoltaic (PV) micro-installations producing renewable electricity and automatic pellet boilers producing renewable heat energy are promising solutions for single-family houses. A single-family house equipped with a prosumer 7.56 kWp PV micro-installation and a 26 kW pellet boiler was analyzed. This study aimed to analyze the production and use of electricity and heat over three successive years (from 1 January 2021 to 31 December 2023) and to identify opportunities for securing renewable energy supply for the house. Electricity production by the PV was, on average, 6481 kWh year−1; the amount of energy fed into the grid was 4907 kWh year−1; and the electricity consumption by the house was 4606 kWh year−1. The electricity supply for the house was secured by drawing an average of 34.2% of energy directly from the PV and 85.2% from the grid. Based on mathematical modeling, it was determined that if the PV installation had been located to the south (azimuth 180°) in the analyzed period, the maximum average production would have been 6897 kWh. Total annual heat and electricity consumption by the house over three years amounted, on average, to 39,059 kWh year−1. Heat energy accounted for a dominant proportion of 88.2%. From a year-round perspective, a properly selected small multi-energy installation can ensure energy self-sufficiency and provide renewable energy to a single-family house. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

42 pages, 4775 KiB  
Article
Optimal Sizing of Battery Energy Storage System for Implicit Flexibility in Multi-Energy Microgrids
by Andrea Scrocca, Maurizio Delfanti and Filippo Bovera
Appl. Sci. 2025, 15(15), 8529; https://doi.org/10.3390/app15158529 (registering DOI) - 31 Jul 2025
Abstract
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular [...] Read more.
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular focus on accurately modeling the structure of electricity and natural gas bills. The objective is to assess the added economic value of integrating a battery energy storage system (BESS) under the assumption it is employed to provide implicit flexibility—namely, bill management, energy arbitrage, and peak shaving. Results show that under assumed market conditions, tariff schemes, and BESS costs, none of the analyzed BESS configurations achieve a positive net present value. However, a 2 MW/4 MWh BESS yields a 3.8% reduction in annual operating costs compared to the base case without storage, driven by increased self-consumption (+2.8%), reduced thermal energy waste (–6.4%), and a substantial decrease in power-based electricity charges (–77.9%). The performed sensitivity analyses indicate that even with a significantly higher day-ahead market price spread, the BESS is not sufficiently incentivized to perform pure energy arbitrage and that the effectiveness of a time-of-use power-based tariff depends not only on the level of price differentiation but also on the BESS size. Overall, this study provides insights into the role of BESS in MEMGs and highlights the need for electricity bill designs that better reward the provision of implicit flexibility by storage systems. Full article
(This article belongs to the Special Issue Innovative Approaches to Optimize Future Multi-Energy Systems)
Show Figures

Figure 1

17 pages, 2627 KiB  
Article
Cuscohygrine and Hygrine as Biomarkers for Coca Leaf Chewing: Analytical Challenges in GC-MS Detection and Implications for the Differentiation of Cocaine Use in Forensic Toxicology
by Nélida C. Rubio, Iván Alvarez-Freire, Pamela Cabarcos-Fernández, María J. Tabernero-Duque, Inés Sánchez-Sellero, Antonio Moreda-Piñeiro, Pilar Bermejo-Barrera and Ana M. Bermejo-Barrera
Separations 2025, 12(8), 201; https://doi.org/10.3390/separations12080201 - 30 Jul 2025
Viewed by 27
Abstract
Cuscohygrine (CUS) and hygrine (HYG) are pyrrolidine alkaloids proposed as biomarkers of coca leaf consumption, a culturally accepted practice in some Latin American countries. Differentiating legal coca use from illicit cocaine consumption holds forensic importance. While LC-MS/MS is preferred, GC-MS remains widely used [...] Read more.
Cuscohygrine (CUS) and hygrine (HYG) are pyrrolidine alkaloids proposed as biomarkers of coca leaf consumption, a culturally accepted practice in some Latin American countries. Differentiating legal coca use from illicit cocaine consumption holds forensic importance. While LC-MS/MS is preferred, GC-MS remains widely used in Latin American toxicology labs due to accessibility. This study critically evaluates the analytical limitations of GC-MS for detecting CUS and HYG in biological matrices. Key parameters—injector temperature (180–290 °C), injection mode (split/splitless), solvent, liner condition, and matrix—were systematically studied. GC-MS showed significant limitations: low-abundance, non-specific fragments (m/z 42, 84, 98, 140) failed to meet the identification criteria in SIM mode. Thermal degradation of CUS to HYG and CUS-d6 to HYG-d3 was observed, especially with splitless injection and aged liners. Matrix effects produced signal enhancement ranging from +29% to +316%, meaning that analyte responses in biological samples were significantly higher than in neat standards, likely due to reduced degradation or adsorption. Although deuterated internal standards (CUS-d6) partially corrected signal variability and matrix enhancement, these corrections were not sufficient to overcome the fundamental limitations of GC-MS, including poor ion specificity and compound instability. These findings support the need for LC-MS/MS-based approaches for reliable alkaloid detection and question the suitability of GC-MS for CUS analysis in forensic toxicology contexts. Full article
Show Figures

Figure 1

20 pages, 3039 KiB  
Article
Heat Transfer Performance and Influencing Factors of Waste Tires During Pyrolysis in a Horizontal Rotary Furnace
by Hongting Ma, Yang Bai, Shuo Ma and Zhipeng Zhou
Energies 2025, 18(15), 4028; https://doi.org/10.3390/en18154028 - 29 Jul 2025
Viewed by 130
Abstract
Pyrolysis technology currently serves as a significant method for recycling and reducing waste tires. In this paper, in order to improve the heat transfer efficiency during the pyrolysis of waste tires in a horizontal rotary furnace and the yield of pyrolysis oil, the [...] Read more.
Pyrolysis technology currently serves as a significant method for recycling and reducing waste tires. In this paper, in order to improve the heat transfer efficiency during the pyrolysis of waste tires in a horizontal rotary furnace and the yield of pyrolysis oil, the effect laws of tire particle size, rotary furnace rotation speed, enhanced heat transfer materials, and adding spiral fins on heat transfer performance and pyrolysis product distribution were studied, respectively. The innovation lies in two aspects: first, aiming at the problems of slow heat transfer and low pyrolysis efficiency in horizontal rotary furnaces, we identified technical measures through experiments to enhance heat transfer, thereby accelerating pyrolysis and reducing energy consumption; second, with the goal of increasing high-value pyrolysis oil yield, we determined optimal operating parameters to improve economic and sustainability outcomes. The results showed that powdered particles of waste tires were heated more evenly during the pyrolysis process, which increased the overall heat transfer coefficient and the proportion of liquid products. When the rotational speed of the rotary pyrolysis furnace exceeded 2 rpm, there was sufficient contact between the material and the furnace wall, which was beneficial to the improvement of heat transfer performance. Adding heat transfer enhancement materials such as carborundum and white alundum could improve the heat transfer performance between the pyrolysis furnace and the material. Notably, a rotational speed of 3 rpm and carborundum were used as a heat transfer enhancement material with powdered waste tire particles during the pyrolysis process; the overall heat transfer coefficient was the highest, which was 16.89 W/(m2·K), and the proportion of pyrolysis oil products was 46.1%. When spiral fins were installed, the comprehensive heat transfer coefficient was increased from 12.78 W/(m2·K) to 16.32 W/(m2·K). The experimental results show that by increasing the speed of the pyrolysis furnace, adding heat transfer enhancing materials with high thermal conductivity to waste tires, and appropriate particle size, the heat transfer performance and pyrolysis rate can be improved, and energy consumption can be reduced. Full article
(This article belongs to the Special Issue Heat Transfer Performance and Influencing Factors of Waste Management)
Show Figures

Figure 1

17 pages, 339 KiB  
Review
Protein and Aging: Practicalities and Practice
by Stephanie Harris, Jessica DePalma and Hope Barkoukis
Nutrients 2025, 17(15), 2461; https://doi.org/10.3390/nu17152461 - 28 Jul 2025
Viewed by 314
Abstract
Dietary protein is an essential macronutrient derived from both plant and animal sources required for muscle building, immune function, and wound healing. However, in the United States, protein consumption worsens as individuals age, with 30% of men and 50% of women over 71 [...] Read more.
Dietary protein is an essential macronutrient derived from both plant and animal sources required for muscle building, immune function, and wound healing. However, in the United States, protein consumption worsens as individuals age, with 30% of men and 50% of women over 71 consuming inadequate dietary protein due to a variety of factors, including changes in gut function, loss of appetite, tooth loss, financial concerns, and social isolation. The aim of this review is to underscore the need for increased protein requirements in aging populations, highlight potential barriers, synthesize these protein requirements, and also recommend strategies to meet these increased protein needs. Achieving adequate protein status, especially when facing chronic or acute health concerns, is essential to promote muscle and bone strength (because aging is associated with significant decreases in postprandial muscle protein synthesis), to support immune health (due to immunosenescence), and to maintain a good quality of life. For older adults, the literature suggests that a dietary protein intake of at least 1.0–1.2 g/kg/day is required in healthy, aging populations, and intakes of 1.2–1.5 g/kg/day are necessary for those with chronic or acute conditions. These protein intake recommendations can increase to 2.0 g/kg/day in more severe cases of illness, malnutrition, and chronic conditions. The reviewed literature also suggests that evenly balanced protein distributions of 25–30 g of dietary protein (0.4 g/kg) per meal from animal and plant protein sources alike are sufficient to maximize muscle protein synthesis (MPS) rates in older populations. Additionally, pre-sleep protein feeds of 40 g/night may be another strategy to improve daily MPS and amino acid utilization. Full article
31 pages, 3300 KiB  
Article
Economic Growth and Energy Consumption in Thailand: Evidence from the Energy Kuznets Curve Using Provincial-Level Data
by Thanakhom Srisaringkarn and Kentaka Aruga
Energies 2025, 18(15), 3980; https://doi.org/10.3390/en18153980 - 25 Jul 2025
Viewed by 325
Abstract
This study investigates the relationship between economic growth and energy consumption using the Energy Kuznets Curve (EKC) framework. Spatial econometric models, including the Spatial Panel Lag Model and the Spatial Dynamic Panel Lag IV Model, are employed to capture both spatial and dynamic [...] Read more.
This study investigates the relationship between economic growth and energy consumption using the Energy Kuznets Curve (EKC) framework. Spatial econometric models, including the Spatial Panel Lag Model and the Spatial Dynamic Panel Lag IV Model, are employed to capture both spatial and dynamic effects. The results indicate that energy consumption in Thailand is spatially clustered, with energy use tending to spill over into neighboring provinces and concentrating in specific regions. Key factors that positively influence energy consumption include gross provincial product (GPP) per capita, population density, and road density. Regions characterized by favorable climates, sufficient infrastructure, and high levels of economic activity exhibit higher per capita energy consumption. The EKC analysis reveals a U-shape relationship between GPP per capita and energy consumption in the BKK&VIC, CE, EA, WE, and NE regions. As many regions continue to experience rising energy consumption, the findings underscore the importance of Thailand adopting more efficient energy usage strategies in tandem with its economic development. Full article
(This article belongs to the Special Issue Environmental Sustainability and Energy Economy)
Show Figures

Figure 1

25 pages, 1098 KiB  
Article
Association of Breakfast Food Types with Dietary Knowledge, Attitudes, and Practices Among School-Aged Children
by Siyao Zhou, Hanqing Zhao, Yu Xiao, Jie Li, Qiaoli Huang, Yufang Zhang, Fengfeng Guo, Beibei Xu, Haoyan Zou, Xiaoxia Huang, Sizhe Huang and Lijun Wang
Nutrients 2025, 17(15), 2424; https://doi.org/10.3390/nu17152424 - 24 Jul 2025
Viewed by 191
Abstract
Background: Skipping breakfast, a prevalent issue among children and adolescents, has been reported to be associated with academic performance and long-term health. However, less attention has been given to the types of breakfast foods consumed. Therefore, our study aims to investigate the association [...] Read more.
Background: Skipping breakfast, a prevalent issue among children and adolescents, has been reported to be associated with academic performance and long-term health. However, less attention has been given to the types of breakfast foods consumed. Therefore, our study aims to investigate the association between breakfast variety and dietary knowledge, attitude, and practice (KAP) among preadolescents. Methods: The study included 1449 students in grades 4–6 from Zhongshan city, Guangdong province. Data were collected through face-to-face field investigation using a validated questionnaire. The questionnaire encompassed sociodemographic characteristics, as well as dietary KAP. Results: Among all participants, 1315 reported consuming breakfast daily. Dietary diversity varied significantly: 8.8% consumed only 1 type of food, 52.9% consumed 2–4 types, and 38.3% consumed ≥5 types. Students who consumed a greater variety of breakfast foods exhibited more favorable dietary and lifestyle patterns. Specifically, those who consumed ≥5 types of food showed statistically significant associations with healthier practices, including reduced intake of sugary beverages and night snacks, stronger adherence to dietary guidelines, more positive attitudes toward improving eating habits, longer sleep durations, increased participation in meal preparation, greater dish variety in meals, and higher engagement in daily physical activity. Conclusions: Breakfast variety was associated with KAP, particularly when breakfast types ≥ 5, providing more sufficient and favorable evidence for breakfast consumption. Full article
(This article belongs to the Special Issue Nutrient Intake and Food Patterns in Students)
Show Figures

Figure 1

15 pages, 936 KiB  
Article
Consequences of COVID-19 Lockdown on Food Insecurity and Food Quality in Two Mediterranean Countries (Spain and Morocco)
by Rekia Belahsen, Mohamed Cherkaoui, Ana Isabel Mora Urda, Francisco Javier Martín Almena and María del Pilar Montero López
Foods 2025, 14(15), 2604; https://doi.org/10.3390/foods14152604 - 24 Jul 2025
Viewed by 166
Abstract
Food security is defined as a state in which all people at all times have both physical and economic access to sufficient food to meet their dietary needs for a productive and healthy life. The general objective of this work was to assess [...] Read more.
Food security is defined as a state in which all people at all times have both physical and economic access to sufficient food to meet their dietary needs for a productive and healthy life. The general objective of this work was to assess the situation of food insecurity and its impact on the quantity and quality of food consumption during lockdown in the first wave of the COVID-19 pandemic and to identify the determinants associated with the different food insecurity (FI) categories on a sample of 2227 people (1168 people from Spain and 1059 people from Morocco). Food insecurity (FI) assessed by the Household Food Insecurity Access Scale (HFIAS) were compared in both countries, controlling for the effect of sociodemographic variables, age, gender, marital status, and education level. The mean HFIAS was 0.53 in the Spanish and 3.55 in the Moroccan samples (p < 0.001). Only 2.1% of the Spanish sample were in a situation of severe insecurity against 15.5% in Morocco (p < 0.001). Moroccans with moderate and severe food insecurity decreased their consumption of meat, fish, eggs, nuts, legumes, and fruits. The risk of food insecurity was higher in men than in women, in separated or divorced people, in people with secondary and middle education, and in younger people. Full article
(This article belongs to the Special Issue Global Food Insecurity: Challenges and Solutions)
Show Figures

Figure 1

21 pages, 9522 KiB  
Article
Deep Edge IoT for Acoustic Detection of Queenless Beehives
by Christos Sad, Dimitrios Kampelopoulos, Ioannis Sofianidis, Dimitrios Kanelis, Spyridon Nikolaidis, Chrysoula Tananaki and Kostas Siozios
Electronics 2025, 14(15), 2959; https://doi.org/10.3390/electronics14152959 - 24 Jul 2025
Viewed by 278
Abstract
Honey bees play a vital role in ecosystem stability, and the need to monitor colony health has driven the development of IoT-based systems in beekeeping, with recent studies exploring both empirical and machine learning approaches to detect and analyze key hive conditions. In [...] Read more.
Honey bees play a vital role in ecosystem stability, and the need to monitor colony health has driven the development of IoT-based systems in beekeeping, with recent studies exploring both empirical and machine learning approaches to detect and analyze key hive conditions. In this study, we present an IoT-based system that leverages sensors to record and analyze the acoustic signals produced within a beehive. The captured audio data is transmitted to the cloud, where it is converted into mel-spectrogram representations for analysis. We explore multiple data pre-processing strategies and machine learning (ML) models, assessing their effectiveness in classifying queenless states. To evaluate model generalization, we apply transfer learning (TL) techniques across datasets collected from different hives. Additionally, we implement the feature extraction process and deploy the pre-trained ML model on a deep edge IoT device (Arduino Zero). We examine both memory consumption and execution time. The results indicate that the selected feature extraction method and ML model, which were identified through extensive experimentation, are sufficiently lightweight to operate within the device’s memory constraints. Furthermore, the execution time confirms the feasibility of real-time queenless state detection in edge-based applications. Full article
(This article belongs to the Special Issue Modern Circuits and Systems Technologies (MOCAST 2024))
Show Figures

Figure 1

24 pages, 13362 KiB  
Article
Optimizing the Spatial Configuration of Renewable Energy Communities: A Model Applied in the RECMOP Project
by Michele Grimaldi and Alessandra Marra
Sustainability 2025, 17(15), 6744; https://doi.org/10.3390/su17156744 - 24 Jul 2025
Viewed by 187
Abstract
Renewable Energy Communities (RECs) are voluntary coalitions of citizens, small and medium-sized enterprises and local authorities, which cooperate to share locally produced renewable energy, providing environmental, economic, and social benefits rather than profits. Despite a favorable European and Italian regulatory framework, their development [...] Read more.
Renewable Energy Communities (RECs) are voluntary coalitions of citizens, small and medium-sized enterprises and local authorities, which cooperate to share locally produced renewable energy, providing environmental, economic, and social benefits rather than profits. Despite a favorable European and Italian regulatory framework, their development is still limited in the Member States. To this end, this paper proposes a methodology to identify optimal spatial configurations of RECs, based on proximity criteria and maximization of energy self-sufficiency. This result is achieved through the mapping of the demand, expressive of the energy consumption of residential buildings; the suitable areas for installing photovoltaic panels on the roofs of existing buildings; the supply; the supply–demand balance, from which it is possible to identify Positive Energy Districts (PEDs) and Negative Energy Districts (NEDs). Through an iterative process, the optimal configuration is then sought, aggregating only PEDs and NEDs that meet the chosen criteria. This method is applied to the case study of the Avellino Province in the Campania Region (Italy). The maps obtained allow local authorities to inform citizens about the areas where it is convenient to aggregate with their neighbors in a REC to have benefits in terms of energy self-sufficiency, savings on bills or incentives at the local level, including those deriving from urban plans. The latter can encourage private initiative in order to speed up the RECs’ deployment. The presented model is being implemented in the framework of an ongoing research and development project, titled Renewable Energy Communities Monitoring, Optimization, and Planning (RECMOP). Full article
(This article belongs to the Special Issue Urban Vulnerability and Resilience)
Show Figures

Figure 1

25 pages, 2756 KiB  
Article
The People-Oriented Urban Planning Strategies in Digital Era—Inspiration from How Urban Amenities Shape the Distribution of Micro-Celebrities
by Han He and Huasheng Zhu
Land 2025, 14(8), 1519; https://doi.org/10.3390/land14081519 - 23 Jul 2025
Viewed by 332
Abstract
How to promote sustainable development and deal with the actual development demands in economic transformation through land-use planning is crucial for local governments. The urban sustainable development mainly relies on creativity and talents in the digital era, and talents are increasingly attracted by [...] Read more.
How to promote sustainable development and deal with the actual development demands in economic transformation through land-use planning is crucial for local governments. The urban sustainable development mainly relies on creativity and talents in the digital era, and talents are increasingly attracted by local people-oriented land use. However, the current planning ideology remains at meeting corporate and people’s basic needs rather than specific needs of talents, especially the increasingly emerging digital creatives. To promote the talent agglomeration and sustainable development through land planning, this paper uses micro-celebrities on Bilibili, an influential creative content creation platform among young people in China, as an example to study the geographical distribution of digital creative talents and its relationship with urban amenities by constructing an index system of urban amenities, comprising natural, leisure, infrastructure, and social and institutional amenities. The concept of borrowed amenities is introduced to examine the effects of amenities of surrounding cities. This study demonstrates that micro-celebrities show a stronger preference for amenities compared with other skilled talents. Meanwhile, social and institutional amenities are most crucial. Furthermore, urban leisure represented by green spaces and consumption spaces is also attractive. At the regional scale, with prefecture-level cities as units, the local talents agglomeration is also influenced by the borrowed amenities in the context of regional integration. It indicates that the local land use should consider the characteristics of the surrounding cities. This study provides strategic inspiration that a happy and sustainable city should first be people-oriented and provide sufficient space for consumption, entertainment, and interaction. Full article
Show Figures

Figure 1

25 pages, 1122 KiB  
Communication
From Resource Abundance to Responsible Scarcity: Rethinking Natural Resource Utilization in the Age of Hyper-Consumption
by César Ramírez-Márquez, Thelma Posadas-Paredes and José María Ponce-Ortega
Resources 2025, 14(8), 118; https://doi.org/10.3390/resources14080118 - 22 Jul 2025
Viewed by 431
Abstract
In an era marked by accelerating ecological degradation and widening global inequalities, prevailing patterns of resource extraction and consumption are proving increasingly unsustainable. Driven by hyper-consumption and entrenched linear production models, the global economy continues to exert immense pressure on planetary systems. This [...] Read more.
In an era marked by accelerating ecological degradation and widening global inequalities, prevailing patterns of resource extraction and consumption are proving increasingly unsustainable. Driven by hyper-consumption and entrenched linear production models, the global economy continues to exert immense pressure on planetary systems. This communication article calls for a fundamental paradigm shift from the long-standing assumption of resource abundance to a framework of responsible scarcity. Drawing from recent data on material throughput, on the transgression of planetary boundaries, and on the structural and geopolitical disparities underlying global resource use, this article highlights the urgent need to realign natural resource governance with ecological limits and social justice. A conceptual framework is proposed to support this transition, grounded in principles of ecological constraint, functional sufficiency, equity, and long-term resilience. The article concludes by outlining a forward-thinking research and policy agenda aimed at fostering sustainable and just modes of resource utilization in the face of growing environmental and socio-economic challenges. Full article
Show Figures

Figure 1

26 pages, 3891 KiB  
Article
Investigation of Hollow Block Production by Substituting Chicken Feather, Cotton and Rock Wool Waste Fibers for Pumice Aggregate
by Ela Bahsude Gorur Avsaroglu
Buildings 2025, 15(15), 2587; https://doi.org/10.3390/buildings15152587 - 22 Jul 2025
Viewed by 245
Abstract
Currently, natural resources are rapidly depleting as a result of increasing construction facilities. Increasing energy consumption with increasing construction is another serious issue. In addition, many problems that threaten the environment and human health arise during the disposal and storage of waste materials [...] Read more.
Currently, natural resources are rapidly depleting as a result of increasing construction facilities. Increasing energy consumption with increasing construction is another serious issue. In addition, many problems that threaten the environment and human health arise during the disposal and storage of waste materials obtained in different sectors. The main objective of this study is to investigate the substitution of cotton (CW), chicken feather (CFF) and stone wool waste (SWW) from pumice aggregate in the production of environmentally friendly hollow blocks. To achieve this, CW, CFF and SWW were substituted for pumice at ratios of 2.5–5–7.5–10% in mass, and hollow blocks were produced with this mixture under low pressure and vibrations in a production factory. Various characterization methods, including a size and tolerance analysis, unit volume weight test, thermal conductivity test, durability test, water absorption test and strength tests, were carried out on the samples produced. This study showed that waste fibers of chicken feather and stone wool are suitable for the production of sustainable and environmentally friendly hollow blocks that can reduce the dead load of the building, have sufficient strength, provide energy efficiency due to low thermal conductivity and have a high durability due to a low water absorption value. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 7472 KiB  
Article
Research on the Performance and Energy Saving of Solar-Coupled Air Source Heat Pump Heating System: A Case Study of College Dormitory in Hot Summer and Cold Winter Zone
by Xu Wang, Shidong Wang and Tao Li
Energies 2025, 18(14), 3794; https://doi.org/10.3390/en18143794 - 17 Jul 2025
Viewed by 161
Abstract
As a densely populated area, college student dormitories consume a large amount of electricity every year to heat the domestic hot water used by students. Applying solar energy to hot water systems can effectively alleviate this situation. This paper first conducts a simulation [...] Read more.
As a densely populated area, college student dormitories consume a large amount of electricity every year to heat the domestic hot water used by students. Applying solar energy to hot water systems can effectively alleviate this situation. This paper first conducts a simulation of the hot water load and the calculation of the available area of the solar roof in a dormitory building of a certain university. Then, different solar-coupled air source heat pump systems were designed, and simulation models of the two systems were established. The thermal performance parameters and solar energy utilization of the two systems were discussed, and the energy efficiency, economy, and environmental protection of the two systems were analyzed. The results show that after coupling with the solar collector, the system operation time is shortened by 26.2%, the annual performance coefficient is 3.4, which is 0.8 higher than that of the original system, and the annual heating energy consumption is reduced by 24.4%. In contrast, the annual energy self-sufficiency rate of the photovoltaic coupled with air source heat pump system is 94.6%, achieving nearly zero energy consumption for heating. Full article
Show Figures

Figure 1

22 pages, 2125 KiB  
Article
Challenges and Opportunities of Oxalis tuberosa Molina Cultivation, from an Andean Agroecological and Biocultural Perspective
by Andrés Campoverde Caicedo and Orlando Meneses Quelal
Sustainability 2025, 17(14), 6470; https://doi.org/10.3390/su17146470 - 15 Jul 2025
Viewed by 322
Abstract
This study examines the agroecology and bioculturality of Oxalis tuberosa Molina, in the Montúfar canton, Carchi province, Ecuador, an area where this Andean tuber is cultivated at altitudes above 3000 m and in soils with a pH between 5.3 and 7.8. The research [...] Read more.
This study examines the agroecology and bioculturality of Oxalis tuberosa Molina, in the Montúfar canton, Carchi province, Ecuador, an area where this Andean tuber is cultivated at altitudes above 3000 m and in soils with a pH between 5.3 and 7.8. The research was conducted in the Producampo Producers Association, composed of 33 active members, of which 87.5% are women, with an average age of 51.25 years. Oxalis tuberosa constitutes an important crop in their integrated agroecological production systems (IAPSs): the production of bio-inputs in SIPA systems is predominantly self-sufficient, with 75% of producers using exclusively their own organic fertilizers, mainly compost and vermicompost, and showing low dependence on external inputs, whether organic (12.5%) or chemical (25%); the latter are applied in small doses of about 5 kg every six months in secondary crops. The research adopted a mixed methodological approach, integrating semi-structured interviews for qualitative analysis using Atlas.ti and descriptive statistical analysis with specialized software. Of the total Oxalis tuberosa production, 80% is intended for personal consumption and 20% is sold at local markets. Cultivated ecotypes include “blanca” (70%) and “chaucha” (30%), both of which are resistant to pests but susceptible to frost. Families dedicate between 32 and 80 h per week to production, with an average of 56 h. The findings highlight the potential of Oxalis tuberosa to improve the food resilience of Andean communities and suggest that revaluing this crop and its traditional practices can improve agricultural sustainability in the region. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

Back to TopTop