Securing a Renewable Energy Supply for a Single-Family House Using a Photovoltaic Micro-Installation and a Pellet Boiler
Abstract
1. Introduction
2. Materials and Methods
2.1. The Location and Characteristics of the Study Facility
2.2. Data Collected and the Scope of This Study
2.3. Statistical Analysis
3. Results
3.1. Electricity Production by the PV Micro-Installation and Electricity Consumption by the Studied Facility
3.1.1. Average Monthly Indicators
3.1.2. Average Annual Indicators
3.2. Heat Electricity Production by a Pellet Boiler and Its Consumption by the House
3.3. Total Electricity and Heat Consumption by Study Facility
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Indicator | Mean | Minimum Value | Maximum Value | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|
Electricity production by the PV micro-installation (kWh)—PPV | 540.1 | 23.7 | 1125.5 | 372.6 | 69.0 |
Electricity self-consumption (kWh)—SCe | 131.2 | 18.4 | 222.7 | 65.4 | 49.8 |
Electricity from the PV micro-installation fed into the electricity grid (kWh)—EtG | 408.9 | 4.8 | 910.5 | 311.9 | 76.3 |
Electricity withdrawn from the electricity grid (kWh)—EfG | 252.6 | 118.4 | 473.0 | 106.5 | 42.1 |
Total household electricity consumption (kWh)—THCe | 383.8 | 302.2 | 492.0 | 53.7 | 14.0 |
Securing energy supply through self-consumption (%)—SeSC | 36.2 | 3.9 | 64.5 | 19.6 | 54.1 |
Securing energy supply from energy produced (%)—SeP | 153.2 | 4.8 | 337.6 | 113.8 | 74.3 |
Average energy generation per 1 kWp of installed peak power (h)—AG | 71.4 | 3.1 | 148.9 | 49.3 | 69.0 |
Average self-consumption per 1 kWp of installed peak power (h)—ASC | 17.4 | 2.4 | 29.5 | 8.7 | 49.8 |
Indicator | PPV | SCe | EtG | EfG | THCe | SeSC | SeP | AG | ASC |
---|---|---|---|---|---|---|---|---|---|
PPV | 1.00 | 0.94 * | 1.00 * | −0.95 * | −0.74 * | 0.98 * | 0.99 * | 1.00 * | 0.94 * |
SCe | 1.00 | 0.91 * | −0.91 * | −0.59 * | 0.97 * | 0.88 * | 0.94 * | 1.00 * | |
EtG | 1.00 | −0.94 * | −0.75 * | 0.97 * | 0.99 * | 1.00 * | 0.91 * | ||
EfG | 1.00 | 0.87 * | −0.97 * | −0.95 * | −0.95 * | −0.91 * | |||
THCe | 1.00 | −0.75 * | −0.81 * | −0.74 * | −0.59 * | ||||
SeSC | 1.00 | 0.96 * | 0.98 * | 0.97 * | |||||
SeP | 1.00 | 0.99 * | 0.88 * | ||||||
AG | 1.00 | 0.94 * | |||||||
ASC | 1.00 |
Year | Moisture Content (%) | Fixed Carbon (% d.m.) | Volatile Matter (% d.m.) | Ash Content (% d.m.) | Higher Heating Value (GJ Mg−1 d.m.) | Lower Heating Value (GJ Mg−1) | C (% d.m.) | H (% d.m.) | S (% d.m.) | N (% d.m.) | Cl (% d.m.) |
---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 6.80 | 20.94 | 78.66 | 0.40 | 20.39 b | 17.66 | 52.33 b | 6.17 | 0.013 | 0.11 | 0.014 |
2022 | 6.76 | 20.91 | 78.68 | 0.41 | 20.40 b | 17.68 | 51.74 c | 6.15 | 0.011 | 0.10 | 0.015 |
2023 | 6.69 | 20.68 | 78.94 | 0.38 | 20.59 a | 17.86 | 53.09 a | 6.20 | 0.011 | 0.10 | 0.015 |
Average | 6.75 | 20.84 | 78.76 | 0.40 | 20.46 | 17.74 | 52.39 | 6.17 | 0.011 | 0.10 | 0.014 |
References
- Eurostat. Distribution of Population by Degree of Urbanisation, Dwelling Type and Income Group—EU-SILC Survey. 2024. Available online: https://Ec.Europa.Eu/Eurostat/Databrowser/View/Ilc_lvho01__custom_11644883/Default/Table?Lang=en (accessed on 4 December 2024).
- Eurostat. Simplified Energy Balances. 2024. Available online: https://Ec.Europa.Eu/Eurostat/Databrowser/View/NRG_BAL_S__custom_9442950/Default/Table?Lang=en (accessed on 4 December 2024).
- Eurostat. Simplified Energy Balances. 2024. Available online: https://Ec.Europa.Eu/Eurostat/Databrowser/View/NRG_BAL_S__custom_9442976/Default/Table?Lang=en (accessed on 4 December 2024).
- Statistics Poland. Energy Consumption in Households in 2021. Available online: https://Stat.Gov.Pl/Obszary-Tematyczne/Srodowisko-Energia/Energia/Zuzycie-Energii-w-Gospodarstwach-Domowych-w-2021-Roku,2,5.Html (accessed on 2 December 2024).
- Statistics Poland. Energy. 2023. Available online: https://Stat.Gov.Pl/Obszary-Tematyczne/Srodowisko-Energia/Energia/Energia-2023,1,11.Html (accessed on 2 December 2024).
- Zou, C.; Zhao, Q.; Zhang, G.; Xiong, B. Energy Revolution: From a Fossil Energy Era to a New Energy Era. Nat. Gas Ind. B 2016, 3, 1–11. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D. A Critical Review of Comparative Global Historical Energy Consumption and Future Demand: The Story Told so Far. Energy Rep. 2020, 6, 1973–1991. [Google Scholar] [CrossRef]
- Li, Y.; Kang, K.; Wang, W. Quality Improvement and Cost Evaluation of Pellet Fuel Produced from Pruned Fruit Tree Branches. Energies 2021, 15, 113. [Google Scholar] [CrossRef]
- Bieszk-Stolorz, B. Impact of Subsidy Programmes on the Development of the Number and Output of RES Micro-Installations in Poland. Energies 2022, 15, 9357. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M.; Olba–Zięty, E.; Stachowicz, P. Energy Consumption and Heating Costs for a Detached House over a 12-Year Period—Renewable Fuels versus Fossil Fuels. Energy 2020, 204, 117952. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Stachowicz, P.; Dudziec, P. Wood Pellet Quality Depending on Dendromass Species. Renew. Energy 2022, 199, 498–508. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Peterson, T.; Sharma, N.; Shojaeiarani, J.; Bajwa, S.G. A Review of Densified Solid Biomass for Energy Production. Renew. Sustain. Energy Rev. 2018, 96, 296–305. [Google Scholar] [CrossRef]
- Thomson, H.; Liddell, C. The Suitability of Wood Pellet Heating for Domestic Households: A Review of Literature. Renew. Sustain. Energy Rev. 2015, 42, 1362–1369. [Google Scholar] [CrossRef]
- Bonassa, G.; Schneider, L.T.; Canever, V.B.; Cremonez, P.A.; Frigo, E.P.; Dieter, J.; Teleken, J.G. Scenarios and Prospects of Solid Biofuel Use in Brazil. Renew. Sustain. Energy Rev. 2018, 82, 2365–2378. [Google Scholar] [CrossRef]
- PTPiREE Micro-Installations in Poland, as of 31 March 2024. Available online: https://www.Ptpiree.Pl/Energetyka-w-Polsce/Energetyka-w-Liczbach/Mikroinstalacje-w-Polsce (accessed on 5 April 2024).
- Stolarski, J. Technical and Economic Analysis of Renewable Energy Generation for a Single-Family House from a Multienergy Installation. Master’s Thesis, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland, 2024; p. 103. [Google Scholar]
- SPIUG. Report: Heating Equipment Market in Poland in 2020; Stowarzyszenie Producentów i Importerów Urządzeń Grzewczych: Warsaw, Poland, 2021; p. 54. [Google Scholar]
- Bioenergy Europe. European Bioenergy Outlook—Pellet Report; Bioenergy Europe: Brussels, Belgium, 2022; p. 116. [Google Scholar]
- Jach-Nocoń, M.; Pełka, G.; Luboń, W.; Mirowski, T.; Nocoń, A.; Pachytel, P. An Assessment of the Efficiency and Emissions of a Pellet Boiler Combusting Multiple Pellet Types. Energies 2021, 14, 4465. [Google Scholar] [CrossRef]
- García, R.; Gil, M.V.; Rubiera, F.; Pevida, C. Pelletization of Wood and Alternative Residual Biomass Blends for Producing Industrial Quality Pellets. Fuel 2019, 251, 739–753. [Google Scholar] [CrossRef]
- Wójcik, G.P.; Kostrubiec, M. Energy Properties of Pellet as a Renewable Energy Source of the Future. Agric. Eng. 2015, 3, 139–147. [Google Scholar] [CrossRef]
- Mori, T.; Iwama, Y.; Hayama, H.; Mushtaha, E. Optimization of a Wood Pellet Boiler System Combined with CO2HPs in a Cold Climate Area in Japan. Energies 2020, 13, 5531. [Google Scholar] [CrossRef]
- Postovoit, B.; Susoeff, D.; Daghbas, D.; Holt, J.; Pomona, C.P.; Le, H.T. A Solar-Based Stand-Alone Family House for Energy Independence and Efficiency. In Proceedings of the 2020 IEEE Conference on Technologies for Sustainability (SusTech), Santa Ana, CA, USA, 23–25 April 2020; pp. 1–6. [Google Scholar]
- Rej-Witt, M.; Dębska, L. The Use of a Photovoltaic System in a Single Family House in Poland—Case Study. E3S Web Conf. 2022, 336, 00010. [Google Scholar] [CrossRef]
- Woroniak, G.; Piotrowska-Woroniak, J.; Woroniak, A.; Owczarek, E.; Giza, K. Analysis of the Hybrid Power-Heating System in a Single-Family Building, along with Ecological Aspects of the Operation. Energies 2024, 17, 2601. [Google Scholar] [CrossRef]
- Act on Renewable Energy Sources of 20 February 2015. Available online: https://Sip.Lex.Pl/Akty-Prawne/Dzu-Dziennik-Ustaw/Odnawialne-Zrodla-Energii-18182244 (accessed on 1 June 2024).
- Stachowicz, P.; Stolarski, M.J. Short Rotation Woody Crops and Forest Biomass Sawdust Mixture Pellet Quality. Ind. Crops Prod. 2023, 197, 116604. [Google Scholar] [CrossRef]
- Eurostat. Cooling and Heating Degree Days by NUTS 3 Regions—Monthly Data. Available online: https://Ec.Europa.Eu/Eurostat/Databrowser/View/Nrg_chddr2_m__custom_11115244/Default/Table?Lang=en (accessed on 1 June 2024).
- Chwieduk, D. Solar Energy Use for Thermal Application in Poland. Pol. J. Environ. Stud. 2010, 19, 473–477. [Google Scholar]
- Szul, T. Ocena Efektywności Energetycznej i Ekonomicznej Systemu Grzewczego Opartego Na Pompach Ciepła Typu Powietrze Woda Współpracującego z Mikroinstalacją Fotowoltaiczną. Prz. Elektrotech. 2020, 1, 96–99. [Google Scholar] [CrossRef]
- Gradziuk, P.; Gradziuk, B. Economic Efficiency of Photovoltaic Microinstallations. Stow. Ekon. Rol. Agrobiznesu Rocz. Nauk. 2016, 18, 89–94. [Google Scholar]
- Hassan, Q.; Jaszczur, M.; Abdulateef, A.M.; Abdulateef, J.; Hasan, A.; Mohamad, A. An Analysis of Photovoltaic/Supercapacitor Energy System for Improving Self-Consumption and Self-Sufficiency. Energy Rep. 2022, 8, 680–695. [Google Scholar] [CrossRef]
- Lis, S. Assessment of the Economic Efficiency of Using an Energy Storage Device in a Photovoltaic Installation Operating under the Prosument Program. Prz. Elektrotech. 2022, 1, 94–97. [Google Scholar] [CrossRef]
- Frydrychowicz-Jastrzębska, G. Research and Assessment of Energy Efficiency of the 5.5 KWp Photovoltaic Roof Installation. Prz. Elektrotech. 2017, 1, 160–163. [Google Scholar] [CrossRef]
- Haffaf, A.; Lakdja, F.; Ould Abdeslam, D.; Meziane, R. Monitoring, Measured and Simulated Performance Analysis of a 2.4 KWp Grid-Connected PV System Installed on the Mulhouse Campus, France. Energy Sustain. Dev. 2021, 62, 44–55. [Google Scholar] [CrossRef]
- Ayompe, L.M.; Duffy, A.; McCormack, S.J.; Conlon, M. Measured Performance of a 1.72kW Rooftop Grid Connected Photovoltaic System in Ireland. Energy Convers. Manag. 2011, 52, 816–825. [Google Scholar] [CrossRef]
- Ramanan, P.; Kalidasa Murugavel, K.; Karthick, A. Performance Analysis and Energy Metrics of Grid-Connected Photovoltaic Systems. Energy Sustain. Dev. 2019, 52, 104–115. [Google Scholar] [CrossRef]
- Eurostat. Available Energy, Energy Supply and Final Energy Consumption Per Capita. Available online: https://Ec.Europa.Eu/Eurostat/Databrowser/View/NRG_IND_ESC__custom_11714111/Default/Table?Lang=en (accessed on 6 May 2024).
- Heinonen, J.; Junnila, S. Residential Energy Consumption Patterns and the Overall Housing Energy Requirements of Urban and Rural Households in Finland. Energy Build. 2014, 76, 295–303. [Google Scholar] [CrossRef]
- Chen, M.; Yang, X. Situations and Challenges of Household Energy Consumption in Chinese Small Towns. Energy Build. 2015, 107, 155–162. [Google Scholar] [CrossRef]
- Xiaohua, W.; Kunquan, L.; Hua, L.; Di, B.; Jingru, L. Research on China’s Rural Household Energy Consumption—Household Investigation of Typical Counties in 8 Economic Zones. Renew. Sustain. Energy Rev. 2017, 68, 28–32. [Google Scholar] [CrossRef]
- Rabaçal, M.; Fernandes, U.; Costa, M. Combustion and Emission Characteristics of a Domestic Boiler Fired with Pellets of Pine, Industrial Wood Wastes and Peach Stones. Renew. Energy 2013, 51, 220–226. [Google Scholar] [CrossRef]
- Dubodelova, E.; Sychova, N.; Khmyzov, I.; Snopkova, T.; Solovyeva, T. Technology Features of Fuel Pellets from Deciduous Wood. Chem. Technol. Wood Process. 2012, 4, 127–129. [Google Scholar]
- Oh, J.-H.; Hwang, J.-S.; Cha, D.-S. Fuel Properties of Woody Pellets in Domestic Markets of Korea. J. For. Environ. Sci. 2014, 30, 362–369. [Google Scholar] [CrossRef]
- Wahlström, M.H.; Hårsman, B. Residential Energy Consumption and Conservation. Energy Build. 2015, 102, 58–66. [Google Scholar] [CrossRef]
- European Parliament. Energy Performance of Buildings Directive—EPBD. 2024. Available online: https://www.Europarl.Europa.Eu/Doceo/Document/TA-9-2023-0068_PL.Html (accessed on 6 June 2024).
- Biskupski, Z. The New Tax Means a Drastic Increase in the Cost of Heating Flats and Houses, Including with Gas—Who Will Pay, How Much, and in What Terms? 2024. Available online: https://www.Infor.Pl/Twoje-Pieniadze/Koszty-Utrzymania/6619882,Nowy-Podatek-to-Drastyczny-Wzrost-Kosztow-Ogrzewania-Mieszkan-i-Domow.Html (accessed on 6 June 2024).
- Frederiks, E.R.; Stenner, K.; Hobman, E.V. Household Energy Use: Applying Behavioural Economics to Understand Consumer Decision-Making and Behaviour. Renew. Sustain. Energy Rev. 2015, 41, 1385–1394. [Google Scholar] [CrossRef]
- Hafner, R.J.; Elmes, D.; Read, D. Promoting Behavioural Change to Reduce Thermal Energy Demand in Households: A Review. Renew. Sustain. Energy Rev. 2019, 102, 205–214. [Google Scholar] [CrossRef]
- Stolarski, J.; Olba-Zięty, E.; Stolarski, M.J. Economic Analysis of Renewable Energy Generation from a Multi-Energy Installation in a Single-Family House. Energies 2024, 17, 6213. [Google Scholar] [CrossRef]
Month | Securing Energy Supply Through Self-Consumption (%) | Securing Energy Supply from Energy Produced (%) | Average Energy Generation per 1 kWp of Installed Peak Power (h) | Average Self-Consumption per 1 kWp of Installed Peak Power (h) |
---|---|---|---|---|
Jan | 8.2 ± 4.1 g | 12.3 ± 8.1 ef | 7.4 ± 4.5 f | 5.0 ± 2.3 f |
Feb | 23.2 ± 6.3 f | 52.7 ± 16.7 ef | 26.9 ± 7.7 ef | 11.9 ± 2.8 e |
Mar | 38.6 ± 6.8 de | 128.9 ± 61.3 cd | 72.0 ± 28.6 cd | 21.9 ± 2.3 bc |
Apr | 46.1 ± 2.6 cd | 168.1 ± 22.3 cd | 89.1 ± 8.5 c | 24.5 ± 0.8 ab |
May | 55.6 ± 2.3 ab | 256.4 ± 20.4 ab | 126.5 ± 14.7 ab | 27.4 ± 2.1 a |
Jun | 61.7 ± 2.4 a | 321.1 ± 18.8 a | 141.8 ± 6.4 a | 27.2 ± 1.3 a |
Jul | 57.0 ± 1.4 ab | 300.6 ± 28.3 a | 128.4 ± 3.5 ab | 24.5 ± 2.4 ab |
Aug | 51.1 ± 2.8 bc | 253.1 ± 39.4 ab | 106.7 ± 14.2 bc | 21.6 ± 1.1 bc |
Sep | 44.0 ± 1.9 cd | 209.7 ± 45.2 bc | 88.2 ± 12.9 c | 18.7 ± 0.9 cd |
Oct | 31.0 ± 3.3 ef | 98.8 ± 25.5 d | 50.7 ± 8.9 de | 16.1 ± 1.0 de |
Nov | 12.4 ± 1.7 g | 29.3 ± 3.0 ef | 15.6 ± 0.2 f | 6.6 ± 0.5 f |
Dec | 5.1 ± 1.2 g | 7.1 ± 1.5 f | 4.1 ± 0.7 f | 3.0 ± 0.6 f |
Year | Securing Energy Supply Through Self-Consumption (%) | Securing Energy Supply from Energy Produced (%) | Average Generation per 1 kWp (h) | Average Self-Consumption per 1 kWp (h) | Energy Withdrawable from the Grid (kWh) | Securing Energy Supply from Energy Withdrawn from the Grid (%) | Total Securing of Electricity Supply (%) |
---|---|---|---|---|---|---|---|
2021 | 33.0 | 133.0 | 803.7 | 199.7 | 3652.9 | 80.0 | 113.0 |
2022 | 36.1 | 147.5 | 905.5 | 221.6 | 4136.2 | 89.1 | 125.2 |
2023 | 33.4 | 141.6 | 862.7 | 203.4 | 3987.4 | 86.5 | 119.9 |
Average | 34.2 | 140.7 | 857.3 | 208.2 | 3925.5 | 85.2 | 119.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stolarski, J.; Olba-Zięty, E.; Krzyżaniak, M.; Stolarski, M.J. Securing a Renewable Energy Supply for a Single-Family House Using a Photovoltaic Micro-Installation and a Pellet Boiler. Energies 2025, 18, 4072. https://doi.org/10.3390/en18154072
Stolarski J, Olba-Zięty E, Krzyżaniak M, Stolarski MJ. Securing a Renewable Energy Supply for a Single-Family House Using a Photovoltaic Micro-Installation and a Pellet Boiler. Energies. 2025; 18(15):4072. https://doi.org/10.3390/en18154072
Chicago/Turabian StyleStolarski, Jakub, Ewelina Olba-Zięty, Michał Krzyżaniak, and Mariusz Jerzy Stolarski. 2025. "Securing a Renewable Energy Supply for a Single-Family House Using a Photovoltaic Micro-Installation and a Pellet Boiler" Energies 18, no. 15: 4072. https://doi.org/10.3390/en18154072
APA StyleStolarski, J., Olba-Zięty, E., Krzyżaniak, M., & Stolarski, M. J. (2025). Securing a Renewable Energy Supply for a Single-Family House Using a Photovoltaic Micro-Installation and a Pellet Boiler. Energies, 18(15), 4072. https://doi.org/10.3390/en18154072