Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (215)

Search Parameters:
Keywords = subtropical river

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 14381 KiB  
Article
Temperature and Humidity Anomalies During the Summer Drought of 2022 over the Yangtze River Basin
by Dengao Li, Er Lu, Dian Yuan and Ruisi Liu
Atmosphere 2025, 16(8), 942; https://doi.org/10.3390/atmos16080942 (registering DOI) - 6 Aug 2025
Abstract
In the summer of 2022, central and eastern China experienced prolonged extreme high temperatures and severe drought, leading to significant economic losses. To gain a more profound understanding of this drought event and furnish a reference for forecasting similar events in the future, [...] Read more.
In the summer of 2022, central and eastern China experienced prolonged extreme high temperatures and severe drought, leading to significant economic losses. To gain a more profound understanding of this drought event and furnish a reference for forecasting similar events in the future, this study examines the circulation anomalies associated with the drought. Employing a diagnostic method focused on temperature and moisture anomalies, this study introduces a novel approach to quantify and compare the relative significance of moisture transport and warm air dynamics in contributing to the drought. This study examines the atmospheric circulation anomalies linked to the drought event and compares the relative contributions of water vapor transport and warm air activity in causing the drought, using two parameters defined in the paper. The results show the following: (1) The West Pacific Subtropical High (WPSH) was more intense than usual and extended westward, consistently controlling the Yangtze River Basin. Simultaneously, the polar vortex area was smaller and weaker, the South Asian High area was larger and stronger, and it shifted eastward. These factors collectively led to weakened water vapor transport conditions and prevailing subsiding air motions in the Yangtze River Basin, causing frequent high temperatures. (2) By defining Iq and It to represent the contributions of moisture and temperature to precipitation, we found that the drought event in the Yangtze River Basin was driven by both reduced moisture supplies in the lower troposphere and higher-than-normal temperatures, with temperature playing a dominant role. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 5628 KiB  
Article
Contrasting Impacts of North Pacific and North Atlantic SST Anomalies on Summer Persistent Extreme Heat Events in Eastern China
by Jiajun Yao, Lulin Cen, Minyu Zheng, Mingming Sun and Jingnan Yin
Atmosphere 2025, 16(8), 901; https://doi.org/10.3390/atmos16080901 - 24 Jul 2025
Viewed by 284
Abstract
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) [...] Read more.
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) and North Atlantic (NA) sea surface temperature (SST) anomalies on PHEs over China. Key findings include the following: (1) PHEs exhibit heterogeneous spatial distribution, with the Yangtze-Huai River Valley as the hotspot showing the highest frequency and intensity. A regime shift occurred post-2000, marked by a threefold increase in extreme indices (+3σ to +4σ). (2) Observational analyses reveal significant but independent correlations between PHEs and SST anomalies in the tropical NWP and mid-high latitude NA. (3) Numerical experiments demonstrate that NWP warming triggers a meridional dipole response (warming in southern China vs. cooling in the north) via the Pacific–Japan teleconnection pattern, characterized by an eastward-retreated and southward-shifted sub-tropical high (WPSH) coupled with an intensified South Asian High (SAH). In contrast, NA warming induces uniform warming across eastern China through a Eurasian Rossby wave train that modulates the WPSH northward. (4) Thermodynamically, NWP forcing dominates via asymmetric vertical motion and advection processes, while NA forcing primarily enhances large-scale subsidence and shortwave radiation. This study elucidates region-specific oceanic drivers of extreme heat, advancing mechanistic understanding for improved heatwave predictability. Full article
Show Figures

Figure 1

17 pages, 4550 KiB  
Article
Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin
by Degui Yao, Xiaohui Wang and Jinyu Wang
Atmosphere 2025, 16(7), 892; https://doi.org/10.3390/atmos16070892 - 21 Jul 2025
Viewed by 180
Abstract
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme [...] Read more.
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme precipitation in the YRB from 1981 to 2020 through the extreme precipitation metrics and Empirical Orthogonal Function (EOF) analysis. The results indicate that both the frequency and intensity of extreme precipitation exhibit an eastward and southward increasing pattern in terms of climate state, with regions of higher precipitation showing greater interannual variability. When precipitation in the YRB exhibits a spatially coherent enhancement pattern, high latitudes exhibits an Eurasian teleconnection wave train that facilitates the southward movement of cold air. Concurrently, the northward extension of the Western Pacific subtropical high (WPSH) enhances moisture transport from low latitudes to the YRB, against the backdrop of a transitioning SST pattern from El Niño to La Niña. When precipitation in the YRB shows a “south-increase, north-decrease” dipole pattern, the southward-shifted Ural high and westward-extended WPSH converge cold air and moist in the southern YRB region, with no dominant SST drivers identified. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

14 pages, 5338 KiB  
Article
Modulation of Spring Barents and Kara Seas Ice Concentration on the Meiyu Onset over the Yangtze–Huaihe River Basin in China
by Ziyi Song, Xuejie Zhao, Yuepeng Hu, Fang Zhou and Jiahao Lu
Atmosphere 2025, 16(7), 838; https://doi.org/10.3390/atmos16070838 - 10 Jul 2025
Viewed by 225
Abstract
Meiyu is a critical component of the summer rainy season over the Yangtze–Huaihe River Basin (YHRB) in China, and the Meiyu onset date (MOD), serving as a key indicator of Meiyu, has garnered substantial attention. This article demonstrates an in-phase relationship between MOD [...] Read more.
Meiyu is a critical component of the summer rainy season over the Yangtze–Huaihe River Basin (YHRB) in China, and the Meiyu onset date (MOD), serving as a key indicator of Meiyu, has garnered substantial attention. This article demonstrates an in-phase relationship between MOD and the preceding spring Barents–Kara Seas ice concentration (BKSIC) during 1979–2023. Specifically, the loss of spring BKSIC promotes an earlier MOD. Further analysis indicates that decreased spring BKSIC reduces the reflection of shortwave radiation, thereby enhancing oceanic solar radiation absorption and warming sea surface temperature (SST) in spring. The warming SST persists into summer and induces significant deep warming in the BKS through enhanced upward longwave radiation. The BKS deep warming triggers a wave train propagating southeastward to the East Asia–Northwest Pacific region, leading to a strengthened East Asian Subtropical Jet and an intensified Western North Pacific Subtropical High in summer. Under these conditions, the transport of warm and humid airflows into the YHRB is enhanced, promoting convective instability through increased low-level warming and humidity, combined with enhanced wind shear, which jointly contribute to an earlier MOD. These results may advance the understanding of MOD variability and provide valuable information for disaster prevention and mitigation. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

20 pages, 3653 KiB  
Article
Perceptions and Adaptive Behaviors of Farmers
by Jiaojiao Wang, Ya Luo, Yajie Ruan, Shengtian Yang, Guotao Dong, Ruifeng Li, Wenhao Yin and Xiaoke Liang
Water 2025, 17(13), 1993; https://doi.org/10.3390/w17131993 - 2 Jul 2025
Viewed by 214
Abstract
A clear understanding of drought perceptions and adaptation behaviors adopted by farmers is an important way to cope with climate change and achieve sustainable agricultural development. Karst is a type of landscape where the dissolving of the bedrock has created sinkholes, sinking streams, [...] Read more.
A clear understanding of drought perceptions and adaptation behaviors adopted by farmers is an important way to cope with climate change and achieve sustainable agricultural development. Karst is a type of landscape where the dissolving of the bedrock has created sinkholes, sinking streams, caves, springs, and other characteristic features. The study took the Huajiang karst dry-hot river valley area located in the southwestern part of Guizhou as the study area and used questionnaire survey method, the index of perception and the diversity index of adaptation strategy to explore the risk perception, adaptation perception and adaptation behavior of farmers to non-climatic droughts in the subtropical karst dry-hot valleys. A total of 530 questionnaires were distributed and 520 were returned. The results show that (1) the farmers’ risk perception of drought is stronger than adaptation perception, which shows that although farmers are well aware of the possible risks posed by drought, their subjective initiative and motivation to adapt to drought are weaker; (2) in the face of drought, farmers prioritize selected non-farm measures for adaptation, followed by crop management and finally water resource management; and (3) compared to farmers in arid and semi-arid regions, those in karst hot-dry river valleys exhibit distinct adaptive behaviors in response to drought, particularly in water resource management. Full article
Show Figures

Figure 1

12 pages, 527 KiB  
Article
Arbovirus Prevalence and Vulnerability Assessment Through Entomological Surveillance in Ponce, Puerto Rico
by Kayra M. Rosado-Ortiz, Manuel Rivera-Vélez, Ivanna B. Lorenzo-Pérez, Elizabeth M. Ramos-Colón, Mileily Velázquez-Ferrer, Dayaneira Rivera-Alers, Vanessa Rivera-Amill and Robert Rodríguez-González
Int. J. Environ. Res. Public Health 2025, 22(6), 854; https://doi.org/10.3390/ijerph22060854 - 29 May 2025
Viewed by 3028
Abstract
The Aedes aegypti mosquito is a vector for several arboviral diseases, posing a significant threat to human populations and exacerbating health disparities. Puerto Rico is a subtropical region where A. aegypti mosquitoes circulate all the year promoting the transmission of arboviruses. A cross-sectional [...] Read more.
The Aedes aegypti mosquito is a vector for several arboviral diseases, posing a significant threat to human populations and exacerbating health disparities. Puerto Rico is a subtropical region where A. aegypti mosquitoes circulate all the year promoting the transmission of arboviruses. A cross-sectional study in the municipality of Ponce, Puerto Rico was conducted to determine the prevalence of arbovirus in A. aegypti mosquitoes and community members, and the impact that sociodemographic and environmental factors on the presence of arbovirus in the community. Our results indicate that more than a third of the population has long-term antibodies (IgG) against chikungunya and the Mayaro virus (56% and 17%, respectively). In addition, more than two-thirds of the population have long-term antibodies (IgG) against dengue and Zika virus (96.0% and 77%, respectively). Dengue virus 1 (DENV-1) was only detected in mosquitoes from urban areas. The practice of storing water in containers uncovered and living near a river increased the odds of having arbovirus in the community (OR = 3.5, 95% CI = 1.8–10.6) (p < 0.05) and (OR = 1.6, 95% CI = 1.2–3.7). Furthermore, lower income was a social determinant associated with being at risk of arboviral disease in the communities (OR = 2.9, 95% CI = 1.4–8.5) (p < 0.05). It is recommended that public health activities be implemented, including education workshops on prevention and health promotion and health services such as vector control, to prevent arboviral diseases in communities. Full article
Show Figures

Figure 1

17 pages, 4153 KiB  
Article
Cluster Analysis and Atmospheric Circulation Features of Springtime Compound Dry-Hot Events in the Pearl River Basin
by Ruixin Duan, Feng Wang, Jiannan Zhang and Xiong Zhou
Atmosphere 2025, 16(5), 516; https://doi.org/10.3390/atmos16050516 - 28 Apr 2025
Viewed by 407
Abstract
Compound dry–hot events refer to climate phenomena where drought and high temperatures occur simultaneously. Compared to single extreme events, compound dry–hot events may have greater adverse impacts. This study uses high-spatial-resolution observational data (i.e., temperature, precipitation, and climate water balance) to cluster and [...] Read more.
Compound dry–hot events refer to climate phenomena where drought and high temperatures occur simultaneously. Compared to single extreme events, compound dry–hot events may have greater adverse impacts. This study uses high-spatial-resolution observational data (i.e., temperature, precipitation, and climate water balance) to cluster and identify spring compound dry–hot events in the Pearl River Basin over the past nearly 50 years. It further investigates the associated large-scale atmospheric circulation conditions during compound dry–hot events. Using three clustering methods and twenty-six evaluation criteria, six events are identified. These events primarily exhibit negative anomalies in precipitation and climate water balance and positive anomalies in temperature. The spatial distribution results show that moisture deficits during compound events are mainly concentrated in the eastern Pearl River Basin, especially in the Pearl River Delta region. An atmospheric circulation analysis indicates that spring compound dry–hot events in the Pearl River Basin are commonly accompanied by persistent abnormal high-pressure systems, relatively weak westerly transport from subtropical regions such as the Indian Ocean and the Bay of Bengal (20–25 °N), and limited moisture input from the western Pacific region. The results of this study can help to better understand and analyze the risk changes of extreme events in the context of global warming. Full article
(This article belongs to the Special Issue Advances in Understanding Extreme Weather Events in the Anthropocene)
Show Figures

Figure 1

13 pages, 2796 KiB  
Article
Revealing the Structure and Biodiversity Patterns of Fish Communities in River Networks Based on Environmental DNA
by Ziyu Liu, Yongsheng Wu, Wenhui You, Shuxin Li, Ge Shi and Chen Zhang
Fishes 2025, 10(4), 175; https://doi.org/10.3390/fishes10040175 - 13 Apr 2025
Viewed by 555
Abstract
Revealing taxonomic, functional, and phylogenetic dimensions of biodiversity is critical for the effective conservation and management of aquatic organisms in freshwater ecosystems subjected to multiple threats. Fish biodiversity patterns in river ecosystems exhibit complex spatiotemporal variation influenced by hydrological connectivity and the dispersal [...] Read more.
Revealing taxonomic, functional, and phylogenetic dimensions of biodiversity is critical for the effective conservation and management of aquatic organisms in freshwater ecosystems subjected to multiple threats. Fish biodiversity patterns in river ecosystems exhibit complex spatiotemporal variation influenced by hydrological connectivity and the dispersal ability of species within the river network. This study utilized eDNA metabarcoding to investigate fish communities in three subtropical mountain rivers, aiming to uncover the community structure and spatiotemporal dynamics of the multidimensional biodiversity of fish communities across varying positions within the river network. The three biodiversity indices of the fish communities at the confluence were significantly greater than those of the mainstream community in the dry season, whereas the phylogenetic diversity of the fish community at the tributaries during the wet season was significantly greater than that in the mainstream. This likely reflected the unique spatial configuration of confluences and the seasonal dispersal of fish in the river network. The results of this study highlighted the important role of confluences and tributaries in river networks and the fact that they need to be prioritized to conserve riverine fish diversity. Full article
Show Figures

Figure 1

21 pages, 5718 KiB  
Article
Mechanisms Controlling Multiphase Landslide Reactivation at Red Soil–Sandstone Interfaces in Subtropical Climates: A Case Study from the Eastern Pearl River Estuary
by Yongxiong Zhang, Jin Liao, Yongchun You, Zhibin Li, Cuiying Zhou and Zhen Liu
Water 2025, 17(8), 1139; https://doi.org/10.3390/w17081139 - 10 Apr 2025
Viewed by 383
Abstract
This study investigates the mechanisms controlling multiphase landslide reactivation at red soil–sandstone interfaces in subtropical climates, focusing on the Eastern Pearl River Estuary. A significant landslide in September 2022, triggered by intense rainfall and human activities, was analyzed through field investigations, UAV photogrammetry, [...] Read more.
This study investigates the mechanisms controlling multiphase landslide reactivation at red soil–sandstone interfaces in subtropical climates, focusing on the Eastern Pearl River Estuary. A significant landslide in September 2022, triggered by intense rainfall and human activities, was analyzed through field investigations, UAV photogrammetry, and geotechnical monitoring. Our results demonstrate that landslide evolution is governed by the interplay of geological, hydrological, and anthropogenic factors. Key findings reveal that landslide boundaries are constrained by fractures at the northern trailing edge and granite outcrops in the south, with deformation progressing from trailing to leading edges, indicative of a creep-traction failure mode. Although the landslide is stabilizing, ongoing deformations suggest disrupted stress equilibrium, emphasizing the risks of future reactivation. This work advances the understanding of progressive landslide dynamics at soil–rock interfaces and provides critical insights for risk mitigation in subtropical regions. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

23 pages, 15722 KiB  
Article
Characteristics and Driving Mechanisms of Heatwaves in China During July and August
by Jinping Liu and Mingzhe Li
Atmosphere 2025, 16(4), 434; https://doi.org/10.3390/atmos16040434 - 8 Apr 2025
Viewed by 974
Abstract
Against the backdrop of global warming, heatwaves in China have become more frequent, posing serious risks to public health and socio-economic stability. However, existing identification methods lack precision, and the driving mechanisms of heatwaves remain unclear. This study applies the Excess Heat Factor [...] Read more.
Against the backdrop of global warming, heatwaves in China have become more frequent, posing serious risks to public health and socio-economic stability. However, existing identification methods lack precision, and the driving mechanisms of heatwaves remain unclear. This study applies the Excess Heat Factor (EHF) to characterize heatwaves across China from 2013 to 2023, analyzing their spatiotemporal patterns and exploring key drivers such as atmospheric circulation and soil moisture. Key findings reveal significant regional differences: (1) Frequency and Duration—The southeastern coastal regions (e.g., the Yangtze River Delta) experience higher annual heatwave frequencies (1.75–3.5 events) but shorter durations (6.5–8.5 days). In contrast, the arid northwest has both frequent (1.5–3.5 events per year) and prolonged (8.5–14.5 days) heatwaves, while the Tibetan Plateau sees weaker and shorter events. (2) Driving Factors—Heatwaves in the Yangtze River Delta are primarily driven by an intensified subtropical high, leading to subsidence and clear-sky conditions. In Fujian, anomalous low-level winds enhance heat accumulation, while coastal areas show strong soil moisture–temperature coupling, where drier soils intensify warming. Conversely, soil moisture has a weaker influence on the Tibetan Plateau, suggesting a dominant atmospheric control. It is important to note that the EHF index used in this study does not directly account for humidity, which may limit its applicability in humid regions. Additionally, the ERA5 and ERA5-Land reanalysis data were not systematically validated against ground observations, introducing potential uncertainties. Full article
(This article belongs to the Special Issue Extreme Weather Events in a Warming Climate)
Show Figures

Figure 1

20 pages, 7508 KiB  
Article
Spatiotemporal Pattern of Soil Moisture and Its Association with Vegetation in the Yellow River Basin
by Jiahui Xia, Junliang Jin, Shanshui Yuan, Liliang Ren, Fang Ji, Shanhu Jiang, Yi Liu and Xiaoli Yang
Water 2025, 17(7), 1028; https://doi.org/10.3390/w17071028 - 31 Mar 2025
Viewed by 413
Abstract
Soil moisture (SM) plays a crucial role in the hydrological and ecological processes of the Yellow River Basin (YRB), with its spatiotemporal distribution and variability serving as key factors for understanding ecosystem responses to environmental changes. However, previous research has often overlooked the [...] Read more.
Soil moisture (SM) plays a crucial role in the hydrological and ecological processes of the Yellow River Basin (YRB), with its spatiotemporal distribution and variability serving as key factors for understanding ecosystem responses to environmental changes. However, previous research has often overlooked the spatiotemporal variation of SM across different soil layers and the complex bidirectional interactions between SM and vegetation, particularly as indicated by the Normalized Difference Vegetation Index (NDVI), within different vegetation zones and soil layers. Widely used in fields such as agriculture and water cycle research, the GLDAS dataset has been applied to analyze the spatiotemporal patterns of SM at four different depths (0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm) in the YRB from 1948 to 2022, revealing a continuous increase in SM over time, with more pronounced changes after identified breakpoints (1985 for the 10–40 cm layer, and 1986 for the other layers). Granger causality tests show that the bidirectional interaction between NDVI and SM dominates across all soil layers and regions, far surpassing the unidirectional effects of SM on NDVI or vice versa. Regardless of whether SM or NDVI is the primary variable, the Temperate Evergreen Broadleaf Forest (TEBF) region consistently exhibits the strongest lag effects across all layers, followed by the Qinghai-Tibet Plateau Alpine Vegetation (QTPAV) and the Temperate Desert Region (TDR). The Subtropical Warm Temperate Deciduous Forest (SWTDF) and Temperate Grassland Region (TGR) show the weakest lag effects. This research offers new insights into the mutual feedback between vegetation and hydrology in the YRB and provides a scientific basis for more effective water resource management. Full article
Show Figures

Figure 1

23 pages, 9504 KiB  
Article
Multiscale Factors Driving Extreme Flooding in China’s Pearl River Basin During the 2022 Dragon Boat Precipitation Season
by Jiawen Zheng, Naigeng Wu, Pengfei Ren, Wenjian Deng and Dong Zhang
Water 2025, 17(7), 1013; https://doi.org/10.3390/w17071013 - 29 Mar 2025
Cited by 1 | Viewed by 497
Abstract
This study delves into the once-in-a-century extreme precipitation events in the northern region of the Pearl River Basin during the 2022 Dragon Boat Festival period. Through a comprehensive analysis spanning various temporal scales, from synoptic-scale systems to subseasonal oscillations, including the rare triple-peaked [...] Read more.
This study delves into the once-in-a-century extreme precipitation events in the northern region of the Pearl River Basin during the 2022 Dragon Boat Festival period. Through a comprehensive analysis spanning various temporal scales, from synoptic-scale systems to subseasonal oscillations, including the rare triple-peaked La Niña phenomenon, we illuminate the intricate interactions among these factors and their impact on extreme precipitation events. Specifically, we present a conceptual model of multiscale interaction systems contributing to extreme precipitation in the BeiJiang Basin. Our findings reveal that, during the 2022 Dragon Boat Festival period, precipitation in the BeiJiang Basin exhibited characteristics across multiple time scales, with the synoptic-scale environment proving highly conducive. Systems such as the South Asian High, Western Pacific Subtropical High, and South China Sea summer monsoon were identified as the direct influencing factors of precipitation. Importantly, our study highlight the pivotal role of subseasonal oscillation propagation stagnation in extreme precipitation in the BeiJiang Basin, with synoptic-scale systems playing a contributing role. We emphasize the indirect influence of ENSO signals, regulating not only monsoons but also the propagation of subseasonal oscillations. The interplay of these factors across different temporal scales significantly impacts flood hazards. Overall, our study significantly enhances the understanding of mechanisms driving extreme precipitation events in the Pearl River Basin, with profound implications for water resource management and disaster prevention. Full article
(This article belongs to the Special Issue Climate Change and Hydrological Processes)
Show Figures

Figure 1

23 pages, 20655 KiB  
Article
Spatio-Temporal Simulation of the Productivity of Four Typical Subtropical Forests: A Case Study of the Ganjiang River Basin in China
by Zhiliang Wen, Zhen Zhou, Xiting Wei, Deli Xiao, Liliang Xu and Wei Wan
Forests 2025, 16(4), 603; https://doi.org/10.3390/f16040603 - 29 Mar 2025
Viewed by 382
Abstract
As an important component of the global carbon cycle, the variation patterns and driving mechanisms of the productivity and carbon sink capacity of subtropical forest ecosystems urgently need in-depth research. In this study, taking the forest ecosystem in the Ganjiang River Basin as [...] Read more.
As an important component of the global carbon cycle, the variation patterns and driving mechanisms of the productivity and carbon sink capacity of subtropical forest ecosystems urgently need in-depth research. In this study, taking the forest ecosystem in the Ganjiang River Basin as the research object, the Biome-BGC model was used to simulate the forest productivity at different time scales (annual, seasonal, and monthly) from 1970 to 2021, and its spatio-temporal distribution characteristics and responses to climate change were analyzed. The results showed that the interannual net primary productivity (NPP) of evergreen broad-leaved forests was 771.4 g C m−2 year−1, that of evergreen coniferous forests was 631.6 g C m−2 year−1, that of deciduous coniferous forests was 610.5 g C m−2 year−1, and that of shrub forests was 262.8 g C m−2 year−1. Evergreen broad-leaved forests have greater carbon sink potential under the background of climate change. The forest productivity in the Ganjiang River Basin generally showed an upward trend, but there were obvious differences in spatial distribution, characterized by being higher in the surrounding mountainous areas and lower in the central and northern plains. The methodological framework proposed in this study is beneficial for productivity evaluation and spatio-temporal analysis of carbon balance in subtropical forest ecosystems and provides a scientific reference for model simulation and the application of forest productivity at the regional scale. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

16 pages, 6999 KiB  
Article
Climate Change Drives the Adaptive Distribution of Arundinella setosa in China
by Huayong Zhang, Miao Zhou, Shijia Zhang, Zhongyu Wang and Zhao Liu
Sustainability 2025, 17(6), 2664; https://doi.org/10.3390/su17062664 - 17 Mar 2025
Viewed by 438
Abstract
Arundinella setosa Trin. is a widely distributed species in tropical and subtropical regions, and global climate change has an important impact on its adaptive distribution pattern. In this paper, we predicted the distribution of A. setosa in four climate scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 [...] Read more.
Arundinella setosa Trin. is a widely distributed species in tropical and subtropical regions, and global climate change has an important impact on its adaptive distribution pattern. In this paper, we predicted the distribution of A. setosa in four climate scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) based on the adaptive distribution of the species and the optimized MaxEnt model under the current and future conditions. The results showed that the center of gravity of the adaptive distribution of A. setosa is located in Shaoyang City, Hunan Province, and the adaptive distribution is mainly located south of the Yangtze River, with the high, medium and low adaptive distribution areas accounting for 1%, 1.67% and 4.47% of the total land area of the country, respectively; the highly adaptive distribution of A. setosa is located in Yunnan Province and Jiangxi Province. Precipitation is the most significant factor affecting its distribution, followed by temperature, including Precipitation of Driest Quarter, Isothermality, Precipitation Seasonality, Min Temperature of Coldest Month, etc. In the future scenario, the center of gravity of the adaptive distribution for A. setosa shows a significant tendency to migrate northward. The total area of the adaptive distribution showed an overall expansion; however, the area of the adaptive distribution slightly contracted in the SSP5-8.5 (2050s), SSP1-2.6 (2070s) and SSP3-7.0 (2090s) scenarios. This study provides theoretical guidance and data support for ecosystem restoration and biodiversity conservation. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

20 pages, 2997 KiB  
Article
A Case Study of Ozone Pollution in a Typical Yangtze River Delta City During Typhoon: Identifying Precursors, Assessing Health Risks, and Informing Local Governance
by Mei Wan, Xinglong Pang, Xiaoxia Yang, Kai Xu, Jianting Chen, Yinglong Zhang, Junyue Wu and Yushang Wang
Atmosphere 2025, 16(3), 330; https://doi.org/10.3390/atmos16030330 - 14 Mar 2025
Viewed by 688
Abstract
Ozone (O3) is a crucial atmospheric component that significantly affects air quality and poses considerable health risks to humans. In the coastal areas of the Yangtze River Delta, typhoons, influenced by the subtropical high-pressure system, can lead to complex ozone pollution [...] Read more.
Ozone (O3) is a crucial atmospheric component that significantly affects air quality and poses considerable health risks to humans. In the coastal areas of the Yangtze River Delta, typhoons, influenced by the subtropical high-pressure system, can lead to complex ozone pollution situations. This study aimed to explore the causes, sources, and health risks of O3 pollution during such events. Ground-based data from Jiaxing City’s key ozone precursor (VOCs) composition observations, ERA5 reanalysis data, and models CMAQ-ISAM and PMF were employed. Focusing on the severe ozone pollution event in Jiaxing from 3 to 11 September 2022, the results showed that local ozone production was the main contributor (60.8–81.4%, with an average of 72.3%), while external regional transport was secondary. Concentrations of olefins and aromatic hydrocarbons increased remarkably, playing a vital role in ozone formation. Meteorological conditions, such as reduced cloud cover during typhoon periphery transit, promoted ozone accumulation. By considering the unique respiratory exposure habits of the Chinese population, refined health risk assessments were conducted. Acrolein was found to be the main cause of chronic non-carcinogenic risks (NCRs), with NCR values reaching 1.74 and 2.02 during and after pollution. In lifetime carcinogenic risk (LCR) assessment, the mid-pollution LCR was 1.73 times higher, mainly due to 1,2-dichloroethane and benzene. This study presents a methodology that is readily adaptable to analogous pollution incidents, thereby providing a pragmatic framework to guide actionable local government policy-making aimed at safeguarding public health and mitigating urban ozone pollution. Full article
Show Figures

Figure 1

Back to TopTop