Spatio-Temporal Simulation of the Productivity of Four Typical Subtropical Forests: A Case Study of the Ganjiang River Basin in China
Abstract
:1. Introduction
2. Material and Methods
2.1. Overview of the Study Area
2.2. Data Sources and Preprocessing
2.2.1. Measured Data
2.2.2. Vegetation Physiological Parameter Data
2.2.3. Meteorological Data
2.2.4. Land Cover, Soil Texture, and DEM Data
2.3. Methods
3. Results and Analysis
3.1. Model Validation
3.2. Temporal Productivity Changes in Forests
3.2.1. Interannual Variation
3.2.2. Seasonal and Monthly Variations
3.2.3. Inter-Monthly Forest-Type Spatial Distribution
3.3. Spatial Productivity Changes in Forests
3.3.1. Interannual Spatial Variations
3.3.2. Intra-Annual Spatial Variations
- Seasonal Spatial Variations
- 2.
- Seasonal Forest-type Spatial Distribution
- 3.
- Inter-monthly Spatial Variations
4. Discussion
4.1. Uncertainties in NPP Simulation
4.1.1. Uncertainties of Model Parameters
4.1.2. Simplification of the Model Process
4.1.3. Uncertainties of Data
4.1.4. Regional Specificity
4.2. Factors Affecting the Spatio-Temporal Distribution of Forest Productivity
4.3. Research Prospects
5. Conclusions
- (1)
- The interannual NPP of the evergreen broad-leaved forest is 771.4 g C m−2 year−1, that of the evergreen needle-leaved forest is 631.6 g C m−2 year−1, that of the deciduous needle-leaved forest is 610.5 g C m−2 year−1, and that of the shrub forest is 262.8 g C m−2 year−1. The evergreen broad-leaved forest has greater carbon sink potential under the background of climate change;
- (2)
- The forest productivity in the Ganjiang River Basin shows an overall upward trend but has an uneven spatial distribution. The productivity is relatively high in mountainous areas and relatively low in the plains in the central and northern regions, presenting a distribution characteristic of being higher in the south and lower in the north;
- (3)
- There are differences in the productivity of different forest types, and these differences change with the time scale. The annual average GPP of the shrub forest is the highest while its annual average NPP is the lowest. However, in different seasons and months, the productivity rankings of various forest types are different;
- (4)
- There are obvious seasonal differences in forest productivity. Both GPP and NPP show an upward trend in spring, reach their peaks in summer, and then gradually decline;
- (5)
- The spatial distribution of forest productivity is also affected by seasons. The differences in the spatial distributions of GPP and NPP are relatively small in spring and autumn but relatively large in summer and winter.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BF | bamboo forest |
EBF | evergreen broad-leaved forests |
ECF | evergreen coniferous forest |
GPP | Gross primary productivity |
MIX | evergreen conifer-broadleaf mixed forest |
MLO | Mauna Loa Observatory |
MTCLIM | Mountain Microclimate Simulation Model |
NPP | net primary productivity |
References
- Piao, S.L.; Yue, C.; Ding, J.Z.; Guo, Z.T. Perspectives on the role of terrestrial ecosystems in the ’carbon neutrality’ strategy. Sci. China—Earth Sci. 2022, 65, 1178–1186. [Google Scholar]
- Zhou, G.Y.; Eisenhauer, N.; Terrer, C.; Eldridge, D.J.; Duan, H.M.; Guirado, E.; Berdugo, M.; Zhou, L.Y.; Liu, S.G.; Zhou, X.H.; et al. Resistance of ecosystem services to global change weakened by increasing number of environmental stressors. Nat. Geosci. 2024, 17, 882–888. [Google Scholar]
- Muñoz, E.; Chanca, I.; Sierra, C.A. Increased atmospheric CO2 and the transit time of carbon in terrestrial ecosystems. Glob. Change Biol. 2023, 29, 6441–6452. [Google Scholar]
- Gao, Y.; Zhang, N.; Ma, Q.; Li, J. How Is Human Well-Being Related to Ecosystem Services at Town and Village Scales? A Case Study from the Yangtze River Delta, China. Landsc. Ecol. 2024, 39, 126. [Google Scholar]
- Tang, X.L.; Zhao, X.; Bai, Y.F.; Tang, Z.Y.; Wang, W.T.; Zhao, Y.C.; Wan, H.W.; Xie, Z.Q.; Shi, X.Z.; Wu, B.F.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar]
- Zheng, Y.; Shen, R.Q.; Wang, Y.W.; Li, X.Q.; Liu, S.G.; Liang, S.L.; Chen, J.M.; Ju, W.M.; Zhang, L.; Yuan, W.P. Improved estimate of global gross primary production for reproducing its long—Term variation, 1982–2017. Earth Syst. Sci. Data 2020, 12, 2725–2746. [Google Scholar]
- Wang, S.H.; Zhang, Y.G.; Ju, W.M.; Qiu, B.; Zhang, Z.Y. Tracking the seasonal and inter—Annual variations of global gross primary production during last four decades using satellite near—Infrared reflectance data. Sci. Total Environ. 2021, 755, 142569. [Google Scholar]
- Ma, R.; Xia, C.L.; Liu, Y.W.; Wang, Y.J.; Zhang, J.Q.; Shen, X.J.; Lu, X.G.; Jiang, M. Spatiotemporal Change of Net Primary Productivity and Its Response to Climate Change in Temperate Grasslands of China. Front. Plant Sci. 2022, 13, 899800. [Google Scholar]
- Fan, L.; Wang, X.; Chen, Z.; Chen, R.; Liu, X.; He, Y.; Wang, S. Analysis of Spatial and Temporal Evolution of Ecosystem Services and Driving Factors in the Yellow River Basin of Henan Province, China. Forests 2024, 15, 1547. [Google Scholar] [CrossRef]
- Yang, H.F.; Zhong, X.N.; Deng, S.Q.; Xu, H. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River basin, China. Catena 2021, 206, 105542. [Google Scholar]
- Hu, Z.M.; Piao, S.L.; Knapp, A.K.; Wang, X.H.; Peng, S.S.; Yuan, W.P.; Running, S.; Mao, J.F.; Shi, X.Y.; Ciais, P.; et al. Decoupling of greenness and gross primary productivity as aridity decreases. Remote Sens. Environ. 2022, 279, 113120. [Google Scholar] [CrossRef]
- Jactel, H.; Gritti, E.S.; Drössler, L.; Forrester, D.I.; Mason, W.L.; Morin, X.; Pretzsch, H.; Castagneyrol, B. Positive biodiversity—Productivity relationships in forests: Climate matters. Biol. Lett. 2018, 14, 20170747. [Google Scholar] [CrossRef] [PubMed]
- Forzieri, G.; Dakos, V.; McDowell, N.G.; Ramdane, A.; Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 2022, 608, 534–539. [Google Scholar] [CrossRef]
- Fang, M.Z.; Liu, W.; Zhang, J.Y.; Ma, J.; Liang, Z.S.; Yu, Q. Quantitative Evaluation of the Applicability of Classical Forest Ecosystem Carbon Cycle Models in China: A Case Study of the Biome—BGC Model. Forests 2024, 15, 1609. [Google Scholar] [CrossRef]
- Zhao, Y.R.; O’Neill, G.A.; Coops, N.C.; Wang, T.L. Predicting the site productivity of forest tree species using climate niche models. For. Ecol. Manag. 2024, 562, 121936. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, Y.; Liu, P.; Zhang, J.; Xing, W.; Tong, X.; Zhang, J.; Meng, P. Regulation of biophysical drivers on carbon and water fluxes over a warm-temperate plantation in northern China. Sci. Total Environ. 2024, 907, 167408. [Google Scholar] [CrossRef]
- Du, L.T.; Zeng, Y.J.; Ma, L.L.; Qiao, C.L.; Wu, H.Y.; Su, Z.B.; Bao, G. Effects of anthropogenic revegetation on the water and carbon cycles of a desert steppe ecosystem. Agric. For. Meteorol. 2021, 300, 108339. [Google Scholar] [CrossRef]
- Song, X.; Zheng, B.; Hu, F.; Xu, L.; Wu, H.; Liu, Z.; Wan, W. Divergent responses of NPP to climate factors among forest types at interannual and inter-monthly scales: An empirical study on four typical forest types in subtropical China. Forests 2023, 14, 1474. [Google Scholar] [CrossRef]
- Zhao, J.F.; Yan, X.D.; Guo, J.P.; Jia, G.S. Evaluating spatial-temporal dynamics of Net Primary Productivity of different forest types in northeastern China based on improved FORCCHN. PLoS ONE 2012, 7, e48131. [Google Scholar] [CrossRef]
- Wang, Y.G.; Luo, G.P.; Li, C.F.; Zhang, Y.; Zhang, C.L.; Yu, X.T.; Fan, B.B.; Zhang, W.Q.; Xie, M.J.; Liu, Y.J. Grazing weakens the carbon sequestration capacity of dry temperate grassland ecosystems in Central Asia. Catena 2025, 248, 108608. [Google Scholar] [CrossRef]
- Zeng, X.; Hu, Z.M.; Chen, A.P.; Yuan, W.P.; Hou, G.L.; Han, D.R.; Liang, M.Q.; Di, K.; Cao, R.C.; Luo, D.N. The global decline in the sensitivity of vegetation productivity to precipitation from 2001 to 2018. Glob. Change Biol. 2022, 28, 6823–6833. [Google Scholar] [CrossRef] [PubMed]
- Shah, W.U.; Hao, G.; Yan, H.; Shen, J.T.; Yasmeen, R. Forestry Resource Efficiency, Total Factor Productivity Change, and Regional Technological Heterogeneity in China. Forests 2024, 15, 152. [Google Scholar] [CrossRef]
- Han, X.; Yuan, H. Impacts of precipitation uncertainty on hydrological ensemble simulations over the Ganjiang River basin. J. Hydrol. Reg. Stud. 2024, 51, 101617. [Google Scholar] [CrossRef]
- Deng, C.; Yin, X.; Zou, J.; Wang, M.i.; Hou, Y. Assessment of the impact of climate change on streamflow of Ganjiang River catchment via LSTM—Based models. J. Hydrol. Reg. Stud. 2024, 52, 101716. [Google Scholar] [CrossRef]
- Badora, K.; Wróbel, R. Changes in the Spatial Structure of the Landscape of Isolated Forest Complexes in the 19th and 20th Centuries and Their Potential Effects on Supporting Ecosystem Services Related to the Protection of Biodiversity Using the Example of the Niemodlin Forests (SW Poland). Sustainability 2020, 12, 4237. [Google Scholar] [CrossRef]
- He, X.; Miao, Z.M.; Wang, Y.M.; Yang, L.; Zhang, Z.X. Response of soil erosion to climate change and vegetation restoration in the Ganjiang River Basin, China. Ecol. Indic. 2024, 158, 111429. [Google Scholar] [CrossRef]
- Fini, A.; Vigevani, I.; Corsini, D.; Wezyk, P.; Bajorek-Zydron, K.; Failla, O.; Cagnolati, E.; Mielczarek, L.; Comin, S.; Gibin, M.; et al. CO2—Assimilation, sequestration, and storage by urban woody species growing in parks and along streets in two climatic zones. Sci. Total Environ. 2023, 903, 166198. [Google Scholar] [CrossRef]
- Bai, X.; Li, F.J.; Ma, L.Y.; Li, C. Weathering of geotextiles under ultraviolet exposure: A neglected source of microfibers from coastal reclamation. Sci. Total Environ. 2022, 804, 150168. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Piao, S.L.; Sun, Y.; Rogers, B.M.; Li, X.Y.; Lian, X.; Liu, Z.H.; Chen, A.P.; Peñuelas, J. Future reversal of warming—Enhanced vegetation productivity in the Northern Hemisphere. Nat. Clim. Change 2022, 12, 581–586. [Google Scholar] [CrossRef]
- Ji, Y.H.; Zhou, G.S.; Luo, T.X.; Dan, Y.; Zhou, L.; Lv, X.M. Variation of net primary productivity and its drivers in China’s forests during 2000–2018. For. Ecosyst. 2020, 7, 15. [Google Scholar] [CrossRef]
- Srinet, R.; Nandy, S.; Patel, N.R.; Padalia, H.; Watham, T.; Singh, S.K. Simulation of forest carbon fluxes by integrating remote sensing data into biome-BGC model. Ecol. Model. 2023, 475, 110185. [Google Scholar]
- Vandewiele, M.; Geres, L.; Lotz, A.; Mandl, L.; Richter, T.; Seibold, S.; Seidl, R.; Senf, C. Mapping spatial microclimate patterns in mountain forests from LiDAR. Agric. For. Meteorol. 2023, 341, 109662. [Google Scholar] [CrossRef]
- Running, S.; Hunt, E., Jr. Generalization of a forest ecosystem model for other biomes, BIOME-BGC, and an application for global-scale models. Scaling Physiol. Process. Leaf Globe 1993, 141, 158. [Google Scholar]
- White, M.A.; Thornton, P.E.; Running, S.W.; Nemani, R.R. Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net primary production controls. Earth Interact. 2000, 4, 1–85. [Google Scholar]
- Wang, T.; Bao, A.M.; Xu, W.Q.; Zheng, G.X.; Nzabarinda, V.; Yu, T.; Huang, X.R.; Long, G.; Naibi, S. Dynamics of forest net primary productivity based on tree ring reconstruction in the Tianshan Mountains. Ecol. Indic. 2023, 146, 109713. [Google Scholar]
- Gao, Y.; Zhang, T.; Zhang, W.K.; Meng, H.; Zhang, Z. Research on visual behavior characteristics and cognitive evaluation of different types of forest landscape spaces. Urban For. Urban Green. 2020, 54, 126788. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Liu, Q.J.; Wang, H.M.; Li, X.r.; Zeng, H.Q.; Xu, W.J. Observation and simulation of productivity of Pinus elliottii plantation in central subtropical region. Sci. Sin. 2008, 38, 1005–1015. [Google Scholar]
- Li, S.Y. Estimation of the Vegetation Net Primary Productivity Based on CASA Model in Gan River Basin. Mater’s Degree, Lanzhou Jiaotong University, Lanzhou, China, 2014. [Google Scholar]
- Feng, X.; Liu, G.; Chen, J.M.; Chen, M.; Liu, J.; Ju, W.M.; Sun, R.; Zhou, W. Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. J. Environ. Manag. 2007, 85, 563–573. [Google Scholar]
- Dai, E.; Li, S.; Wu, Z.; Yan, H.W.; Zhao, D.S. Spatial pattern of net primary productivity and its relationship with climatic factors in Hilly Red Soil Region of southern China: A case study in Taihe County, Jiangxi Province. Geogr. Res. 2015, 34, 1222–1234. [Google Scholar]
- Chen, S.; Jiang, H.; Cai, Z.; Zhou, X.; Peng, C. The response of the net primary production of Moso bamboo forest to the On and Off-year management: A case study in Anji County, Zhejiang, China. For. Ecol. Manag. 2018, 409, 1–7. [Google Scholar] [CrossRef]
- Zhang, J.; Chu, Z.; Ge, Y.; Zhou, X.; Jiang, H.; Chang, J.; Peng, C.; Zheng, J.; Jiang, B.; Zhu, J.; et al. TRIPLEX model testing and application for predicting forest growth and biomass production in the subtropical forest zone of China’s Zhejiang Province. Ecol. Model. 2008, 219, 264–275. [Google Scholar]
- Li, H. On the Spation-Temporal Simulation of Forest Ecosystem Net Primary Productivity and Net Ecosystem Productivity in Fujian Province. Ph.D. Thesis, Fujian Normal University, Fuzhou, China, 2008. [Google Scholar]
- Chen, S.; Jiang, H.; Jin, J.; Wang, Y. Changes in net primary production in the Tianmu Mountain Nature Reserve, China, from 1984 to 2014. Int. J. Remote Sens. 2017, 38, 211–234. [Google Scholar] [CrossRef]
- Zeng, H.Q.; Liu, Q.J.; Feng, Z.W.; Wang, X.K.; Ma, Z.Q. GPP and NPP study of Pinus elliottii forest in red soil hilly region based on BIOME-BGC model. Acta Ecol. Sin. 2008, 28, 5314–5321. [Google Scholar]
- Chen, Y.M.; Zhang, W.Q.; Yang, T.X.; Zhao, G.; Wang, S.B. The Change characteristics of net primary production in different vegetation types in China. J. Fudan Univ. (Nat. Sci.) 2012, 51, 377–381. [Google Scholar]
- Cui, L.L.; Du, H.Q.; Shi, J.; Chen, Z.; Guo, W. Spatial and temporal pattern of vegetation NPP and its relationship with climate in the southeastern China. Sci. Geogr. Sin. 2016, 36, 787–793. [Google Scholar]
- Sun, Q.L.; Li, B.L.; Zhang, T.; Yuan, Y.C.; Gao, X.Z.; Ge, J.S.; Li, F.; Zhang, Z.J. An improved Biome—BGC model for estimating net primary productivity of alpine meadow on the Qinghai–Tibet Plateau. Ecol. Model. 2017, 350, 55–68. [Google Scholar]
- You, Y.; Wang, S.; Ma, Y.; Wang, X.; Liu, W. Improved modeling of Gross Primary Productivity of alpine grasslands on the Tibetan Plateau using the Biome-BGC model. Remote Sens. 2019, 11, 1287. [Google Scholar] [CrossRef]
- Hidy, D.; Barcza, Z.; Haszpra, L.; Churkina, G.; Pintér, K.; Nagy, Z. Development of the Biome-BGC model for simulation of managed herbaceous ecosystems. Ecol. Model. 2012, 226, 99–119. [Google Scholar]
- Mäkelä, A.; Valentine, H.T. The ratio of NPP to GPP: Evidence of change over the course of stand development. Tree Physiol. 2001, 21, 1015–1030. [Google Scholar]
- Li, C.; Sun, H.; Wu, X.; Han, H. An approach for improving soil water content for modeling net primary production on the Qinghai-Tibetan Plateau using Biome-BGC model. Catena 2020, 184, 104253. [Google Scholar]
- Geng, W.; Li, Y.; Zhang, P.; Yang, D.; Jing, W.; Rong, T. Analyzing Spatio-Temporal Changes and Trade-Offs/Synergies among Ecosystem Services in the Yellow River Basin, China. Ecol. Indic. 2022, 138, 108825. [Google Scholar] [CrossRef]
- Fang, M.Z.; Cheng, C.J.; He, N.P.; Si, G.X.; Sun, O.J. Implication of community—Level ecophysiological parameterization to modelling ecosystem productivity: A case study across nine contrasting forest sites in eastern China. J. For. Res. 2024, 35, 7. [Google Scholar] [CrossRef]
- Tian, X.; Yan, M.; van der Tol, C.; Li, Z.; Su, Z.B.; Chen, E.X.; Li, X.; Li, L.H.; Wang, X.F.; Pan, X.D.; et al. Modeling forest above-ground biomass dynamics using multi—Source data and incorporated models: A case study over the qilian mountains. Agric. For. Meteorol. 2017, 246, 1–14. [Google Scholar] [CrossRef]
- Feng, Z.Y.; Xing, W.Q.; Wang, W.G.; Yu, Z.B.; Shao, Q.X.; Chen, S.F. Assessing the spatiotemporal dynamics of water and carbon fluxes in subtropical forest of Xin’an River Basin using an improved Biome—BGC model. J. Hydrol. 2024, 635, 131201. [Google Scholar] [CrossRef]
- Liang, H.B.; Xue, Y.Y.; Li, Z.S.; Wang, S.; Wu, X.; Gao, G.Y.; Liu, G.H.; Fu, B.J. Soil moisture decline following the plantation of Robinia pseudoacacia forests: Evidence from the Loess Plateau. For. Ecol. Manag. 2018, 412, 62–69. [Google Scholar] [CrossRef]
- Zuidema, P.A.; Babst, F.; Groenendijk, P.; Trouet, V.; Abiyu, A.; Acuña–Soto, R.; Adenesky, E.; Alfaro-Sánchez, R.; Aragao, J.R.V.; Assis-Pereira, G.; et al. Tropical tree growth driven by dry—Season climate variability. Nat. Geosci. 2022, 15, 269–276. [Google Scholar] [CrossRef]
- Zani, D.; Crowther, T.W.; Mo, L.D.; Renner, S.S.; Zohner, C.M. Increased growing—Season productivity drives earlier autumn leaf senescence in temperate trees. Science 2020, 370, 1066–1071. [Google Scholar] [CrossRef]
- Zhao, W.; Mao, Q.; Liu, G.; Li, Y.; Xia, J.; Zhang, Y.J. Patterns of compound-leaf form and deciduous-leaf habit across forests in China: Their association and key climatic factors. Sci. Total Environ. 2022, 851, 158108. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Jin, J. Contrast Effects of Vegetation Cover Change on Evapotranspiration during a Revegetation Period in the Poyang Lake Basin, China. Forests 2018, 9, 217. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Y.; Tao, J.; Wang, Y.; Zhou, H. MODIS detection of vegetation changes and investigation of causal factors in Poyang Lake basin, China for 2001–2015. Ecol. Indic. 2018, 91, 511–522. [Google Scholar] [CrossRef]
- You, Y.; Wang, S.; Pan, N.; Ma, Y.; Liu, W. Growth stage-dependent responses of carbon fixation process of alpine grasslands to climate change over the Tibetan Plateau, China. Agric. For. Meteorol. 2020, 291, 108085. [Google Scholar] [CrossRef]
- Mao, F.; Du, H.; Li, X.; Ge, H.; Cui, L.; Zhou, G. Spatiotemporal dynamics of bamboo forest net primary productivity with climate variations in Southeast China. Ecol. Indic. 2020, 116, 106505. [Google Scholar] [CrossRef]
- Lei, T.; Feng, J.; Lv, J.; Wang, J.; Song, H.; Song, W.; Gao, X. Net Primary Productivity Loss under different drought levels in different grassland ecosystems. J. Environ. Manag. 2020, 274, 111144. [Google Scholar] [CrossRef]
- Mao, Q.; Lu, X.; Wang, C.; Zhou, K.; Mo, J. Responses of understory plant physiological traits to a decade of nitrogen addition in a tropical reforested ecosystem. For. Ecol. Manag. 2017, 401, 65–74. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, J.; Zhou, L.; Tao, L.; Lin, Y.; Hui, D.; Ren, H.; Lu, H. Nitrogen budgets of a lower subtropical forest as affected by 6 years of over—Canopy and understory nitrogen additions. Sci. Total Environ. 2022, 852, 158546. [Google Scholar] [CrossRef]
- Zhong, J.; Yao, H.; Liu, W.; Zhang, Y.; Lin, J.; Jiang, J.; Wang, C. Impact of Climate and Vegetation Dynamics on the Ecosystem Services of Subtropical Forests—A Case Study of Baishanzu National Park Area, China. Forests 2024, 15, 1850. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, P.; Zhou, L.; Zhang, L.; Lin, Y.; Wang, Y.; Wang, J.; Hui, D.; Ren, H.; Lu, H. Multi—Ecosystem services differently affected by over—Canopy and understory nitrogen additions in a typical subtropical forest. Glob. Change Biol. 2024, 30, e17192. [Google Scholar] [CrossRef]
- Huang, Z.; Du, H.; Mao, F.; Li, X.; Zhou, G.; Sun, J.; Xu, Y.; Xuan, J.; Lu, Y.; Huang, L.; et al. Assessing the impact of land use and cover change on above—Ground carbon storage in subtropical forests: A case study of Zhejiang Province, China. Geo-Spat. Inf. Sci. 2025, 1–27. [Google Scholar] [CrossRef]
- Wang, J.J.; Taylor, A.R.; D’Orangeville, L. Warming—Induced tree growth may help offset increasing disturbance across the Canadian boreal forest. Proc. Natl. Acad. Sci. USA 2023, 120, 2212780120. [Google Scholar] [CrossRef]
- Huang, Q.M.; Yang, D.D.; Shen, Y.G. Studies on the primary productivity of bamboo (Phyllostachys pubescens) grove. For. Res. 1993, 6, 536–540. [Google Scholar]
- Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; et al. Multi-model analysis of terrestrial carbon cycles in Japan: Limitations and implications of model calibration using eddy flux observations. Biogeosciences 2010, 7, 2061–2080. [Google Scholar]
- Kelliher, F.M.; Leuning, R.; Raupach, M.R.; Schulze, E.D. Maximum conductances for evaporation from global vegetation types. Agric. For. Meteorol. 1995, 73, 1–16. [Google Scholar]
- Mao, F.J.; Li, P.H.; Zhou, G.M.; Du, H.; Xu, X.; Shi, Y.; Mo, L.; Zhou, Y.; Tu, G. Development of the BIOME-BGC model for the simulation of managed Moso bamboo forest ecosystems. J. Environ. Manag. 2016, 172, 29–39. [Google Scholar]
Forest Types | Carbon Coefficient |
---|---|
Cunninghamia lanceolata (Lamb.) Hook. | 0.5201 |
Pinus massoniana Lamb. | 0.4596 |
Cupressus funebris Endl. | 0.5034 |
Betula platyphylla Suk. | 0.4914 |
Cinnamomum camphora (L.) Presl | 0.4916 |
Bamboo | 0.5000 |
MIX | 0.4978 |
Forest Type | Study Area | Period | Model | NPP/(g·m−2a−1) | Reference |
---|---|---|---|---|---|
ECF | Qianyanzhou, Jiangxi | 1985–2005 | Biome-BGC | 343.3–906.4 | [37] |
Qianyanzhou, Jiangxi | 1993–2004 | Biome-BGC | 453–828 | [45] | |
Ganjiang River Basin | 1998–2012 | CASA | 657 | [38] | |
Three Gorges Reservoir area | 1981–2014 | Biome-BGC | 262.9–807.7 | [44] | |
Ganjiang River Basin | 1970–2021 | Biome-BGC | 357.2–916.9 | This study | |
EBF | Jiangxi Province | 2001 | BEPS | 620.1–1 273.4 | [39] |
Taihe County, Jiangxi | 1998–2012 | CASA | 985 | [40] | |
Tianmu Mountains, Zhejiang | 1984–2014 | CASA | 739 | [44] | |
Ganjiang River Basin | 1970–2021 | Biome-BGC | 662.9–1036.1 | This study | |
MIX | Zhejiang Province | 1999 | TRIPLEX | 784.5 | [42] |
China | 1993–2011 | / | 330–920 | [46] | |
Southeast China | 2001–2010 | / | 656.6 | [47] | |
Ganjiang River Basin | 1970–2021 | Biome-BGC | 596.8–871.2 | This study | |
BF | Fujian Province | 2005 | Biome-BGC | 739.6 | [43] |
Tianmu Mountains, Zhejiang | 1984–2014 | CASA | 740 | [44] | |
Anji, Zhejiang | 2011–2014 | TRIPLEX | 747–911 | [41] | |
Ganjiang River Basin | 1970–2021 | Biome-BGC | 579.3–849.1 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Z.; Zhou, Z.; Wei, X.; Xiao, D.; Xu, L.; Wan, W. Spatio-Temporal Simulation of the Productivity of Four Typical Subtropical Forests: A Case Study of the Ganjiang River Basin in China. Forests 2025, 16, 603. https://doi.org/10.3390/f16040603
Wen Z, Zhou Z, Wei X, Xiao D, Xu L, Wan W. Spatio-Temporal Simulation of the Productivity of Four Typical Subtropical Forests: A Case Study of the Ganjiang River Basin in China. Forests. 2025; 16(4):603. https://doi.org/10.3390/f16040603
Chicago/Turabian StyleWen, Zhiliang, Zhen Zhou, Xiting Wei, Deli Xiao, Liliang Xu, and Wei Wan. 2025. "Spatio-Temporal Simulation of the Productivity of Four Typical Subtropical Forests: A Case Study of the Ganjiang River Basin in China" Forests 16, no. 4: 603. https://doi.org/10.3390/f16040603
APA StyleWen, Z., Zhou, Z., Wei, X., Xiao, D., Xu, L., & Wan, W. (2025). Spatio-Temporal Simulation of the Productivity of Four Typical Subtropical Forests: A Case Study of the Ganjiang River Basin in China. Forests, 16(4), 603. https://doi.org/10.3390/f16040603