Spatiotemporal Pattern of Soil Moisture and Its Association with Vegetation in the Yellow River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Mann–Kendall Test
2.3.2. Empirical Orthogonal Function
2.3.3. Granger Causality
3. Results
3.1. Spatiotemporal Variability of SM
3.2. Relationship Between SM and NDVI
3.2.1. Coupling Trends Between SM and NDVI
3.2.2. Granger Causality Test Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Full Form |
YRB | Yellow River Basin |
SM | Soil Moisture |
NDVI | Normalized Difference Vegetation Index |
TEBF | Temperate Evergreen Broadleaf Forest |
QTPAV | Qinghai-Tibet Plateau Alpine Vegetation |
TDR | Temperate Desert Region |
SWTDF | Subtropical Warm Temperate Deciduous Forest |
TGR | Temperate Grassland Region |
M-K | Mann–Kendall |
EOF | Empirical Orthogonal Function |
GLDAS | Global Land Data Assimilation System |
GIMMS | Global Inventory Modeling and Mapping Studies |
References
- Zhao, Q.; Tian, G.; Jing, X.; Hu, H. Impact of economic development and environmental regulations on greywater footprint loads in the Yellow River Basin in China. Ecol. Indic. 2023, 154, 110586. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, X.; Elahi, E.; Fan, B.; Khalid, Z. Assessing ecological product values in the Yellow River Basin: Factors, trends, and strategies for sustainable development. Ecol. Indic. 2024, 160, 111708. [Google Scholar] [CrossRef]
- Lan, H.; Peng, J.; Zhu, Y.; Li, L.; Pan, B.; Huang, Q.; Li, J.; Zhang, Q. Research on geological and surfacial processes and major disaster effects in the Yellow River Basin. Sci. China Earth Sci. 2022, 65, 234–256. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Q.; Wang, G.; Gu, X.; Zhao, J.; Feng, A. Spatiotemporal interactions between soil moisture and water availability across the Yellow River Basin, China. J. Hydrol. Reg. Stud. 2024, 54, 101874. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, M.; Lu, J.; Zhou, Q.; Ma, W. Evaluation of ecological city and analysis of obstacle factors under the background of high-quality development: Taking cities in the Yellow River Basin as examples. Ecol. Indic. 2020, 118, 106771. [Google Scholar] [CrossRef]
- Du, L.; Dong, C.; Kang, X.; Qian, X.; Gu, L. Spatiotemporal evolution of land cover changes and landscape ecological risk assessment in the Yellow River Basin, 2015–2020. J. Environ. Manag. 2023, 332, 117149. [Google Scholar] [CrossRef]
- Di, D.Y.; Wu, Z.N.; Guo, X.; Lv, C.M.; Wang, H.L. Value Stream Analysis and Emergy Evaluation of the Water Resource Eco-Economic System in the Yellow River Basin. Water 2019, 11, 710. [Google Scholar] [CrossRef]
- Lal, P.; Shekhar, A.; Gharun, M.; Das, N.N. Spatiotemporal evolution of global long-term patterns of soil moisture. Sci. Total Environ. 2023, 867, 161470. [Google Scholar] [CrossRef]
- Lou, D.; Wang, G.; Shan, C.; Hagan, D.F.T.; Ullah, W.; Shi, D. Changes of soil moisture from multiple sources during 1988–2010 in the Yellow River Basin, China. Adv. Meteorol. 2018, 2018, 1950529. [Google Scholar] [CrossRef]
- Hu, L.; Xie, Y.; Liu, Y. Mapping the primary factors driving spatiotemporal variations of surface soil moisture from multi-dimensional zonality in the Yellow River Basin of China. Sci. Rep. 2024, V1. [Google Scholar] [CrossRef]
- Guo, L.; Zhu, B.W.; Jin, H.; Zhang, Y.L.; Min, Y.X.; He, Y.C.; Shi, H.Y. Spatial-Temporal Variation Characteristics and Influencing Factors of Soil Moisture in the Yellow River Basin Using ESA CCI SM Products. Atmosphere 2022, 13, 962. [Google Scholar] [CrossRef]
- Song, L.; Wang, L.; Luo, D.; Chen, D.; Zhou, J. Assessing hydrothermal changes in the upper Yellow River Basin amidst permafrost degradation. Npj Clim. Atmos. Sci. 2024, 7, 57. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Yu, Z.; Ding, Y.; Xing, W.; Lu, W. Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying. J. Hydrol. 2018, 559, 471–485. [Google Scholar] [CrossRef]
- Cao, R.X.; Jia, X.X.; Huang, L.M.; Zhu, Y.J.; Wu, L.H.; Shao, M.A. Deep soil water storage varies with vegetation type and rainfall amount in the Loess Plateau of China. Sci. Rep. 2018, 8, 12346. [Google Scholar] [CrossRef]
- Ren, Z.; Tian, Z.; Wei, H.; Liu, Y.; Yu, Y. Spatiotemporal evolution and driving mechanisms of vegetation in the Yellow River Basin, China during 2000–2020. Ecol. Indic. 2022, 138, 108832. [Google Scholar] [CrossRef]
- Omer, A.; Zhuguo, M.; Zheng, Z.; Saleem, F. Natural and anthropogenic influences on the recent droughts in Yellow River Basin, China. Sci. Total Environ. 2020, 704, 135428. [Google Scholar] [CrossRef]
- Xie, M.; Ren, Z.; Li, Z.; Zhang, X.; Ma, X.; Li, P.; Shen, Z. Evolution of the precipitation–stream runoff relationship in different precipitation scenarios in the Yellow River Basin. Urban Clim. 2023, 51, 101609. [Google Scholar] [CrossRef]
- Almendra-Martin, L.; Martinez-Fernandez, J.; Piles, M.; Gonzalez-Zamora, A.; Benito-Verdugo, P.; Gaona, J. Influence of atmospheric patterns on soil moisture dynamics in Europe. Sci. Total Environ. 2022, 846, 157537. [Google Scholar] [CrossRef]
- Fan, K.K.; Slater, L.; Zhang, Q.; Sheffield, J.; Gentine, P.; Sun, S.; Wu, W.H. Climate warming accelerates surface soil moisture drying in the Yellow River Basin, China. J. Hydrol. 2022, 615, 128735. [Google Scholar] [CrossRef]
- Miguez-Macho, G.; Fan, Y. Spatiotemporal origin of soil water taken up by vegetation. Nature 2021, 598, 624–628. [Google Scholar] [CrossRef]
- Wei, X.; Li, Q.; Zhang, M.; Giles-Hansen, K.; Liu, W.; Fan, H.; Wang, Y.; Zhou, G.; Piao, S.; Liu, S. Vegetation cover-another dominant factor in determining global water resources in forested regions. Glob. Change Biol. 2018, 24, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shi, H. Temporal and Spatial Variation Characteristics of Soil Moisture in Spring in the Arid Regions of Northwest China in the Past 60s years. J. Geosci. Environ. Prot. 2022, 10, 273–282. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, P.; Liu, J.; Zhang, X.; Zhao, Y.; Zhang, Q.; Li, L. Sustainable agricultural water management in the Yellow River Basin, China. Agric. Water Manag. 2023, 288, 108473. [Google Scholar] [CrossRef]
- Chen, W.; Jin, M.; Ferré, T.P.A.; Liu, Y.; Xian, Y.; Shan, T.; Ping, X. Spatial distribution of soil moisture, soil salinity, and root density beneath a cotton field under mulched drip irrigation with brackish and fresh water. Field Crops Res. 2018, 215, 207–221. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Q.-w.; Wang, J. Spatial variation in soil water on a hillslope with ephemeral gullies restored by different vegetation restoration modes on the Loess Plateau. Catena 2023, 224, 107001. [Google Scholar] [CrossRef]
- Xue, Y.; Bai, X.; Zhao, C.; Tan, Q.; Li, Y.; Luo, G.; Wu, L.; Chen, F.; Li, C.; Ran, C.; et al. Spring photosynthetic phenology of Chinese vegetation in response to climate change and its impact on net primary productivity. Agric. For. Meteorol. 2023, 342, 109734. [Google Scholar] [CrossRef]
- Trugman, A.T.; Medvigy, D.; Mankin, J.S.; Anderegg, W.R.L. Soil Moisture Stress as a Major Driver of Carbon Cycle Uncertainty. Geophys. Res. Lett. 2018, 45, 6495–6503. [Google Scholar] [CrossRef]
- Liu, F.; Liu, H.; Adalibieke, W.; Peng, Z.; Liang, B.; Feng, S.; Shi, L.; Zhu, X. Decline in stability of forest productivity in the tropics as determined by canopy water content. Iscience 2023, 26, 107211. [Google Scholar] [CrossRef]
- Lu, J.; Qin, T.; Yan, D.; Lv, X.; Yuan, Z.; Wen, J.; Xu, S.; Yang, Y.; Feng, J.; Li, W. Response of Vegetation to Drought in the Source Region of the Yangtze and Yellow Rivers Based on Causal Analysis. Remote Sens. 2024, 16, 630. [Google Scholar] [CrossRef]
- Jiang, W.; Niu, Z.; Wang, L.; Yao, R.; Gui, X.; Xiang, F.; Ji, Y. Impacts of Drought and Climatic Factors on Vegetation Dynamics in the Yellow River Basin and Yangtze River Basin, China. Remote Sens. 2022, 14, 930. [Google Scholar] [CrossRef]
- Huang, C.; Yang, Q.; Huang, W. Analysis of the Spatial and Temporal Changes of NDVI and Its Driving Factors in the Wei and Jing River Basins. Int. J. Environ. Res. Public Health 2021, 18, 11863. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.H.; Fan, Y.M.; Hu, Y.W.; Duan, H.; Yan, L.; Liu, C. Differences in the Effects of Three Water Elements on Vegetation in Different Climatic Regions: Insights from the Yellow River Basin, China. Ecohydrology 2024, 18, e2733. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, L.; He, Y.; Cao, S.; Wei, X.; Guo, Y.; Ran, L.; Filonchyk, M. Spatiotemporal evolution of agricultural drought and its attribution under different climate zones and vegetation types in the Yellow River Basin of China. Sci. Total Environ. 2024, 914, 169687. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Fu, S.; Cui, H.; Cao, Q.; Wang, Z.; Zhang, Z.; Wu, Q.; Qiao, J. Identifying the spatio-temporal pattern of drought characteristics and its constraint factors in the Yellow River Basin. Ecol. Indic. 2023, 154, 110753. [Google Scholar] [CrossRef]
- Yang, F.; He, F.; Wang, Y.; Zhou, S.; Dong, G. Reconstructing forest cover changes for the middle and lower reaches of the Yellow River over the past millennium. Reg. Environ. Chang. 2024, 24, 18. [Google Scholar] [CrossRef]
- Fatolazadeh, F.; Eshagh, M.; Goïta, K. A new approach for generating optimal GLDAS hydrological products and uncertainties. Sci. Total Environ. 2020, 730, 138932. [Google Scholar] [CrossRef]
- Wu, Z.; Feng, H.; He, H.; Zhou, J.; Zhang, Y. Evaluation of Soil Moisture Climatology and Anomaly Components Derived from ERA5-Land and GLDAS-2.1 in China. Water Resour. Manag. 2021, 35, 629–643. [Google Scholar] [CrossRef]
- Bi, H.; Ma, J.; Zheng, W.; Zeng, J. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos. 2016, 121, 2658–2678. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Z.; Lin, P.; Zheng, Z.; Xie, S. Comparison and evaluation of multiple land surface products for the water budget in the Yellow River Basin. J. Hydrol. 2020, 584, 124534. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Wang, W. Inter-comparison of satellite-retrieved and Global Land Data Assimilation System-simulated soil moisture datasets for global drought analysis. Remote Sens. Environ. 2019, 220, 1–18. [Google Scholar] [CrossRef]
- Zuo, J.; Xu, J.; Li, W.; Yang, D. Understanding shallow soil moisture variation in the data-scarce area and its relationship with climate change by GLDAS data. PLoS ONE 2019, 14, e0217020. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Li, Y.; Li Liu, D.; Xie, L.; Wang, L.; Jiang, X.; Feng, H.; Yu, Q.; He, J.; Lin, H. Improved identification and monitoring of meteorological, agricultural, and hydrological droughts using the modified nonstationary drought indices in the Yellow River Basin of China. J. Hydrol. 2024, 643, 131788. [Google Scholar] [CrossRef]
- Lv, M.; Ma, Z.; Lv, M. Effects of climate/land surface changes on streamflow with consideration of precipitation intensity and catchment characteristics in the Yellow River Basin. J. Geophys. Res. Atmos. 2018, 123, 1942–1958. [Google Scholar] [CrossRef]
- Dorigo, W.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Petrakovic, I.; Zappa, L.; Preimesberger, W.; Xaver, A.; Annor, F.; Ardö, J. The International Soil Moisture Network: Serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. Discuss. 2021, 2021, 5749–5804. [Google Scholar] [CrossRef]
- Xue, S.; Wu, G. Causal inference of root zone soil moisture performance in drought. Agric. Water Manag. 2024, 305, 109123. [Google Scholar] [CrossRef]
- Hernandez, J.O. Ecophysiological Effects of Groundwater Drawdown on Phreatophytes: Research Trends During the Last Three Decades. Land 2022, 11, 2061. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Z.; Dai, F. A model for root water uptake of alpine meadow on the Qinghai-Tibet Plateau considering soil temperature. Rhizosphere 2024, 31, 100943. [Google Scholar] [CrossRef]
- Gonzalez-Ollauri, A.; Hudek, C.; Mickovski, S.B.; Viglietti, D.; Ceretto, N.; Freppaz, M. Describing the vertical root distribution of alpine plants with simple climate, soil, and plant attributes. CATENA 2021, 203, 105305. [Google Scholar] [CrossRef]
- Yang, Y.; Donohue, R.J.; Mcvicar, T.R. Global estimation of effective plant rooting depth: Implications for hydrological modeling. Water Resour. Res. 2016, 52, 8260–8276. [Google Scholar] [CrossRef]
- Baudena, M.; von Hardenberg, J.; Provenzale, A. Vegetation patterns and soil–atmosphere water fluxes in drylands. Adv. Water Resour. 2013, 53, 131–138. [Google Scholar] [CrossRef]
- Zheng, H.; Gao, J.; Teng, Y.; Feng, C.; Tian, M. Temporal variations in soil moisture for three typical vegetation types in Inner Mongolia, Northern China. PLoS ONE 2015, 10, e0118964. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.-S.; Zhang, J.-J.; Zhang, S.-H.; Zhang, H.-B.; Sun, R.-X.; Zhang, Y.-Z. Seasonal variations in the influence of vegetation cover on soil water on the loess hillslope. J. Mt. Sci. 2020, 17, 2148–2160. [Google Scholar] [CrossRef]
- Mei, X.-M.; Ma, L.; Zhu, Q.-K.; Wang, S.; Zhang, D.; Wang, Y. Responses of soil moisture to vegetation restoration type and slope length on the loess hillslope. J. Mt. Sci. 2018, 15, 548–562. [Google Scholar] [CrossRef]
- Gou, Q.; Zhu, Q. Response of deep soil moisture to different vegetation types in the Loess Plateau of northern Shannxi, China. Sci. Rep. 2021, 11, 15098. [Google Scholar] [CrossRef]
- Liang, H.; Xue, Y.; Shi, J.; Li, Z.; Liu, G.; Fu, B. Soil moisture dynamics under Caragana korshinskii shrubs of different ages in Wuzhai County on the Loess Plateau, China. Earth Environ. Sci. Trans. R. Soc. Edinb. 2018, 109, 387–396. [Google Scholar] [CrossRef]
- Ruichen, M.; Jinxi, S.; Bin, T.; Wenjin, X.; Feihe, K.; Haotian, S.; Yuxin, L. Vegetation variation regulates soil moisture sensitivity to climate change on the Loess Plateau. J. Hydrol. 2023, 617, 128763. [Google Scholar] [CrossRef]
- Fathi-Taperasht, A.; Shafizadeh-Moghadam, H.; Minaei, M.; Xu, T. Influence of drought duration and severity on drought recovery period for different land cover types: Evaluation using MODIS-based indices. Ecol. Indic. 2022, 141, 109146. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Song, J. Variations in global soil moisture during the past decades: Climate or human causes? Water Resour. Res. 2023, 59, e2023WR034915. [Google Scholar]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Kang, W. Employing NDVI as vegetation correction variable to improve soil moisture measurements of mobile cosmic-ray neutron sensor near the Qilian Mountains. Geoderma 2024, 441, 116764. [Google Scholar] [CrossRef]
- Kimaro, O.D.; Gebre, S.L.; Hieronimo, P.; Kihupi, N.; Feger, K.-H.; Kimaro, D.N. Handheld NDVI sensor-based rice productivity assessment under combinations of fertilizer soil amendment and irrigation water management in lower Moshi irrigation scheme, North Tanzania. Environ. Earth Sci. 2023, 82, 78. [Google Scholar] [CrossRef]
- Li, M.Y.; Cao, S.; Zhu, Z.C.; Wang, Z.; Myneni, R.B.; Piao, S.L. Spatiotemporally consistent global dataset of the GIMMS Normalized Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022. Earth Syst. Sci. Data 2023, 15, 4181–4203. [Google Scholar] [CrossRef]
- Sharma, S.; Swayne, D.A.; Obimbo, C. Trend analysis and change point techniques: A survey. Energy Ecol. Environ. 2016, 1, 123–130. [Google Scholar] [CrossRef]
- Hao Quang, N.; Huu Loc, H.; Park, E. Characterizing sediment load variability in the red river system using empirical orthogonal function analysis: Implications for water resources management in data poor regions. J. Hydrol. 2023, 624, 129891. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, F.; Yao, R.; Jiao, W.; Hill, R.L. An Empirical Orthogonal Function-Based Approach for Spatially- and Temporally-Extensive Soil Moisture Data Combination. Water 2020, 12, 2919. [Google Scholar] [CrossRef]
- Wang, T.; Franz, T.E.; Li, R.; You, J.; Shulski, M.D.; Ray, C. Evaluating climate and soil effects on regional soil moisture spatial variability using EOF s. Water Resour. Res. 2017, 53, 4022–4035. [Google Scholar] [CrossRef]
- Perry, M.A.; Niemann, J.D. Analysis and estimation of soil moisture at the catchment scale using EOFs. J. Hydrol. 2007, 334, 388–404. [Google Scholar] [CrossRef]
- Green, J.K.; Konings, A.G.; Alemohammad, S.H.; Berry, J.; Entekhabi, D.; Kolassa, J.; Lee, J.-E.; Gentine, P. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 2017, 10, 410–414. [Google Scholar] [CrossRef]
- Yang, Z.; Gong, J.; Wang, S.; Jin, T.; Wang, Y. Shifts bidirectional dependency between vegetation greening and soil moisture over the past four decades in China. Sci. Total Environ. 2023, 897, 166388. [Google Scholar] [CrossRef]
- Jia, X.; Ming’an, S.; Chencheng, Z.; Chunlei, Z. Variation and simulation of soil water content within different soil depths along the south-north transect of the Loess Plateau. Adv. Water Sci. 2016, 27, 520–528. [Google Scholar] [CrossRef]
- Tong, R.; Yang, X.; Ren, L.; Shen, H.; Shan, H.; Kong, H.; Lin, C. Spatio-temporal variation of surface soil moisture over the Yellow River basin during 1961–2012. Proc. Int. Assoc. Hydrol. Sci. 2015, 368, 391–396. [Google Scholar] [CrossRef]
- Liu, L.; Gudmundsson, L.; Hauser, M.; Qin, D.; Li, S.; Seneviratne, S.I. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 2020, 11, 4892. [Google Scholar] [CrossRef] [PubMed]
- Daly, E.; Porporato, A. A Review of Soil Moisture Dynamics: From Rainfall Infiltration to Ecosystem Response. Environ. Eng. Sci. 2005, 22, 9–24. [Google Scholar] [CrossRef]
- Tinley, K.L. The Influence of Soil Moisture Balance on Ecosystem Patterns in Southern Africa. In Ecology of Tropical Savannas; Springer: Berlin/Heidelberg, Germany, 1982; pp. 175–192. [Google Scholar]
- Kulmatiski, A. Water matching: An explanation for plant growth and coexistence in water-limited systems. Discov. Soil 2024, 1, 2. [Google Scholar] [CrossRef]
- Sharma, P.K.; Kumar, S. Soil Water and Plant Growth. In Soil Physical Environment and Plant Growth: Evaluation and Management; Springer International Publishing: Cham, Switzerland, 2023; pp. 33–71. [Google Scholar]
- Bachofen, C.; Tumber-Dávila, S.J.; Mackay, D.S.; Mcdowell, N.G.; Carminati, A.; Klein, T.; Stocker, B.D.; Mencuccini, M.; Grossiord, C. Tree water uptake patterns across the globe. New Phytol. 2024, 242, 1891–1910. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, T.; Ji, R.; Chang, S.; Gao, Q.; Zhang, G. The Decreased Availability of Soil Moisture and Canopy Conductance Dominate Evapotranspiration in a Rain-Fed Maize Ecosystem in Northeastern China. Agronomy 2023, 13, 2941. [Google Scholar] [CrossRef]
- Shi, P.; Hou, P.; Gao, J.; Wan, H.; Wang, Y.; Sun, C. Spatial-temporal variation characteristics and influencing factors of vegetation in the Yellow River Basin from 2000 to 2019. Atmosphere 2021, 12, 1576. [Google Scholar] [CrossRef]
- Kemppinen, J.; Niittynen, P.; Rissanen, T.; Tyystjaervi, V.; Aalto, J.; Luoto, M. Soil Moisture Variations From Boreal Forests to the Tundra. Water Resour. Res. 2023, 59, e2022WR032719. [Google Scholar] [CrossRef]
Soil Layer | 0–10 cm | 10–40 cm | 40–100 cm | 100–200 cm | |
---|---|---|---|---|---|
Region | Causality Type | Percentage (%) | Percentage (%) | Percentage (%) | Percentage (%) |
QTPAV | NDVI ↔ SM | 60.00 | 8.00 | 5.00 | 7.00 |
SM → NDVI | 0.50 | 23.50 | 1.00 | 0.00 | |
NDVI → SM | 4.00 | 7.00 | 7.50 | 42.00 | |
Not Significant | 35.50 | 61.50 | 86.50 | 51.00 | |
SWTDF | NDVI ↔ SM | 58.33 | 37.50 | 54.17 | 70.83 |
SM → NDVI | 0.00 | 0.00 | 0.00 | 0.00 | |
NDVI → SM | 33.33 | 41.67 | 16.67 | 8.33 | |
Not Significant | 8.33 | 20.83 | 25.00 | 20.83 | |
TDR | NDVI ↔ SM | 33.33 | 5.56 | 11.11 | 13.89 |
SM → NDVI | 5.56 | 0.00 | 0.00 | 0.00 | |
NDVI → SM | 8.33 | 8.33 | 19.44 | 25.00 | |
Not Significant | 52.78 | 86.11 | 69.44 | 61.11 | |
TEBF | NDVI ↔ SM | 57.17 | 74.13 | 76.30 | 79.78 |
SM → NDVI | 0.22 | 5.43 | 9.57 | 0.00 | |
NDVI → SM | 36.09 | 5.43 | 2.61 | 10.43 | |
Not Significant | 6.52 | 15.00 | 11.52 | 9.78 | |
TGR | NDVI ↔ SM | 42.73 | 49.91 | 62.84 | 53.86 |
SM → NDVI | 0.00 | 2.33 | 1.26 | 0.00 | |
NDVI → SM | 43.27 | 22.80 | 10.59 | 24.96 | |
Not Significant | 14.00 | 24.96 | 25.31 | 21.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, J.; Jin, J.; Yuan, S.; Ren, L.; Ji, F.; Jiang, S.; Liu, Y.; Yang, X. Spatiotemporal Pattern of Soil Moisture and Its Association with Vegetation in the Yellow River Basin. Water 2025, 17, 1028. https://doi.org/10.3390/w17071028
Xia J, Jin J, Yuan S, Ren L, Ji F, Jiang S, Liu Y, Yang X. Spatiotemporal Pattern of Soil Moisture and Its Association with Vegetation in the Yellow River Basin. Water. 2025; 17(7):1028. https://doi.org/10.3390/w17071028
Chicago/Turabian StyleXia, Jiahui, Junliang Jin, Shanshui Yuan, Liliang Ren, Fang Ji, Shanhu Jiang, Yi Liu, and Xiaoli Yang. 2025. "Spatiotemporal Pattern of Soil Moisture and Its Association with Vegetation in the Yellow River Basin" Water 17, no. 7: 1028. https://doi.org/10.3390/w17071028
APA StyleXia, J., Jin, J., Yuan, S., Ren, L., Ji, F., Jiang, S., Liu, Y., & Yang, X. (2025). Spatiotemporal Pattern of Soil Moisture and Its Association with Vegetation in the Yellow River Basin. Water, 17(7), 1028. https://doi.org/10.3390/w17071028