Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (749)

Search Parameters:
Keywords = substitute fuels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3019 KiB  
Review
Phase-Transfer Catalysis for Fuel Desulfurization
by Xun Zhang and Rui Wang
Catalysts 2025, 15(8), 724; https://doi.org/10.3390/catal15080724 - 30 Jul 2025
Viewed by 261
Abstract
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe [...] Read more.
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe temperature–pressure conditions and displays limited efficacy toward sterically hindered thiophenic compounds, motivating the exploration of non-hydrogen routes such as oxidative desulfurization (ODS). Within ODS, PTC offers distinctive benefits by shuttling reactants across immiscible phases, thereby enhancing reaction rates and selectivity. In particular, PTC enables efficient migration of organosulfur substrates from the hydrocarbon matrix into an aqueous phase where they are oxidized and subsequently extracted. The review first summarizes the deployment of classic PTC systems—quaternary ammonium salts, crown ethers, and related agents—in ODS operations and then delineates the underlying phase-transfer mechanisms, encompassing reaction-controlled, thermally triggered, photo-responsive, and pH-sensitive cycles. Attention is next directed to a new generation of catalysts, including quaternary-ammonium polyoxometalates, imidazolium-substituted polyoxometalates, and ionic-liquid-based hybrids. Their tailored architectures, catalytic performance, and mechanistic attributes are analyzed comprehensively. By incorporating multifunctional supports or rational structural modifications, these systems deliver superior desulfurization efficiency, product selectivity, and recyclability. Despite such progress, commercial deployment is hindered by the following outstanding issues: long-term catalyst durability, continuous-flow reactor design, and full life-cycle cost optimization. Future research should, therefore, focus on elucidating structure–performance relationships, translating batch protocols into robust continuous processes, and performing rigorous environmental and techno-economic assessments to accelerate the industrial adoption of PTC-enabled desulfurization. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and a Sustainable Environment)
Show Figures

Figure 1

18 pages, 5991 KiB  
Article
Sustainability Assessment of Rural Biogas Production and Use Through a Multi-Criteria Approach: A Case Study in Colombia
by Franco Hernan Gomez, Nelson Javier Vasquez, Kelly Cristina Torres, Carlos Mauricio Meza and Mentore Vaccari
Sustainability 2025, 17(15), 6806; https://doi.org/10.3390/su17156806 - 26 Jul 2025
Viewed by 810
Abstract
There is still a need to develop scenarios and models aimed at substituting fuelwood and reducing the use of fossil fuels such as liquefied petroleum gas (LPG), on which low-income rural households in the Global South often depend. The use of these fuels [...] Read more.
There is still a need to develop scenarios and models aimed at substituting fuelwood and reducing the use of fossil fuels such as liquefied petroleum gas (LPG), on which low-income rural households in the Global South often depend. The use of these fuels for cooking and heating in domestic and productive activities poses significant health and environmental risks. This study validated, in three different phases, the sustainability of a model for the production and use of biogas from the treatment of swine-rearing wastewater (WWs) on a community farm: (i) A Multi-Criteria Analysis (MCA), incorporating environmental, social/health, technical, and economic criteria, identified the main weighted criterion to C8 (use of small-scale technologies and low-cost access), with a score of 0.44 points, as well as the Tubular biodigester (Tb) as the most suitable option for the study area, scoring 8.1 points. (ii) Monitoring of the Tb over 90 days showed an average biogas production of 2.6 m3 d−1, with average correlation 0.21 m3 Biogas kg Biomass−1. Using the experimental biogas production rate (k = 0.0512 d−1), the process was simulated with the BgMod model, achieving an average deviation of only 10.4% during the final production phase. (iii) The quantification of benefits demonstrated significant reductions in firewood use: in Scenario S1 (kitchen energy needs), biogas replaced 83.1% of firewood, while in Scenario S2 (citronella essential oil production), the substitution rate was 24.1%. In both cases, the avoided emissions amounted to 0.52 tons of CO2eq per month. Finally, this study proposes a synthesised, community-based rural biogas framework designed for replication in regions with similar socio-environmental, technical, and economic conditions. Full article
Show Figures

Figure 1

16 pages, 1856 KiB  
Article
Gas in Transition: An ARDL Analysis of Economic and Fuel Drivers in the European Union
by Olena Pavlova, Kostiantyn Pavlov, Oksana Liashenko, Andrzej Jamróz and Sławomir Kopeć
Energies 2025, 18(14), 3876; https://doi.org/10.3390/en18143876 - 21 Jul 2025
Viewed by 552
Abstract
This study investigates the short- and long-run drivers of natural gas consumption in the European Union using an ARDL bounds testing approach. The analysis incorporates GDP per capita, liquid fuel use, and solid fuel use as explanatory variables. Augmented Dickey–Fuller tests confirm mixed [...] Read more.
This study investigates the short- and long-run drivers of natural gas consumption in the European Union using an ARDL bounds testing approach. The analysis incorporates GDP per capita, liquid fuel use, and solid fuel use as explanatory variables. Augmented Dickey–Fuller tests confirm mixed integration orders, allowing valid ARDL estimation. The results reveal a statistically significant long-run relationship (cointegration) between gas consumption and the energy–economic system. In the short run, the use of liquid fuel exerts a strong positive influence on gas demand, while the effects of GDP materialise only after a two-year lag. Solid fuels show a delayed substitutive impact, reflecting the ongoing transition from coal. An error correction model confirms rapid convergence to equilibrium, with 77% of deviations corrected within one period. Recursive residual and CUSUM tests indicate structural stability over time. These findings highlight the responsiveness of EU gas demand to both economic and policy signals, offering valuable insights for energy modelling and strategic planning under the European Green Deal. Full article
Show Figures

Figure 1

22 pages, 1279 KiB  
Review
State of the Art of Biomethane Production in the Mediterranean Region
by Antonio Comparetti, Salvatore Ciulla, Carlo Greco, Francesco Santoro and Santo Orlando
Agronomy 2025, 15(7), 1702; https://doi.org/10.3390/agronomy15071702 - 15 Jul 2025
Viewed by 390
Abstract
The Mediterranean region is increasingly confronted with intersecting environmental, agricultural, and socio-economic challenges, including biowaste accumulation, soil degradation, and high dependency on imported fossil fuels. Biomethane, a renewable substitute for natural gas, offers a strategic solution that aligns with the region’s need for [...] Read more.
The Mediterranean region is increasingly confronted with intersecting environmental, agricultural, and socio-economic challenges, including biowaste accumulation, soil degradation, and high dependency on imported fossil fuels. Biomethane, a renewable substitute for natural gas, offers a strategic solution that aligns with the region’s need for sustainable energy transition and circular resource management. This review examines the current state of biomethane production in the Mediterranean area, with a focus on anaerobic digestion (AD) technologies, feedstock availability, policy drivers, and integration into the circular bioeconomy (CBE) framework. Emphasis is placed on the valorisation of regionally abundant feedstocks such as olive pomace, citrus peel, grape marc, cactus pear (Opuntia ficus-indica) residues, livestock manure, and the Organic Fraction of Municipal Solid Waste (OFMSW). The multifunctionality of AD—producing renewable energy and nutrient-rich digestate—is highlighted for its dual role in reducing greenhouse gas (GHG) emissions and restoring soil health, especially in areas threatened by desertification such as Sicily (Italy), Spain, Malta, and Greece. The review also explores emerging innovations in biogas upgrading, nutrient recovery, and digital monitoring, along with the role of Renewable Energy Directive III (RED III) and national biomethane strategies in scaling up deployment. Case studies and decentralised implementation models underscore the socio-technical feasibility of biomethane systems across rural and insular territories. Despite significant potential, barriers such as feedstock variability, infrastructural gaps, and policy fragmentation remain. The paper concludes with a roadmap for research and policy to advance biomethane as a pillar of Mediterranean climate resilience, energy autonomy and sustainable agriculture within a circular bioeconomy paradigm. Full article
Show Figures

Figure 1

26 pages, 1389 KiB  
Article
Forest Biomass Fuels and Energy Price Stability: Policy Implications for U.S. Gasoline and Diesel Markets
by Chukwuemeka Valentine Okolo and Andres Susaeta
Energies 2025, 18(14), 3732; https://doi.org/10.3390/en18143732 - 15 Jul 2025
Viewed by 238
Abstract
U.S. gasoline and diesel prices are often volatile, driven by geopolitical risks and disruptions in the fossil fuel market. Forest biomass fuels, particularly renewable diesel derived from logging residues, offer a low-carbon alternative with the potential to stabilize fuel prices. This study evaluates [...] Read more.
U.S. gasoline and diesel prices are often volatile, driven by geopolitical risks and disruptions in the fossil fuel market. Forest biomass fuels, particularly renewable diesel derived from logging residues, offer a low-carbon alternative with the potential to stabilize fuel prices. This study evaluates whether biomass can moderate fuel price volatility using ANOVA, Tukey post hoc tests, and quadratic regression based on monthly data for biomass production, inventories, and retail fuel prices. Findings reveal the existence of a significant nonlinear relationship between forest biomass inventory levels and fossil fuel prices. Average gasoline prices peaked in the medium-inventory group (M = 0.837) and dropped in the high-inventory group (M = 0.684). Diesel prices followed a similar pattern, with the highest values in the medium-inventory group (M = 0.963) and the lowest in the high-inventory group (M = 0.759). One-way ANOVA results were statistically significant for both gasoline (F(2, 99) = 7.39, p = 0.001) and diesel (F(2, 99) = 7.22, p = 0.0012). Tukey tests confirmed that diesel prices fell significantly from both medium to high and low to high-inventory levels. This result remains robust when using the biomass index level and the biomass production level. These results indicate a threshold effect: only at higher biomass inventories do fossil fuel prices decline, suggesting a potential for substitution. However, current policies inadequately support biomass integration, highlighting the need for targeted reforms. Full article
(This article belongs to the Special Issue Emerging Trends in Energy Economics: 3rd Edition)
Show Figures

Figure 1

19 pages, 1272 KiB  
Article
Waste to Biofuel: Process Design and Optimisation for Sustainable Aviation Fuel Production from Corn Stover
by Nur Aina Najihah Halimi, Ademola Odunsi, Alex Sebastiani and Dina Kamel
Energies 2025, 18(13), 3418; https://doi.org/10.3390/en18133418 - 29 Jun 2025
Viewed by 607
Abstract
Addressing the urgent need to decarbonise aviation and valorise agricultural waste, this paper investigates the production of Sustainable Aviation Fuel (SAF) from corn stover. A preliminary evaluation based on a literature review indicates that among various conversion technologies, fast pyrolysis (FP) emerged as [...] Read more.
Addressing the urgent need to decarbonise aviation and valorise agricultural waste, this paper investigates the production of Sustainable Aviation Fuel (SAF) from corn stover. A preliminary evaluation based on a literature review indicates that among various conversion technologies, fast pyrolysis (FP) emerged as the most promising option, offering the highest fuel yield (22.5%) among various pathways, a competitive potential minimum fuel selling price (MFSP) of 1.78 USD/L, and significant greenhouse gas savings of up to 76%. Leveraging Aspen Plus simulation, SAF production via FP was rigorously designed and optimised, focusing on the heat integration strategy within the process to minimise utility consumption and ultimately the total cost. Consequently, the produced fuel exceeded the American Society for Testing and Materials (ASTM) limit for the final boiling point, rendering it unsuitable as a standalone jet fuel. Nevertheless, it achieves regulatory compliance when blended at a rate of up to 10% with conventional jet fuel, marking a practical route for early adoption. Energy optimisation through pinch analysis integrated four hot–cold stream pairs, eliminating external heating, reducing cooling needs by 55%, and improving sustainability and efficiency. Economic analysis revealed that while heat integration slashed utility costs by 84%, the MFSP only decreased slightly from 2.35 USD/L to 2.29 USD/L due to unchanging material costs. Sensitivity analysis confirmed that hydrogen, catalyst, and feedstock pricing are the most influential variables, suggesting targeted reductions could push the MFSP below 2 USD/L. In summary, this work underscores the technical and economic viability of corn stover-derived SAF, providing a promising pathway for sustainable aviation and waste valorisation. While current limitations restrict fuel quality during full substitution, the results affirm the feasibility of SAF blending and present a scalable, low-carbon pathway for future development. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
Show Figures

Figure 1

16 pages, 1390 KiB  
Article
A Fast-Time MATLAB Model of an Aeronautical Low-Temperature PEM Fuel Cell for Sustainable Propulsion and Compressor Behavior at Varying Altitudes
by Abolfazl Movahedian, Gianluca Marinaro and Emma Frosina
Sustainability 2025, 17(13), 5817; https://doi.org/10.3390/su17135817 - 24 Jun 2025
Viewed by 382
Abstract
The aviation sector significantly contributes to environmental challenges, including global warming and greenhouse gas emissions, due to its reliance on fossil fuels. Fuel cells present a viable alternative to conventional propulsion systems. In the context of light aircraft applications, proton exchange membrane fuel [...] Read more.
The aviation sector significantly contributes to environmental challenges, including global warming and greenhouse gas emissions, due to its reliance on fossil fuels. Fuel cells present a viable alternative to conventional propulsion systems. In the context of light aircraft applications, proton exchange membrane fuel cells (PEMFCs) have recently attracted growing interest as a substitute for internal combustion engines (ICEs). However, their performance is highly sensitive to altitude variations, primarily due to limitations in compressor efficiency and instability in cathode pressure. To address these challenges, this research presents a comprehensive numerical model that couples a PEMFC system with a dynamic air compressor model under altitude-dependent conditions ranging from 0 to 3000 m. Iso-efficiency lines were integrated into the compressor map to evaluate its behavior across varying environmental parameters. The study examines key fuel cell stack characteristics, including voltage, current, and net power output. The results indicate that, as altitude increases, ambient pressure and air density decrease, causing the compressor to work harder to maintain the required compression ratio at the cathode of the fuel cell module. This research provides a detailed prediction of compressor efficiency trends by implementing iso-efficiency lines into the compressor map, contributing to sustainable aviation and aligning with global goals for low-emission energy systems by supporting cleaner propulsion technologies for lightweight aircraft. Full article
Show Figures

Figure 1

25 pages, 3599 KiB  
Article
Sustainable Production of Eco-Friendly, Low-Carbon, High-Octane Gasoline Biofuels Through a Synergistic Approach for Cleaner Transportation
by Tamer M. M. Abdellatief, Ahmad Mustafa, Mohamed Koraiem M. Handawy, Muhammad Bakr Abdelghany and Xiongbo Duan
Fuels 2025, 6(3), 49; https://doi.org/10.3390/fuels6030049 - 23 Jun 2025
Viewed by 545
Abstract
This research work seeks to introduce eco-friendly, low-carbon, and high-octane biofuel gasoline production using a synergistic approach. Four types of high-octane gasoline, including SynergyFuel-92, SynergyFuel-95, SynergyFuel-98, and SynergyFuel-100, were generated, emphasizing the deliberate combination of petroleum-derived gasoline fractions using reformate, isomerate, and delayed [...] Read more.
This research work seeks to introduce eco-friendly, low-carbon, and high-octane biofuel gasoline production using a synergistic approach. Four types of high-octane gasoline, including SynergyFuel-92, SynergyFuel-95, SynergyFuel-98, and SynergyFuel-100, were generated, emphasizing the deliberate combination of petroleum-derived gasoline fractions using reformate, isomerate, and delayed coking (DC) naphtha with octane-boosting compounds—bio-methanol and bio-ethanol. A set of tests have been performed to examine the effects of antiknock properties, density, oxidation stability, distillation range characteristics, hydrocarbon composition, vapor pressure, and the volatility index on gasoline blends. The experimental results indicated that the gasoline blends made from biofuel (SynergyFuel-92, -95, -98, and 100) showed adherence to important fuel quality criteria in the USA, Europe, and China. These blends had good characteristics, such as low quantities of benzene and sulfur, regulated levels of olefins and aromatics, and good distillation qualities. By fulfilling these strict regulations, Synergy Fuel is positioned as a competitive and eco-friendly substitute for traditional gasoline. The results reported that SynergyFuel-100 demonstrated the strongest hot-fuel-handling qualities and resistance to vapor lock among all the mentioned Synergy Fuels. Finally, the emergence of eco-friendly, low-carbon, and high-octane biofuel gasoline production with synergistic benefits is a big step in the direction of sustainable transportation. Full article
(This article belongs to the Special Issue Sustainability Assessment of Renewable Fuels Production)
Show Figures

Graphical abstract

29 pages, 4263 KiB  
Article
Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using CH4/NH3 and CH4/H2
by Laith Mustafa, Rafał Ślefarski, Radosław Jankowski, Mohammad Alnajideen and Sven Eckart
Energies 2025, 18(12), 3221; https://doi.org/10.3390/en18123221 - 19 Jun 2025
Viewed by 485
Abstract
Gas turbines are widely used in power generation due to their reliability, flexibility, and high efficiency. As the energy sector transitions towards low-carbon alternatives, hydrogen and ammonia are emerging as promising fuels. This study investigates the thermodynamic and combustion performance of a GE [...] Read more.
Gas turbines are widely used in power generation due to their reliability, flexibility, and high efficiency. As the energy sector transitions towards low-carbon alternatives, hydrogen and ammonia are emerging as promising fuels. This study investigates the thermodynamic and combustion performance of a GE LM6000 gas turbine fueled by methane/hydrogen and methane/ammonia fuel blends under varying levels of oxygen enrichment (21%, 30%, and 40% O2 by volume). Steady-state thermodynamic simulations were conducted using Aspen HYSYS, and combustion modeling was performed using ANSYS Chemkin-Pro, assuming a constant thermal input of 102 MW. Results show that increasing hydrogen content significantly raises flame temperature and burning velocity, whereas ammonia reduces both due to its lower reactivity. Net power output and thermal efficiency improved with higher fuel substitution, peaking at 43.46 MW and 42.7% for 100% NH3. However, NOx emissions increased with higher hydrogen content and oxygen enrichment, while NH3 blends exhibit more complex emission trends. The findings highlight the trade-offs between efficiency and emissions in future low-carbon gas turbine systems. Full article
Show Figures

Figure 1

14 pages, 1465 KiB  
Article
Comparative Study of the Lubricity of Hydrotreated Vegetable Oil, Diesel, and Their Blends Using Four-Ball Testing: Focus on Scuffing Load
by Hubert Kuszewski, Artur Jaworski and Dariusz Szpica
Energies 2025, 18(12), 3141; https://doi.org/10.3390/en18123141 - 15 Jun 2025
Viewed by 448
Abstract
The search for low-emission fuels has increased interest in hydrotreated vegetable oil (HVO) as a renewable diesel substitute. This study examines the lubricity of HVO, diesel, and their blends using a four-ball tester, with scuffing load as the main evaluation criterion. Five fuel [...] Read more.
The search for low-emission fuels has increased interest in hydrotreated vegetable oil (HVO) as a renewable diesel substitute. This study examines the lubricity of HVO, diesel, and their blends using a four-ball tester, with scuffing load as the main evaluation criterion. Five fuel samples were tested: diesel, neat HVO, and blends containing 25%, 50%, and 75% HVO by volume. The results show that blending HVO with diesel improves lubricity at moderate concentrations, with the 25% HVO blend exhibiting the highest scuffing load. In contrast, neat HVO demonstrated significantly reduced lubricity—its scuffing load was 24% lower than diesel’s—confirming the negative impact of the absence of polar and aromatic compounds. The scuffing load did not decrease linearly with increasing HVO content, suggesting synergistic effects in certain blends. Viscosity increased with HVO content, but it did not directly correlate with improved lubricity. These findings indicate that chemical composition plays a dominant role over viscosity in determining lubricating performance. The study provides new insights into the tribological behavior of HVO–diesel blends and demonstrates that scuffing load testing offers a practical method for preliminary lubricity assessment of renewable fuels. Full article
(This article belongs to the Special Issue Internal Combustion Engines: Research and Applications—3rd Edition)
Show Figures

Figure 1

13 pages, 1681 KiB  
Communication
The Catalytic Hydrogenation of Phenanthrene: The Impact of Chrysotile and Coal Shale Catalysts
by Murzabek Baikenov, Dariya Izbastenova, Yue Zhang, Xintai Su, Nazerke Balpanova, Almas Tusipkhan, Zeinep Akanova, Amirbek Moldabayev, Balzhan Tulebaeva and Gulzhan Taurbaeva
Fuels 2025, 6(2), 47; https://doi.org/10.3390/fuels6020047 - 12 Jun 2025
Viewed by 775
Abstract
This paper presents the results of a study of the catalytic hydrogenation of phenanthrene using catalysts based on chrysotile modified with nickel and titanium (chrysotile/NiTi), as well as coal shale. Complex characterization of catalysts in terms of acid, texture and morphological properties was [...] Read more.
This paper presents the results of a study of the catalytic hydrogenation of phenanthrene using catalysts based on chrysotile modified with nickel and titanium (chrysotile/NiTi), as well as coal shale. Complex characterization of catalysts in terms of acid, texture and morphological properties was carried out. Pre-reduction in the catalysts has been found to increase the yield of partially and fully hydrogenated products, including tetrahydronaphthalene, trans-decalin and dihydrophenanthrene. Particular attention is paid to the role of coal shale as a donor source of hydrogen in thermolysis conditions. The results of hydrogenation revealed complex mechanisms of phenanthrene transformations, including partial saturation of aromatic rings, desulfurization and the formation of alkyl-substituted compounds. The obtained data emphasize the prospects of using the studied catalysts in the processes of processing heavy and solid hydrocarbon raw materials, which opens up opportunities for creating new technologies for the production of liquid fuel. Full article
Show Figures

Figure 1

17 pages, 1498 KiB  
Article
Efficient Free Fatty Acid Reduction in Palm Oil Mill Effluent (POME) for Biodiesel Production: Challenges and Optimization Strategies
by Indunil Chamara, Helitha Nilmalgoda and Eranga Wimalasiri
Challenges 2025, 16(2), 28; https://doi.org/10.3390/challe16020028 - 12 Jun 2025
Viewed by 1230
Abstract
The increasing demand for fossil fuels has led the oil industry to explore biodiesel as a renewable alternative, which is crucial for advancing planetary health. Biodiesel offers environmental benefits and shares similar properties with petroleum diesel, making it a promising substitute. However, Palm [...] Read more.
The increasing demand for fossil fuels has led the oil industry to explore biodiesel as a renewable alternative, which is crucial for advancing planetary health. Biodiesel offers environmental benefits and shares similar properties with petroleum diesel, making it a promising substitute. However, Palm Oil Mill Effluent (POME), containing sludge palm oil (SPO), presents challenges due to its high free fatty acid (FFA) content. This study proposes novel optimization strategies to reduce FFAs in SPO and improve biodiesel yield. A combination of base neutralization, esterification, and transesterification processes was employed. Neutralization with sodium hydroxide (NaOH) at concentrations ranging from 0.1% to 0.5% w/w was followed by esterification using sulfuric acid (H2SO4) with varying methanol-to-oil ratios. The optimal FFA reduction of 2.26% was achieved at a 6:1 methanol ratio. Transesterification with a 7:1 methanol-to-oil ratio yielded the highest biodiesel output of 71.25%. The biodiesel met ASTM standards, with a calorific value of 40.01 MJ/kg, a flash point of 180.5 °C, and a density of 0.86 g/cm3. Economic analysis estimates an annual net profit of USD 244,901,600, demonstrating that this approach provides a financially viable solution while advancing planetary health by reducing dependency on fossil fuels, mitigating climate change, and supporting sustainable fuel production. Full article
Show Figures

Figure 1

21 pages, 1037 KiB  
Systematic Review
Evaluating the Sustainability of the Natural Gas-Based Methanol-to-Gasoline Industry: A Global Systematic Review
by Hussein Al-Yafei, Saleh Aseel and Ali Ansaruddin Kunju
Sustainability 2025, 17(12), 5355; https://doi.org/10.3390/su17125355 - 10 Jun 2025
Viewed by 917
Abstract
The sustainability of the natural gas-to-methanol (NGTM) and methanol-to-gasoline (MTG) processes are assessed in this systematic review as a potential substitute in the global energy transition. Methanol offers itself as a versatile and less carbon-intensive substitute for conventional gasoline in light of growing [...] Read more.
The sustainability of the natural gas-to-methanol (NGTM) and methanol-to-gasoline (MTG) processes are assessed in this systematic review as a potential substitute in the global energy transition. Methanol offers itself as a versatile and less carbon-intensive substitute for conventional gasoline in light of growing environmental concerns and the demand for cleaner fuels. This review’s rationale is to assess MTG’s ability to lessen environmental impact while preserving compatibility with current fuel infrastructure. The goal is to examine methanol and gasoline’s effects on the environment, society, and economy throughout their life cycles. This review used a two-phase systematic literature review methodology, filtering and evaluating studies that were indexed by Scopus using bibliometric and thematic analysis. A total of 25 documents were reviewed, in which 22 documents analyzed part of this study, and 68% employed LCA or techno-economic analysis, with the U.S. contributing 35% of the overall publications. A comparative analysis of the reviewed literature indicates that methanol-based fuels offer significantly lower greenhouse gas (GHG) emissions and life cycle environmental impacts than gasoline, particularly when combined with carbon capture and renewable feedstocks. This review also highlights benefits, such as improved safety and energy security, while acknowledging challenges, including high production costs, infrastructure adaptation, and toxicity concerns. Several drawbacks are high manufacturing costs, the necessity to adjust infrastructure, and toxicity issues. The report suggests investing in renewable methanol production, AI-driven process optimization, and robust legislative frameworks for integrating green fuels. The life cycle sustainability assessment (LCSA) of NGTM and MTG systems should be investigated in future studies, particularly in light of different feedstock and regional circumstances. The findings emphasize NGTM and MTG’s strategic role in aligning with several UN Sustainable Development Goals (SDGs) and add to the worldwide conversation on sustainable fuels. A strong transition necessitates multi-stakeholder cooperation, innovation, and supporting policies to fully realize the sustainability promise of cleaner fuels like methanol. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

17 pages, 2093 KiB  
Review
Plasma-Activated Water as a Sustainable Nitrogen Source: Supporting the UN Sustainable Development Goals (SDGs) in Controlled Environment Agriculture
by Pamela Estefania Andrade, Patrice Jacob Savi, Flavia Souza Almeida, Bruno Augusto Carciofi, Abby Pace, Yugeng Zou, Nathan Eylands, George Annor, Neil Mattson and Christian Nansen
Crops 2025, 5(3), 35; https://doi.org/10.3390/crops5030035 - 6 Jun 2025
Viewed by 964
Abstract
Global agriculture remains dependent on nitrogen fertilizers produced through fossil fuel-based processes, contributing to greenhouse gas emissions, energy use, and supply chain vulnerabilities. This review introduces plasma-activated water (PAW) as a novel, electricity-driven alternative for sustainable nitrogen delivery. Generated by non-thermal plasma, PAW [...] Read more.
Global agriculture remains dependent on nitrogen fertilizers produced through fossil fuel-based processes, contributing to greenhouse gas emissions, energy use, and supply chain vulnerabilities. This review introduces plasma-activated water (PAW) as a novel, electricity-driven alternative for sustainable nitrogen delivery. Generated by non-thermal plasma, PAW infuses water with reactive oxygen and nitrogen species, offering a clean, decentralized substitute for conventional synthetic fertilizers derived from the Haber–Bosch and Ostwald processes. It can be produced on-site using renewable energy, reducing transportation costs and depending on fertilizers. Beyond its fertilizer properties, PAW enhances seed germination, plant growth, stress tolerance, and pest resistance, making it a multifunctional input for controlled environment agriculture. We also assess PAW’s techno-economic viability, including energy requirements, production costs, and potential scalability through renewable energy. These factors are crucial for determining its feasibility in both industrial systems and localized agricultural applications. Finally, the review examines PAW’s contribution to the ten United Nations Sustainable Development Goals, particularly in climate action, clean energy, and sustainable food production. By combining agronomic performance with circular production and emissions reduction, PAW presents a promising path toward more resilient, low-impact, and self-sufficient agricultural systems. Full article
Show Figures

Figure 1

18 pages, 3731 KiB  
Article
Investigation of the Effects and Mechanisms of Biomass-Derived Alternative Fuels on Cement Clinker Formation and Hydration Processes
by Zhengquan Wang, Yongmin Zhou, Sudong Hua and Dongrui Zhang
Appl. Sci. 2025, 15(11), 6294; https://doi.org/10.3390/app15116294 - 3 Jun 2025
Viewed by 494
Abstract
This study evaluates the potential of biomass fuels (10 wt% and 20 wt%) as partial coal replacements in combustion and their effects on clinker performance. Cement was produced by co-grinding clinker with gypsum, and hydration products were analyzed. Potassium and sodium carbonates were [...] Read more.
This study evaluates the potential of biomass fuels (10 wt% and 20 wt%) as partial coal replacements in combustion and their effects on clinker performance. Cement was produced by co-grinding clinker with gypsum, and hydration products were analyzed. Potassium and sodium carbonates were introduced to create highly alkaline conditions, thereby simulating the effect of alkali metals in biomass-derived fuel ash on the mineral phases of clinker under high substitution ratios. The results showed biomass fuels’ low ignition point and high volatile matter content improved mixed fuels combustion, increasing the average combustion rate by 0.52%~2.28% and reducing the ignition temperature by up to 56 °C. At low substitution levels, biomass ash did not adversely affect clinker mineral composition or cement properties. However, the highly alkaline environment suppressed the formation of tricalcium silicate (C3S) in the clinker, resulting in an increased content of free calcium oxide(f-CaO). Simultaneously, it promotes the formation of sulfates (K2SO4, Na2SO4) and sodium silicate (Na2Si2O5). Full article
Show Figures

Figure 1

Back to TopTop