Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = sub- and supercritical water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1481 KiB  
Article
Radiolysis of Sub- and Supercritical Water Induced by 10B(n,α)7Li Recoil Nuclei at 300–500 °C and 25 MPa
by Md Shakhawat Hossen Bhuiyan, Jintana Meesungnoen and Jean-Paul Jay-Gerin
J. Nucl. Eng. 2025, 6(2), 17; https://doi.org/10.3390/jne6020017 - 9 Jun 2025
Viewed by 492
Abstract
(1) Background: Generation IV supercritical water-cooled reactors (SCWRs), including small modular reactor (SCW-SMR) variants, are pivotal in nuclear technology. Operating at 300–500 °C and 25 MPa, these reactors require detailed understanding of radiation chemistry and transient species to optimize water chemistry, reduce corrosion, [...] Read more.
(1) Background: Generation IV supercritical water-cooled reactors (SCWRs), including small modular reactor (SCW-SMR) variants, are pivotal in nuclear technology. Operating at 300–500 °C and 25 MPa, these reactors require detailed understanding of radiation chemistry and transient species to optimize water chemistry, reduce corrosion, and enhance safety. Boron, widely used as a neutron absorber, plays a significant role in reactor performance and safety. This study focuses on the yields of radiolytic species in subcritical and supercritical water exposed to 4He and 7Li recoil ions from the 10B(n,α)7Li fission reaction in SCWR/SCW-SMR environments. (2) Methods: We use Monte Carlo track chemistry simulations to calculate yields (G values) of primary radicals (eaq, H, and OH) and molecular species (H2 and H2O2) from water radiolysis by α-particles and Li3⁺ recoils across 1 picosecond to 0.1 millisecond timescales. (3) Results: Simulations show substantially lower radical yields, notably eaq and OH, alongside higher molecular product yields compared to low linear energy transfer (LET) radiation, underscoring the high-LET nature of 10B(n,α)7Li recoil nuclei. Key changes include elevated G(OH) and G(H2), and a decrease in G(H), primarily driven during the homogeneous chemical stage of radiolysis by the reaction H + H2O → OH + H2. This reaction significantly contributes to H2 production, potentially reducing the need for added hydrogen in coolant water to mitigate oxidizing species. In supercritical conditions, low G(H₂O₂) suggests that H2O2 is unlikely to be a major contributor to material oxidation. (4) Conclusions: The 10B(n,α)7Li reaction’s yield estimates could significantly impact coolant chemistry strategies in SCWRs and SCW-SMRs. Understanding radiolytic behavior in these conditions aids in refining reactor models and coolant chemistry to minimize corrosion and radiolytic damage. Future experiments are needed to validate these predictions. Full article
Show Figures

Figure 1

18 pages, 6423 KiB  
Article
Influence of Chromium Content in Alloys on Corrosion in Saline Water Saturated with Supercritical CO2
by Haofei Sun, Minkang Liu, Yimin Zeng and Jing Liu
Processes 2025, 13(5), 1334; https://doi.org/10.3390/pr13051334 - 27 Apr 2025
Cited by 1 | Viewed by 478
Abstract
Amid growing global efforts toward carbon capture, utilization, and storage (CCUS), this study investigates the influence of chromium (Cr) content in candidate construction alloys on their corrosion modes and kinetics in supercritical CO2 (s-CO2)-saturated saline water at 8 MPa and [...] Read more.
Amid growing global efforts toward carbon capture, utilization, and storage (CCUS), this study investigates the influence of chromium (Cr) content in candidate construction alloys on their corrosion modes and kinetics in supercritical CO2 (s-CO2)-saturated saline water at 8 MPa and 50 °C. The results indicate that alloys with a Cr concentration of over approximately 9 wt.%, including P91, 316L, and Alloy 800, exhibit a satisfactory corrosion performance in this environment. During exposure to s-CO2-saturated saline water, a non-protective FeCO3 layer forms on all tested alloys. For alloys containing more than 2 wt.% Cr, an inner Cr-enriched layer concurrently grows and acts as a barrier to resist environmental attack. The integrity of the inner and outer corrosion layers becomes more compact and uniform on alloys with at least 9 wt.% Cr. Pitting is unlikely to occur on candidate alloys used for s-CO2 storage or enhanced oil recovery. Full article
(This article belongs to the Special Issue Development of Corrosion-Resistant Materials)
Show Figures

Figure 1

29 pages, 964 KiB  
Review
The Gasification of Marine and Coastal Resources for Syngas Production: A Review
by Gwendal Vonk, Virginie Boy, Jean-Louis Lanoisellé and Thomas Lendormi
Energies 2025, 18(3), 616; https://doi.org/10.3390/en18030616 - 29 Jan 2025
Viewed by 946
Abstract
Coasts are home to one-third of the human population. In the process of energy transition, local biomass and waste resources represent a renewable fuel that can substitute fossil fuels in order to reduce greenhouse gas emissions, hence including marine resources as part of [...] Read more.
Coasts are home to one-third of the human population. In the process of energy transition, local biomass and waste resources represent a renewable fuel that can substitute fossil fuels in order to reduce greenhouse gas emissions, hence including marine resources as part of the eligible feedstock for renewable energy production. Gasification regroups different technologies that aim to convert a solid fuel into a useful gas, and has several applications, such as heat production, power generation, and chemical synthesis. Gasification technologies regroup the traditional “dry” processes that use relatively dry fuels, but recent developments have been made with “wet” processes such as hydrothermal gasification, in sub- or supercritical conditions for the water, which can accept wet fuel. This review focuses on scientific articles that performed gasification of marine resources in order to produce a syngas. First, a definition of marine resources is made, followed by the presentation of marine resources studied in the literature. Secondly, this review presents the different types of gasification reactors and their operating conditions, followed by a summary of the different syngas produced with their composition as a performance indicator. Finally, this review exposes the limitations of the current literature and concludes with perspective propositions. Full article
Show Figures

Figure 1

49 pages, 9536 KiB  
Review
The Great Versatility of Supercritical Fluids in Industrial Processes: A Focus on Chemical, Agri-Food and Energy Applications
by Manita Kamjam, Somkiat Ngamprasertsith, Ruengwit Sawangkeaw, Manop Charoenchaitrakool, Romain Privat, Jean-Noël Jaubert and Michel Molière
Processes 2024, 12(11), 2402; https://doi.org/10.3390/pr12112402 - 31 Oct 2024
Cited by 2 | Viewed by 4188
Abstract
Long a thermodynamic curiosity, supercritical fluids (SCFs) have gradually gained ground in today’s life, generating an increasing number of new, efficient processes in diverse industrial sectors and fueling active R&D programs. Indeed, the versatility of SCFs allows them to serve a wide variety [...] Read more.
Long a thermodynamic curiosity, supercritical fluids (SCFs) have gradually gained ground in today’s life, generating an increasing number of new, efficient processes in diverse industrial sectors and fueling active R&D programs. Indeed, the versatility of SCFs allows them to serve a wide variety of applications. The list includes not only food processing, biofuel production, extraction of biomolecules marketable as medicines, cosmetics and nutraceuticals, but also emerging technologies for the production of electrical power, based on supercritical or transcritical thermodynamic cycles. This jointly authored article will provide a review of important applications covered by our laboratories in the agri-food, chemical and energy sectors. We will then try to detect recent trends and outline future prospects. Full article
Show Figures

Figure 1

15 pages, 1277 KiB  
Article
Fast-Neutron Radiolysis of Sub- and Supercritical Water at 300–600 °C and 25 MPa: A Monte Carlo Track Chemistry Simulation Study
by Md Shakhawat Hossen Bhuiyan, Jintana Meesungnoen, Abida Sultana and Jean-Paul Jay-Gerin
Appl. Sci. 2024, 14(16), 7024; https://doi.org/10.3390/app14167024 - 10 Aug 2024
Cited by 1 | Viewed by 1352
Abstract
(1) Background: Supercritical water-cooled reactors (SCWRs) and their smaller modular variants (SMRs) are part of the ‘Generation IV International Forum’ (GIF) on advanced nuclear energy systems. These reactors operate beyond the critical point of water (tc = 373.95 °C and P [...] Read more.
(1) Background: Supercritical water-cooled reactors (SCWRs) and their smaller modular variants (SMRs) are part of the ‘Generation IV International Forum’ (GIF) on advanced nuclear energy systems. These reactors operate beyond the critical point of water (tc = 373.95 °C and Pc = 22.06 MPa), which introduces specific technical challenges that need to be addressed. The primary concerns involve the effects of intense radiation fields—including fast neutrons, recoil protons/oxygen ions, and γ rays—on the chemistry of the coolant fluid and the integrity of construction materials. (2) Methods: This study employs Monte Carlo simulations of radiation track chemistry to investigate the yields of radiolytic species in SCWRs/SMRs exposed to 2 MeV neutrons. In our calculations, only the contributions from the first three recoil protons with initial energies of 1.264, 0.465, and 0.171 MeV were considered. Our analysis was conducted at both subcritical (300 and 350 °C) and supercritical temperatures (400–600 °C), maintaining a constant pressure of 25 MPa. (3) Results: Our simulations provide insights into the radiolytic formation of chemical species such as eaq, H, H2, OH, and H2O2 from ~1 ps to 1 ms. Compared to data from radiation with low linear energy transfer (LET), the G(eaq) and G(OH) values obtained for fast neutrons show a similar temporal dependence but with smaller amplitude—a result demonstrating the high LET nature of fast neutrons. A notable outcome of our simulations is the marked increase in G(OH) and G(H2), coupled with a corresponding reduction in G(H), observed during the homogeneous chemical stage of radiolysis. This evolution is attributed to the oxidation of water by the H atom according to the reaction H + H2O → OH + H2. This reaction acts as a significant source of H2, potentially reducing the need to add extra hydrogen to the reactor’s coolant water to suppress the net radiolytic production of oxidizing species. Unlike in subcritical water, our simulations also indicate that G(H2O2) remains very low in low-density SCW throughout the interval from ~1 ps to 1 ms, suggesting that H2O2 is less likely to contribute to oxidative stress under these conditions. (4) Conclusions: The results of this study could significantly impact water-chemistry management in the proposed SCWRs and SCW-SMRs, which is crucial for assessing and mitigating the corrosion risks to reactor materials, especially for long-term operation. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

20 pages, 2163 KiB  
Article
Degradation of Waste Tetra Pak Packaging with Hydrothermal Treatment in Sub-/Supercritical Water
by Mihael Irgolič, Maja Čolnik, Petra Kotnik and Mojca Škerget
Polymers 2024, 16(13), 1879; https://doi.org/10.3390/polym16131879 - 1 Jul 2024
Cited by 2 | Viewed by 2378
Abstract
Tetra pak packaging is one of the most frequently used types of packaging in the food industry. The recycling of the tetra pak packaging waste presents a difficult task because of its multi-layered, multi-component structure. In this study, the degradation of tetra pak [...] Read more.
Tetra pak packaging is one of the most frequently used types of packaging in the food industry. The recycling of the tetra pak packaging waste presents a difficult task because of its multi-layered, multi-component structure. In this study, the degradation of tetra pak packaging in subcritical (SubCW) and supercritical (SCW) water was investigated. The experiments were carried out in one (SCW) or two stages (SubCW and SCW), whereby the influence of the reaction temperature and time on the yield and composition of the products obtained was investigated. The maximum oil phase yield achieved in a one-stage and a two-stage degradation process was 60.7% and 65.5%, respectively. The oil and gas phases were composed of different types of hydrocarbons. Higher temperature and longer time led to higher amounts of saturated aliphatic hydrocarbons in both the oil and gas phases. The aqueous phase contained sugars (glucose, fructose) and sugar derivatives (levulinic acid, glyceraldehyde, furfurals). Based on these results, the degradation pathway of waste tetra pak packaging in SubCW and SCW was proposed. The results of the study show that the degradation of waste tetra pak packaging with SubCW and SCW is a promising recycling process. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

25 pages, 5900 KiB  
Review
Corrosion Monitoring Techniques in Subcritical and Supercritical Water Environments
by Yanhui Li, Zhouyang Bai, Limei Xing, Qian Zhang, Shaoming Ding, Yinan Zhang, Pengfei Gao, Zhihong Yu and Donghai Xu
Appl. Sci. 2024, 14(6), 2350; https://doi.org/10.3390/app14062350 - 11 Mar 2024
Cited by 7 | Viewed by 3054
Abstract
A series of advanced equipment exposed to sub-/supercritical water environments at high temperatures, high pressures, and extreme water chemistry with high salt and dissolved oxygen content faces serious corrosion problems. Obtaining on-site corrosion data for typical materials in harsh environments is crucial for [...] Read more.
A series of advanced equipment exposed to sub-/supercritical water environments at high temperatures, high pressures, and extreme water chemistry with high salt and dissolved oxygen content faces serious corrosion problems. Obtaining on-site corrosion data for typical materials in harsh environments is crucial for operating and maintaining related equipment and optimizing various corrosion prediction models. First, this article introduces the advantages and disadvantages, usage scenarios, and future development potential of several in situ monitoring technologies, including ultrasonic thickness measurement, the infrared thermography method, microwave imaging, eddy current detection, and acoustic emission. Considering the importance of electrochemical corrosion data in revealing microscale and nanoscale corrosion mechanisms, in situ testing techniques such as electrical resistance probes, electrochemical corrosion potential, electrochemical impedance spectroscopy, and electrochemical noise that can be applied to sub-/supercritical water systems were systematically discussed. The testing platform and typical data obtained were discussed with thick and heavy colors to establish a mechanical prediction model for corrosion behavior. It is of great significance to promote the development of corrosion monitoring techniques, such as breaking through testing temperature limitations and broadening the industrial application scenarios and maturity. Full article
(This article belongs to the Topic Advances in Non-Destructive Testing Methods, 2nd Edition)
Show Figures

Figure 1

17 pages, 5650 KiB  
Article
Short-Term Prediction of the Intermediate Point Temperature of a Supercritical Unit Based on the EEMD–LSTM Method
by Qiang Ma and Runxin Ye
Energies 2024, 17(4), 949; https://doi.org/10.3390/en17040949 - 18 Feb 2024
Cited by 5 | Viewed by 1343
Abstract
The quality of the intermediate point temperature control of a supercritical unit is directly related to the quality of the coal–water ratio and main steam temperature control of the supercritical unit, which is also related to the economy and safety of the unit. [...] Read more.
The quality of the intermediate point temperature control of a supercritical unit is directly related to the quality of the coal–water ratio and main steam temperature control of the supercritical unit, which is also related to the economy and safety of the unit. In order to improve the accuracy of short-term predictions of the intermediate point temperature, a short-term prediction model of the intermediate point temperature based on the EEMD (Ensemble Empirical Mode Decomposition)-LSTM (Long Short-Term Memory) model is proposed. This model uses the data of a 600 MW thermal power station in 2022 as a sample. The EEMD method is used to decompose the historical data into IMF components and residual components, and the correlation between each component and the original data is calculated. The relevant components are sent to the LSTM neural network, and all the sub-components are superimposed to obtain the final intermediate point temperature prediction results. At the same time, the BP and LSTM models are built to compare the errors with the proposed model. The results show that the single model will produce large errors when predicting the factors of large data fluctuations. The EEMD–LSTM coupling model can fully extract the detailed features and the prediction effect is obvious. The prediction accuracy of the EEMD–LSTM prediction model built in this paper is significantly better than that of the other two models. It has certain application value in the research field of intermediate point temperature prediction and can meet the requirements of short-term predictions of the intermediate point temperature. Full article
(This article belongs to the Section F5: Artificial Intelligence and Smart Energy)
Show Figures

Figure 1

25 pages, 6810 KiB  
Article
Supercritical Direct-Methane-to-Methanol Coupled with Gas-to-Wire for Low-Emission Offshore Processing of CO2-Rich Natural Gas: Techno-Economic and Thermodynamic Analyses
by Alessandra de Carvalho Reis, Ofélia de Queiroz Fernandes Araújo and José Luiz de Medeiros
Processes 2024, 12(2), 374; https://doi.org/10.3390/pr12020374 - 13 Feb 2024
Cited by 3 | Viewed by 1894
Abstract
A greater H/C ratio and energy demand are factors that boost natural gas conversion into electricity. The Brazilian offshore pre-salt basin has large reserves of CO2-rich associated gas. Selling this gas requires high-depth long-distance subsea pipelines, making gas-to-pipe costly; in particular, [...] Read more.
A greater H/C ratio and energy demand are factors that boost natural gas conversion into electricity. The Brazilian offshore pre-salt basin has large reserves of CO2-rich associated gas. Selling this gas requires high-depth long-distance subsea pipelines, making gas-to-pipe costly; in particular, gas-to-wire instead of gas-to-pipe is more practical since it is easier to transmit electricity via long subsea distances. This research proposes and investigates an innovative low-emission gas-to-wire alternative consisting of installing supercritical direct-methane-to-methanol upstream to gas-to-wire, which is embedded in an exhaust-gas recycle loop that reduces the subsequent carbon capture costs. The process exports methanol and electricity from remote offshore oil-and-gas fields with available CO2-rich natural gas, while capturing CO2. Techno-economic, thermodynamic and lost work analyses assess the alternative. Supercritical direct-methane-to-methanol is conducted in supercritical water with air. This route is chosen because supercritical water readily dissolves methanol and CO2, helping to preserve methanol via stabilization against further oxidation by gaseous air. Besides being novel, this process has intensification since it implements exhaust-gas recycle for –flue-gas reduction, CO2 abatement via post-combustion capture with aqueous monoethanolamine, CO2 dehydration with triethylene glycol and CO2 densification for enhanced oil recovery. The process is fed with 6.5 MMS m3/d of CO2-rich natural gas (CO2 > 40%mol) exporting methanol (2.2 t/h), electricity (457.1 MW) and dense CO2 for enhanced oil recovery, with an investment of 1544 MMUSD, 452 MMUSD/y in manufacturing costs and 820 MMUSD/y in revenues, reaching 1021 MMUSD net present value (50 years) and a 10 year payback time. The Second Law analysis reveals overall thermodynamic efficiency of 28%. The lost work analysis unveils the gas-combined-cycle sub-system as the major lost work sink (76% lost work share), followed by the post-combustion capture plant (14% lost work share), being the units that prominently require improvements for better economic and environmental performance. This work demonstrates that the newly proposed process is techno-economically feasible, environmentally friendly, thermodynamically efficient and competitive with the gas-to-wire processes in the literature. Full article
(This article belongs to the Special Issue Energy Process Systems Simulation, Modeling, Optimization and Design)
Show Figures

Figure 1

11 pages, 637 KiB  
Communication
Characterizing the Early Acidic Response in Advanced Small Modular Reactors Cooled with High-Temperature, High-Pressure Water
by Abida Sultana, Jintana Meesungnoen and Jean-Paul Jay-Gerin
Radiation 2024, 4(1), 26-36; https://doi.org/10.3390/radiation4010003 - 9 Feb 2024
Cited by 2 | Viewed by 1600
Abstract
Utilizing Monte Carlo multi-track chemistry simulations along with a cylindrical instantaneous pulse (Dirac) irradiation model, we assessed the initial acidic response in both subcritical and supercritical water under high radiation dose rates. This investigation spans a temperature range of 300 to 500 °C [...] Read more.
Utilizing Monte Carlo multi-track chemistry simulations along with a cylindrical instantaneous pulse (Dirac) irradiation model, we assessed the initial acidic response in both subcritical and supercritical water under high radiation dose rates. This investigation spans a temperature range of 300 to 500 °C at a nominal pressure of 25 MPa, aligning with the operational conditions anticipated in proposed supercritical water (SCW)-cooled small modular reactors (SCW-SMRs). A pivotal finding from our study is the observation of a significant ‘acid spike’ effect, which shows a notable intensification in response to increasing radiation dose rates. Our results bring to light the potential risks posed by this acidity, which could potentially foster a corrosive environment and thereby increase the risk of accelerated material degradation in reactor components. Full article
Show Figures

Figure 1

14 pages, 8992 KiB  
Article
Temperature and Reaction Time’s Effects on N80 Steel Corrosion Behavior in Supercritical CO2 and Formation Water Environments
by Hanwen Wang, Liwei Zhang, Manguang Gan, Xuebin Su, Yan Wang, Quan Xue, Kaiyuan Mei and Xiaojuan Fu
Appl. Sci. 2024, 14(2), 728; https://doi.org/10.3390/app14020728 - 15 Jan 2024
Cited by 1 | Viewed by 1746
Abstract
In the present study, an immersion experiment was carried out to examine how N80 steel corrodes when exposed to formation water containing dissolved CO2 and supercritical CO2 (Sc-CO2) along with water vapor. We employed electrochemical and surface analysis methods [...] Read more.
In the present study, an immersion experiment was carried out to examine how N80 steel corrodes when exposed to formation water containing dissolved CO2 and supercritical CO2 (Sc-CO2) along with water vapor. We employed electrochemical and surface analysis methods to examine the influence of various factors, including the temperature and duration of immersion, on the extent of corrosion. The results show that the corrosion patterns of N80 steel in a supercritical CO2 environment and CO2-saturated formation water differed significantly. The presence of similar corrosion features was suggested by the constant structure of the corrosion products identified in the formation water. However, the morphology of the corrosion product was complex in the supercritical CO2 environment, exhibiting features of pitting and localized corrosion. Furthermore, a non-linear trend in the corrosion rate was observed between 40 °C and 120 °C. Specifically, the rate of corrosion declined from 40 °C to 80 °C, but it then resumed its growth from 80 °C to 120 °C. These findings suggest that very high temperatures could lead to the destruction of corrosion products and subsequently enhance the corrosion process. Full article
Show Figures

Figure 1

42 pages, 6435 KiB  
Review
A Comprehensive Review on Carbon Dioxide Sequestration Methods
by Gregory Tarteh Mwenketishi, Hadj Benkreira and Nejat Rahmanian
Energies 2023, 16(24), 7971; https://doi.org/10.3390/en16247971 - 8 Dec 2023
Cited by 18 | Viewed by 5148
Abstract
Capturing and storing CO2 (CCS) was once regarded as a significant, urgent, and necessary option for reducing the emissions of CO2 from coal and oil and gas industries and mitigating the serious impacts of CO2 on the atmosphere and the [...] Read more.
Capturing and storing CO2 (CCS) was once regarded as a significant, urgent, and necessary option for reducing the emissions of CO2 from coal and oil and gas industries and mitigating the serious impacts of CO2 on the atmosphere and the environment. This recognition came about as a result of extensive research conducted in the past. The CCS cycle comes to a close with the last phase of CO2 storage, which is accomplished primarily by the adsorption of CO2 in the ocean and injection of CO2 subsurface reservoir formation, in addition to the formation of limestone via the process of CO2 reactivity with reservoir formation minerals through injectivities. CCS is the last stage in the carbon capture and storage (CCS) cycle and is accomplished chiefly via oceanic and subterranean geological sequestration, as well as mineral carbonation. The injection of supercritical CO2 into geological formations disrupts the sub-surface’s existing physical and chemical conditions; changes can occur in the pore fluid pressure, temperature state, chemical reactivity, and stress distribution of the reservoir rock. This paper aims at advancing our current knowledge in CO2 injection and storage systems, particularly CO2 storage methods and the challenges encountered during the implementation of each method and analyses on how key uncertainties in CCS can be reduced. CCS sites are essentially unified systems; yet, given the scientific context, these storage systems are typically split during scientific investigations based on the physics and spatial scales involved. Separating the physics by using the chosen system as a boundary condition is a strategy that works effectively for a wide variety of physical applications. Unfortunately, the separation technique does not accurately capture the behaviour of the larger important system in the case of water and gas flow in porous media. This is due to the complexity of geological subsurface systems, which prevents the approach from being able to effectively capture the behaviour of the larger relevant system. This consequently gives rise to different CCS technology with different applications, costs and social and environmental impacts. The findings of this study can help improve the ability to select a suitable CCS application method and can further improve the efficiency of greenhouse gas emissions and their environmental impact, promoting the process sustainability and helping to tackle some of the most important issues that human being is currently accounting global climate change. Though this technology has already had large-scale development for the last decade, some issues and uncertainties are identified. Special attention was focused on the basic findings achieved in CO2 storage operational projects to date. The study has demonstrated that though a number of CCS technologies have been researched and implemented to date, choosing a suitable and acceptable CCS technology is still daunting in terms of its technological application, cost effectiveness and socio-environmental acceptance. Full article
Show Figures

Figure 1

20 pages, 1766 KiB  
Review
Considerations on the Use of Active Compounds Obtained from Lavender
by Ana-Maria Tăbărașu, Dragoș-Nicolae Anghelache, Iuliana Găgeanu, Sorin-Ștefan Biriș and Nicolae-Valentin Vlăduț
Sustainability 2023, 15(11), 8879; https://doi.org/10.3390/su15118879 - 31 May 2023
Cited by 8 | Viewed by 5156
Abstract
Lavender is among the medicinal and aromatic plants with high economic value in the food, pharmaceutical, cosmetic and aromatherapeutic industries, and in its composition has numerous compounds, such as tannins, anthocyanins, minerals, saponins, flavonoids, polyphenols, essential oil and others. The qualitative and quantitative [...] Read more.
Lavender is among the medicinal and aromatic plants with high economic value in the food, pharmaceutical, cosmetic and aromatherapeutic industries, and in its composition has numerous compounds, such as tannins, anthocyanins, minerals, saponins, flavonoids, polyphenols, essential oil and others. The qualitative and quantitative characteristics of lavender are best highlighted by extraction techniques such as hydrodistillation, steam distillation and supercritical CO2 extraction. In the water distillation extraction method, the plants are soaked in water until boiling and steam is released, carrying the essential oils with it, which are then separated via cooling. Steam distillation is one of the most common methods used to extract essential oils from medicinal and aromatic plants. Unlike hydrodistillation, where the water is stored directly in a tank, in this method, the steam is transported into the tank from the outside and the oils are released from the plant components when the steam penetrates the structures that contain it. Essential oils contain essential compounds that have antioxidant, antimicrobial, anti-fungal, etc., properties. All the component parts of lavender contain essential oils, which are distributed as follows: in leaves at about 0.4%, in stems at about 0.2%, and in inflorescences at about 2–4.5%. Full article
(This article belongs to the Special Issue Sustainable Agriculture and Plant Biotechnology)
Show Figures

Figure 1

32 pages, 6254 KiB  
Review
Applications of Supercritical Water in Waste Treatment and Valorization: A Review
by Nadjiba Benmakhlouf, Nawel Outili, Belén García-Jarana, Jezabel Sánchez-Oneto, Juan R. Portela, Mejdi Jeguirim and Abdeslam-Hassen Meniai
Energies 2023, 16(4), 2081; https://doi.org/10.3390/en16042081 - 20 Feb 2023
Cited by 5 | Viewed by 4805
Abstract
The present review deals with water applications in sub and supercritical conditions with a focus on supercritical water oxidation process (SCWO) as an example of high temperature and pressure technologies. It starts by presenting the advantages of water properties near and beyond the [...] Read more.
The present review deals with water applications in sub and supercritical conditions with a focus on supercritical water oxidation process (SCWO) as an example of high temperature and pressure technologies. It starts by presenting the advantages of water properties near and beyond the critical point and the major applications exploiting them. Then, it presents a review on SCWO from the description of the process, the reaction mechanism and kinetics to reactor design and modeling. It also presents the main problems and difficulties that delay the SCWO industrial application, and summarizes the main efforts and research to overcome them for a safe, efficient and economic process. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

13 pages, 4839 KiB  
Article
3D Characterization of the Molecular Neighborhood of OH Radical in High Temperature Water by MD Simulation and Voronoi Polyhedra
by Lukasz Kazmierczak, Joanna Szala-Rearick and Dorota Swiatla-Wojcik
Int. J. Mol. Sci. 2023, 24(4), 3294; https://doi.org/10.3390/ijms24043294 - 7 Feb 2023
Viewed by 1944
Abstract
Understanding the properties of the OH radical in aqueous environments is essential for biochemistry, atmospheric chemistry, and the development of green chemistry technologies. In particular, the technological applications involve knowledge of microsolvation of the OH radical in high temperature water. In [...] Read more.
Understanding the properties of the OH radical in aqueous environments is essential for biochemistry, atmospheric chemistry, and the development of green chemistry technologies. In particular, the technological applications involve knowledge of microsolvation of the OH radical in high temperature water. In this study, the classical molecular dynamics (MD) simulation and the technique based on the construction of Voronoi polyhedra were used to provide 3D characteristics of the molecular vicinity of the aqueous hydroxyl radical (OHaq). The statistical distribution functions of metric and topological features of solvation shells represented by the constructed Voronoi polyhedra are reported for several thermodynamic states of water, including the pressurized high-temperature liquid and supercritical fluid. Calculations showed a decisive influence of the water density on the geometrical properties of the OH solvation shell in the sub- and supercritical region: with the decreasing density, the span and asymmetry of the solvation shell increase. We also showed that the 1D analysis based on the oxygen–oxygen radial distribution functions (RDFs) overestimates the solvation number of OH and insufficiently reflects the influence of transformations in the hydrogen-bonded network of water on the structure of the solvation shell. Full article
(This article belongs to the Special Issue Feature Papers in 'Physical Chemistry and Chemical Physics' 2023)
Show Figures

Figure 1

Back to TopTop