Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,924)

Search Parameters:
Keywords = structure reactivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 11428 KB  
Article
Cold Atmospheric Plasma Selectively Targets Neuroblastoma: Mechanistic Insights and In Vivo Validation
by Ligi Milesh, Bindu Nair, Ha M. Nguyen, Taylor Aiken, J. Leon Shohet and Hau D. Le
Cancers 2025, 17(21), 3432; https://doi.org/10.3390/cancers17213432 (registering DOI) - 25 Oct 2025
Abstract
Background: Neuroblastoma (NB) presents significant challenges in pediatric oncology, particularly in high-risk cases where local recurrence occurs in ~35% of patients. Cold Atmospheric Plasma (CAP) has emerged as a promising treatment due to its selective cytotoxicity toward cancer cells while sparing normal cells. [...] Read more.
Background: Neuroblastoma (NB) presents significant challenges in pediatric oncology, particularly in high-risk cases where local recurrence occurs in ~35% of patients. Cold Atmospheric Plasma (CAP) has emerged as a promising treatment due to its selective cytotoxicity toward cancer cells while sparing normal cells. Methods: This study assessed CAP efficacy using in vitro NB cell lines (SK-N-AS and LAN-5) and in vivo xenograft murine models. In vitro, CAP was applied via a helium jet, and cellular responses were evaluated for viability, reactive oxygen species (ROS), lipid peroxidation, DNA damage, and cell cycle, while apoptosis was measured by Annexin V/PI flow cytometry. In vivo, CAP was applied to unresected tumors and residual tumors after incomplete resection. Tumor regrowth was monitored, and histological analysis was performed. Results: CAP reduced NB cell viability in a dose- and time-dependent manner by increasing intracellular ROS and lipid peroxidation. CAP-treated NB cells showed a 50% rise in oxidative DNA damage, a two-fold increase in apoptosis, and alterations in cell-cycle progression, while normal fibroblasts showed modest effects. CAP predominantly induced apoptosis, though secondary necrosis appeared with prolonged exposures, consistent with caspase-3 and PARP pathways. In xenografts, CAP reduced tumor diameter by 60% and increased caspase-3-positive cells, with minimal effects on normal tissue. Conclusions: CAP demonstrates strong therapeutic potential as a targeted, non-invasive NB treatment, particularly for residual tumors near vascular structures with consistent exposure times (60–300 s). Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

14 pages, 2092 KB  
Article
Toxicity of Tris(2-chloroethyl) Phosphate (TCEP) to Alfalfa’s Root System: An Insight into TCEP’s Damage to Morphology, Respiration, and Antioxidant Systems
by Meijun Liu, Liangzhu Gong, An Yan, Wenjing Liu, Haojie Li and Peiyi Guo
Agronomy 2025, 15(11), 2483; https://doi.org/10.3390/agronomy15112483 (registering DOI) - 25 Oct 2025
Abstract
Tris(2-chloroethyl) phosphate (TCEP), as an organophosphate contaminant, poses a significant threat to the growth and development of plants, especially roots. This study aimed to clarify the mechanisms of TCEP’s toxicity and damage to root systems, as well as the mechanisms of its damage [...] Read more.
Tris(2-chloroethyl) phosphate (TCEP), as an organophosphate contaminant, poses a significant threat to the growth and development of plants, especially roots. This study aimed to clarify the mechanisms of TCEP’s toxicity and damage to root systems, as well as the mechanisms of its damage to the respiration and energy metabolism of alfalfa root cells. The results showed that TCEP obviously affected the root length, root surface area, root volume, and root diameter of alfalfa. With increasing stress intensity, the total mitochondrial respiration rate and Cytochrome C Oxidase (COX) pathway respiration rate progressively declined, while the Alternative Oxidase (AOX) pathway respiration rate and its proportion of total respiration gradually rose. In addition, adenosine triphosphate (ATP) content and root vigor were significantly reduced. Moreover, with an increase in TCEP concentration, root superoxide anion radical content in alfalfa root cells was significantly elevated, while superoxide dismutase (SOD) and catalase (CAT) activities were significantly lowered, and ascorbate peroxidase (APX) and peroxidase (POD) activities were significantly enhanced. The present study indicated that respiration was disrupted, causing a lack of ATP in root cells under TCEP. Both the overproduction of reactive oxygen species (ROS) from the mitochondrial respiratory electron transport chain (mECT) and the deficiency of ROS-scavenging enzymes caused ROS accumulation, which led to the destruction of the cell membrane structure and exacerbated the disruption of the respiratory metabolism. The disruption of the conversion and reuse of energy by TCEP affected root growth and development. Full article
Show Figures

Figure 1

22 pages, 7889 KB  
Article
Structure and Properties of Hard, Wear-Resistant Cr-Al-Si-B-(N) Coatings Obtained by Magnetron Sputtering of Ceramic Composite Targets
by Philipp Kiryukhantsev-Korneev, Alina Chertova, Yury Pogozhev and Evgeny Levashov
Coatings 2025, 15(11), 1243; https://doi.org/10.3390/coatings15111243 (registering DOI) - 25 Oct 2025
Abstract
Hard Cr-Al-Si-B-(N) coatings were deposited in Ar and Ar–15%N2 medium by d.c. magnetron sputtering of composite targets manufactured using self-propagating high-temperature synthesis. The structure of the coatings was studied by X-ray diffraction, scanning and transmission electron microscopy, energy dispersion spectroscopy, and glow [...] Read more.
Hard Cr-Al-Si-B-(N) coatings were deposited in Ar and Ar–15%N2 medium by d.c. magnetron sputtering of composite targets manufactured using self-propagating high-temperature synthesis. The structure of the coatings was studied by X-ray diffraction, scanning and transmission electron microscopy, energy dispersion spectroscopy, and glow discharge optical emission spectroscopy. The coating properties were determined by nanoindentation, scratch testing, and tribological pin-on-disc testing at room and elevated temperatures. The oxidation resistance and diffusion barrier properties of the coatings were also evaluated. The results obtained showed that non-reactive coatings had a coarse crystalline structure and contained Cr5Si3, CrBx, and Cr2Al phases. The introduction of nitrogen into the coating composition promoted crystallite refinement and structural amorphization. Non-reactive CrAl4Si11B21 coatings had a maximum hardness up to 29 GPa and an elastic modulus up to 365 GPa. The introduction of nitrogen into the coating composition resulted in a 16–32% reduction in mechanical properties. The CrAl6Si12B5N25 coating, which exhibited maximal plasticity index H/E = 0.100 and resistance to plastic deformation H3/E2 = 0.247 GPa, was characterized by a minimum wear rate Vw = 5.7 × 10−6 mm3N−1m−1 and a friction coefficient of 0.47. While the CrAl18Si11B5N26 coating demonstrated a record level of oxidation resistance and successfully resisted oxidation up to a temperature of 1300 °C. Full article
Show Figures

Figure 1

13 pages, 8025 KB  
Article
Geopolymer Materials for Additive Manufacturing: Chemical Stability, Leaching Behavior, and Radiological Safety
by Bahar Gharehpapagh, Meike Denker, Szymon Gadek, Richard Gruhn, Thomas Grab, Kinga Korniejenko and Henning Zeidler
Materials 2025, 18(21), 4886; https://doi.org/10.3390/ma18214886 (registering DOI) - 24 Oct 2025
Abstract
Geopolymers are inorganic aluminosilicate binders formed by alkali activation of reactive powders, offering a sustainable, low-carbon alternative to Portland cement. Their rapid setting and chemical durability make them well-suited for additive manufacturing (AM) in demanding environments, including underwater construction, where chemical stability is [...] Read more.
Geopolymers are inorganic aluminosilicate binders formed by alkali activation of reactive powders, offering a sustainable, low-carbon alternative to Portland cement. Their rapid setting and chemical durability make them well-suited for additive manufacturing (AM) in demanding environments, including underwater construction, where chemical stability is essential for both structural integrity and environmental safety. This study evaluates two metakaolin-based formulations designed for underwater extrusion, differing in activator chemistry and rheology control. Standardized leaching tests revealed alkaline but stable leachates with strong immobilization of most ions; major anions and total dissolved solids remained within regulatory thresholds. Limited exceedances were observed—soluble organic carbon in the NaOH-activated mix and arsenic/selenium in the waterglass–sand system—highlighting specific areas for mix improvement rather than fundamental limitations of the material. Complementary radioactivity screening confirmed activity concentration indices well below the regulatory limit, with measured radionuclide activities falling comfortably within exemption ranges. Together, the leaching and radioactivity results demonstrate that both formulations provide robust matrix integrity and environmental compatibility, while highlighting clear opportunities for mix design improvements to further minimize ecological risks. Full article
(This article belongs to the Special Issue Geopolymers and Fiber-Reinforced Concrete Composites (Second Edition))
Show Figures

Figure 1

22 pages, 1467 KB  
Article
Reactivity of Curcumin: Theoretical Insight from a Systematic Density Functional Theory-Based Review
by Marcin Molski
Int. J. Mol. Sci. 2025, 26(21), 10374; https://doi.org/10.3390/ijms262110374 (registering DOI) - 24 Oct 2025
Abstract
A comprehensive analysis of key findings derived from density functional theory (DFT) studies reveals that current theoretical data on curcumin remain incomplete, underscoring the need for further computational investigation to achieve a more thorough understanding of its chemical and biological reactivity. This study [...] Read more.
A comprehensive analysis of key findings derived from density functional theory (DFT) studies reveals that current theoretical data on curcumin remain incomplete, underscoring the need for further computational investigation to achieve a more thorough understanding of its chemical and biological reactivity. This study addresses these gaps through four primary objectives: (i) determination of a complete set of thermodynamic descriptors and elucidation of the multi-step anti-radical mechanisms of the neutral, radical, anionic, and radical–anionic forms of curcumin; (ii) calculation of global chemical reactivity descriptors of curcumin in various solvent environments; (iii) theoretical reproduction of experimentally determined pKa values for all active sites within the molecule; and (iv) examination of the effects of dispersion interactions and solvent polarity on the reactivity descriptors of keto–enol forms of curcumin. The results obtained provide enhanced insight into the molecular behavior of curcumin, facilitating improved predictions of its reactivity under diverse conditions. Moreover, the findings indicate a potential structural modification of the keto form of curcumin, involving the attachment of two 4-hydroxy-3-methoxyphenyl-prop-1-en-2-one moieties to the methylene group. The resulting modeled compound, referred to as di-curcumin, exhibits enhanced chemical reactivity and increased anti-radical potential. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

29 pages, 4966 KB  
Article
Structure–Property Relationships in Epoxy–Anhydride Systems: A Comprehensive Comparative Study of Cycloaliphatic, Novolac, and Aromatic Prepolymers
by Stephane Patry, Alban Asseray, Mickaël Berne, Valéry Loriot, Luc Loriot and Jean-Pierre Habas
Polymers 2025, 17(21), 2843; https://doi.org/10.3390/polym17212843 (registering DOI) - 24 Oct 2025
Abstract
This study provides a comprehensive quantitative comparison of three structurally distinct epoxy prepolymers—cycloaliphatic, novolac, and bis-aromatic (BADGE)—cured with a single hardener, methyl nadic anhydride (MNA), and catalyzed by 1-methylimidazole under strictly identical stoichiometric and thermal conditions. Each formulation was optimized in terms of [...] Read more.
This study provides a comprehensive quantitative comparison of three structurally distinct epoxy prepolymers—cycloaliphatic, novolac, and bis-aromatic (BADGE)—cured with a single hardener, methyl nadic anhydride (MNA), and catalyzed by 1-methylimidazole under strictly identical stoichiometric and thermal conditions. Each formulation was optimized in terms of epoxy/anhydride ratio and catalyst concentration to ensure meaningful cross-comparison under representative cure conditions. A multi-technique approach combining differential scanning calorimetry (DSC), dynamic rheometry, and thermogravimetric analysis (TGA) was employed to jointly assess cure kinetics, network build-up, and long-term thermal stability. DSC analyses provided reaction enthalpies and glass transition temperatures (Tg) ranging from 145 °C (BADGE-MNA) to 253 °C (cycloaliphatic ECy-MNA) after stabilization of the curing reaction under the chosen thermal protocol, enabling experimental fine-tuning of stoichiometry beyond the theoretical 1:1 ratio. Isothermal rheology revealed gel times of approximately 14 s for novolac, 16 s for BADGE, and 20 s for the cycloaliphatic system at 200 °C, defining a clear hierarchy of reactivity (Novolac > BADGE > ECy). Post-cure thermomechanical performance and thermal aging resistance (100 h at 250 °C) were assessed via rheometry and TGA under both dynamic and isothermal conditions. They demonstrated that the novolac-based resin retained approximately 93.7% of its initial mass, confirming its outstanding thermo-oxidative stability. The three systems exhibited distinct trade-offs between reactivity and thermal resistance: the novolac resin showed superior thermal endurance but, owing to its highly aromatic and rigid structure, limited flowability, while the cycloaliphatic resin exhibited greater molecular mobility and longer pot life but reduced stability. Overall, this work provides a comprehensive and quantitatively consistent benchmark, consolidating stoichiometric control, DSC and rheological reactivity, Tg evolution, thermomechanical stability, and degradation behavior within a single unified experimental framework. The results offer reliable reference data for modeling, formulation, and possible use of epoxy–anhydride thermosets at temperatures above 200 °C. Full article
(This article belongs to the Special Issue Epoxy Resins and Epoxy-Based Composites: Research and Development)
Show Figures

Graphical abstract

13 pages, 640 KB  
Review
Methylglyoxal, a Knot to Be Untied in Brain Glucose Hypometabolism
by Vitor Gayger-Dias, Vanessa-Fernanda Da Silva, Thomas Michel Sobottka, Marina Concli Leite, Adriana Fernanda K. Vizuete and Carlos-Alberto Gonçalves
Metabolites 2025, 15(11), 690; https://doi.org/10.3390/metabo15110690 (registering DOI) - 24 Oct 2025
Abstract
Background: Advanced glycation end products (AGEs) and receptors for AGEs (RAGE) have been extensively implicated in metabolic and neurodegenerative disorders due to their capacity to alter protein structure and function through non-enzymatic glycation. More recently, methylglyoxal (MG), a highly reactive glycolytic byproduct, has [...] Read more.
Background: Advanced glycation end products (AGEs) and receptors for AGEs (RAGE) have been extensively implicated in metabolic and neurodegenerative disorders due to their capacity to alter protein structure and function through non-enzymatic glycation. More recently, methylglyoxal (MG), a highly reactive glycolytic byproduct, has gained attention as a critical mediator of AGE formation and an independent contributor to cellular distress, particularly in the context of diabetes mellitus and Alzheimer’s disease. Objectives: This review synthesizes evidence from experimental and clinical studies addressing MG generation and metabolism in brain tissue, emphasizing the glyoxalase system as the primary detoxification mechanism, the functional contribution of astrocytes, and the downstream consequences of MG accumulation. In addition, we examined the interplay between MG, RAGE signaling, unfolded protein response, and regulatory mechanisms involving the hexosamine biosynthesis pathway and O-GlcNAcylation of key proteins in glucose metabolism and insulin signaling. Results and Conclusions: Brain glucose hypometabolism is a consequence of insulin resistance and results in a metabolic rearrangement that expands the glycolytic pathway and generates more MG, which, in turn, can affect insulin signaling, further compromising the molecular basis of insulin resistance and creating a vicious cycle. Astrocytes are key cells in the generation and detoxification of MG in the brain, making them a therapeutic target. Full article
(This article belongs to the Special Issue Metabolic Profiling in Neurometabolisms)
Show Figures

Graphical abstract

17 pages, 4691 KB  
Article
Vitamin B12 Protects the Exacerbated Ischemia–Reperfusion Injury-Induced Chronic Kidney Disease in Mice with Genetically Increased Elmo1
by Jiayi Zhou, Yuye Wang, John Hagaman, Qing Ma, J. Charles Jennette, Meitong Chen, Xianwen Yi, Yukako Kayashima, Nobuyo Maeda-Smithies and Feng Li
Antioxidants 2025, 14(11), 1277; https://doi.org/10.3390/antiox14111277 (registering DOI) - 24 Oct 2025
Abstract
Ischemia–reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI) and a major driver of progression to chronic kidney disease (CKD). Oxidative stress is recognized as a central mediator of this transition. Engulfment and Cell Motility 1 (ELMO1) regulates cytoskeletal remodeling [...] Read more.
Ischemia–reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI) and a major driver of progression to chronic kidney disease (CKD). Oxidative stress is recognized as a central mediator of this transition. Engulfment and Cell Motility 1 (ELMO1) regulates cytoskeletal remodeling and reactive oxygen species generation through Rac1 activation, but its contribution to CKD progression remains poorly defined. To investigate this, we established a unilateral renal IRI model in wild-type (WT) and Elmo1-overexpressing (Elmo1H/H) mice and evaluated kidney function one and four months post-IRI. Compared with WT, Elmo1H/H mice developed more severe kidney dysfunction, including an elevated plasma cystatin C and urinary albumin-to-creatinine ratio, reduced estimated glomerular filtration rate (eGFR), and pronounced fibrosis and glomerular injury observed by light and electron microscopy. Molecular analysis confirmed the dysregulation of redox-related pathways by RT-qPCR, with RNA sequencing showing enrichment of oxidative stress signatures. A subset of mice received chronic vitamin B12 (B12) supplementation following IRI to evaluate its therapeutic potential. Vitamin B12 supplementation improved kidney function, reduced fibrosis, preserved glomerular structure, and normalized the expression of antioxidant genes in both groups. These findings identify Elmo1 as a driver of redox-mediated kidney injury and support vitamin B12 as a promising antioxidant therapy for AKI-to-CKD progression. Full article
(This article belongs to the Special Issue Targeting Oxidative Stress in Ischemia/Reperfusion Injury)
Show Figures

Graphical abstract

17 pages, 3747 KB  
Article
Drug Repurposing for AML: Structure-Based Virtual Screening and Molecular Simulations of FDA-Approved Compounds with Polypharmacological Potential
by Mena Abdelsayed and Yassir Boulaamane
Biomedicines 2025, 13(11), 2605; https://doi.org/10.3390/biomedicines13112605 (registering DOI) - 24 Oct 2025
Viewed by 21
Abstract
Background: Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by impaired differentiation, apoptosis resistance, and metabolic reprogramming, which collectively contribute to therapeutic resistance and poor clinical outcomes. While targeted agents—such as LSD1 inhibitors, the BCL-2 inhibitor venetoclax, and IDH1 inhibitors—have provided [...] Read more.
Background: Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by impaired differentiation, apoptosis resistance, and metabolic reprogramming, which collectively contribute to therapeutic resistance and poor clinical outcomes. While targeted agents—such as LSD1 inhibitors, the BCL-2 inhibitor venetoclax, and IDH1 inhibitors—have provided clinical benefit, their efficacy is often limited by compensatory signaling and clonal evolution. This study aimed to identify FDA-approved compounds with multitarget potential to simultaneously modulate key epigenetic, apoptotic, and metabolic pathways in AML. Methods: Structure-based virtual screening of 3957 FDA-approved molecules was performed against three AML-relevant targets: lysine-specific demethylase 1 (LSD1), BCL-2, and mutant IDH1 (R132H). Top-ranked hits were evaluated using ADMET prediction and molecular dynamics (MD) simulations to assess pharmacokinetic properties, toxicity, and ligand–protein complex stability over 100 ns trajectories. Results: Three compounds—DB16703, DB08512, and DB16047—exhibited high binding affinities across all three targets with favorable pharmacokinetic and safety profiles. MD simulations confirmed the structural stability of the ligand–protein complexes, revealing persistent hydrogen bonding and minimal conformational deviation. These findings suggest that these repurposed drugs possess a promising multitarget profile capable of addressing AML’s multifactorial pathophysiology. Conclusions: This computational study supports the feasibility of a polypharmacology-based strategy for AML therapy by integrating epigenetic modulation, apoptotic reactivation, and metabolic correction within single molecular scaffolds. However, the identified compounds (Belumosudil, DB08512, and Elraglusib) have not yet demonstrated efficacy in AML models; further preclinical validation is warranted to substantiate these predictions and advance translational development. Full article
Show Figures

Figure 1

17 pages, 38400 KB  
Article
Chlorogenic Acid Alleviates Chronic Stress-Induced Ileal Oxidative Stress and Apoptosis in Rats by Influencing Intestinal Flora and Activating Nrf2 Pathway
by Wenjing Jiao, Haoyang Tan, Xin Cheng, Tianyuan Yang, Xuanpan Ding, Yaxin Ji, Haotian Yang, Jichen Sha, Guofeng Feng, Yuan Zhao and Honggang Fan
Biology 2025, 14(11), 1483; https://doi.org/10.3390/biology14111483 (registering DOI) - 24 Oct 2025
Viewed by 34
Abstract
Background: Chronic stress is implicated in the pathogenesis of gastrointestinal disorders, with reactive oxygen species (ROS) contributing significantly. Chlorogenic acid (CGA), a polyphenolic compound, exhibits antioxidant properties. This study investigated whether CGA mitigates ROS-mediated oxidative stress and apoptosis in chronic stress-induced ileal injury. [...] Read more.
Background: Chronic stress is implicated in the pathogenesis of gastrointestinal disorders, with reactive oxygen species (ROS) contributing significantly. Chlorogenic acid (CGA), a polyphenolic compound, exhibits antioxidant properties. This study investigated whether CGA mitigates ROS-mediated oxidative stress and apoptosis in chronic stress-induced ileal injury. Methods: Rats were subjected to restraint stress for 21 days, with/without CGA (100 mg/kg, gavage). CGA’s mechanism was elucidated by assessing ileal flora, oxidative stress markers, apoptosis, structural changes, and the Nrf2 pathway. Results: CGA restored ileal structure, attenuated ROS and MDA levels, elevated GSH and SOD levels, and reduced apoptosis-associated proteins. CGA stabilized conformation bound to Keap1, deregulating Keap1’s negative regulation of Nrf2, thereby increasing Nrf2 and downstream protein expression (HO-1 and NQO1). Gut microbiota imbalance was corrected, with increased Lactobacillus abundance post-CGA intervention. Conclusions: CGA alleviates chronic stress-induced ileal oxidative stress and apoptosis, which relates closely to Nrf2 pathway activation and modulation of intestinal microflora. Full article
(This article belongs to the Section Microbiology)
Show Figures

Graphical abstract

22 pages, 6008 KB  
Review
Mitochondrial Dynamics in Aging Heart
by Pankaj Patyal, Gohar Azhar, Ambika Verma, Shakshi Sharma, Jyotsna Shrivastava, Sayed Aliul Hasan Abdi, Xiaomin Zhang and Jeanne Y. Wei
Biomedicines 2025, 13(11), 2603; https://doi.org/10.3390/biomedicines13112603 - 24 Oct 2025
Viewed by 63
Abstract
Aging is a major risk factor for cardiovascular disease, driving progressive structural and functional decline of the myocardium. Mitochondria, the primary source of ATP through oxidative phosphorylation, are essential for cardiac contractility, calcium homeostasis, and redox balance. In the aging heart, mitochondria show [...] Read more.
Aging is a major risk factor for cardiovascular disease, driving progressive structural and functional decline of the myocardium. Mitochondria, the primary source of ATP through oxidative phosphorylation, are essential for cardiac contractility, calcium homeostasis, and redox balance. In the aging heart, mitochondria show morphological alterations including cristae disorganization, swelling, and fragmentation, along with reduced OXPHOS efficiency. These defects increase proton leak, lower ATP production, and elevate reactive oxygen species (ROS), causing oxidative damage. Concurrent disruptions in mitochondrial fusion and fission further impair turnover and quality control, exacerbating mitochondrial dysfunction and cardiac decline. Serum response factor (SRF) signaling, a crucial regulator of cytoskeletal and metabolic gene expression, plays a key role in modulating mitochondrial function during cardiac aging. Dysregulation of SRF impairs mitochondrial adaptability, contributing to dysfunction. Additionally, reduced levels of nicotinamide adenine dinucleotide (NAD+) hinder sirtuin-dependent deacetylation, further compromising mitochondrial efficiency and stress resilience. These cumulative defects activate regulated cell death pathways, leading to cardiomyocyte loss, fibrosis, and impaired diastolic function. Mitochondrial dysfunction therefore serves as both a driver and amplifier of cardiac aging, accelerating the transition toward heart failure. This narrative review aims to provide a comprehensive overview of mitochondrial remodeling in the aging myocardium, examining the mechanistic links between mitochondrial dysfunction and myocardial injury. We also discuss emerging therapeutic strategies targeting mitochondrial bioenergetics and quality control as promising approaches to preserve cardiac function and extend cardiovascular health span in the aging population. Full article
Show Figures

Figure 1

12 pages, 2948 KB  
Article
Molecular Mimicry Between Toxoplasma gondii B-Cell Epitopes and Human Antigens Related to Schizophrenia: An In Silico Approach
by Juan F. Cano, Maria Andrea Bernal-Valencia, Pablo Vargas-Acevedo, Germán Mejía-Salgado, Andrés Sánchez, Oscar Correa-Jiménez, Marlon Múnera and Alejandra de-la-Torre
Int. J. Mol. Sci. 2025, 26(21), 10321; https://doi.org/10.3390/ijms262110321 - 23 Oct 2025
Viewed by 132
Abstract
Schizophrenia is a complex disorder influenced by genetic, neurobiological, and environmental factors, with increasing evidence implicating immune dysregulation. This study examined potential molecular mimicry between autoantigens associated with schizophrenia and proteins from Toxoplasma gondii, a parasite previously linked to the disorder. Amino [...] Read more.
Schizophrenia is a complex disorder influenced by genetic, neurobiological, and environmental factors, with increasing evidence implicating immune dysregulation. This study examined potential molecular mimicry between autoantigens associated with schizophrenia and proteins from Toxoplasma gondii, a parasite previously linked to the disorder. Amino acid sequences of schizophrenia-related autoantigens were retrieved from databases (AAgAtlas, PubMed), and homologous sequences were searched within the T. gondii proteome. Sequence identity was evaluated, and conserved B-cell epitopes were predicted using three-dimensional structures from the Protein Data Bank or models generated in Swiss-Model, followed by epitope mapping with ElliPro. Five autoantigens—gamma-enolase (ENO2), thyroid peroxidase (TPO), glutamic acid decarboxylase 65 kDa isoform (GAD65), serine/threonine-protein kinase 2 (VRK2), and dihydropyrimidine dehydrogenase [NADP(+)] (DPYD)—showed similarities with T. gondii proteins. Among them, enolase exhibited the highest homology, with identities up to 65%. These findings provide preliminary evidence of shared antigenic features between the parasite and schizophrenia-related autoantigens. Such mimicry could contribute to disease mechanisms by triggering autoimmune responses in genetically susceptible individuals, supporting the hypothesis that T. gondii infection may influence schizophrenia pathogenesis. Nonetheless, the results are based exclusively on in silico analyses, and experimental validation will be required to confirm potential cross-reactivity. Full article
(This article belongs to the Special Issue Emerging Biological and Molecular Targets in Schizophrenia)
Show Figures

Graphical abstract

17 pages, 987 KB  
Review
Chromatin Regulation of HSV Gene Transcription
by Yuxuan Zheng, Juncheng Zhang and Dongli Pan
Viruses 2025, 17(11), 1409; https://doi.org/10.3390/v17111409 - 23 Oct 2025
Viewed by 231
Abstract
Herpes simplex virus (HSV) has a complicated life cycle including stages of primary lytic infection, latent infection, and reactivation. Although the HSV genomic DNA within the viral capsid is devoid of histones, it rapidly associates with histones upon entering the nucleus to form [...] Read more.
Herpes simplex virus (HSV) has a complicated life cycle including stages of primary lytic infection, latent infection, and reactivation. Although the HSV genomic DNA within the viral capsid is devoid of histones, it rapidly associates with histones upon entering the nucleus to form viral chromatin. This chromatin is not integrated into the host chromosome and displays features distinct from the cellular chromatin. The composition, structure, and post-translational modifications of the HSV chromatin change over the course of infection due to the actions of numerous viral and host molecules. In turn, the chromatin states influence the transcription profiles of viral genes at all stages of the viral life cycle and may dictate the outcomes of the lytic-latent balance. These mechanisms may be exploited to develop new antiviral therapeutics. This review summarizes current knowledge about the formation, regulation, and functions of the HSV chromatin and discusses the questions remaining to be answered. Full article
(This article belongs to the Special Issue Herpesvirus Transcriptional Control)
Show Figures

Figure 1

24 pages, 6444 KB  
Article
Development of Photo-Active Chitosan-Based Films with Riboflavin for Enhanced Antimicrobial Food Packaging Applications
by Jessica Genovese, Daniele Maria Martins, Tiziana Silvetti, Milena Brasca, Daniela Fracassetti, Gigliola Borgonovo, Stefania Mazzini and Sara Limbo
Molecules 2025, 30(21), 4166; https://doi.org/10.3390/molecules30214166 - 23 Oct 2025
Viewed by 217
Abstract
This study reports the development of chitosan-based (CS) films incorporating riboflavin (RF) as a natural photosensitizer to create sustainable, light-activated antimicrobial packaging materials. The films were prepared by solvent casting, and their photochemical behavior under blue LED light (450 nm) was investigated, including [...] Read more.
This study reports the development of chitosan-based (CS) films incorporating riboflavin (RF) as a natural photosensitizer to create sustainable, light-activated antimicrobial packaging materials. The films were prepared by solvent casting, and their photochemical behavior under blue LED light (450 nm) was investigated, including RF photodegradation kinetics and structural changes in the film-forming solution analyzed by 1H NMR spectroscopy. Mechanical, thermal, optical, and barrier properties were also characterized to assess packaging suitability. Upon illumination, CS/RF films generated reactive oxygen species, particularly singlet oxygen (1O2), leading to visible color changes and significant antimicrobial activity against Pseudomonas fluorescens. Bacterial growth was reduced by up to 97% after 120 min of irradiation (0.92 J cm−2), with efficacy observed at both room temperature and 4 °C. The incorporation of RF did not alter the films’ mechanical properties, while thermal stability was preserved, optical transparency was modulated, and excellent oxygen barrier performance was maintained, although water vapor permeability remained moderate. These findings demonstrate that CS/RF films combine functionality and sustainability, offering a promising strategy for extending food shelf life through light-activated antimicrobial action. Validation under real storage conditions is recommended to confirm their potential in diverse food systems. Full article
(This article belongs to the Special Issue Development of Food Packaging Materials)
Show Figures

Graphical abstract

25 pages, 1324 KB  
Review
Mechanical Properties of Endothelial Cells: A Key to Physiology, Drug Testing and Nanostructure Interaction
by Agnieszka Maria Kołodziejczyk, Łukasz Kołodziejczyk and Bolesław Karwowski
Cells 2025, 14(21), 1659; https://doi.org/10.3390/cells14211659 - 23 Oct 2025
Viewed by 287
Abstract
This article explores the application of atomic force spectroscopy in in vitro studies of endothelial cells. In this technique, derived from the atomic force microscopy, the AFM probe is employed as a nanoindenter. This review aims to discuss the nanomechanical properties of endothelial [...] Read more.
This article explores the application of atomic force spectroscopy in in vitro studies of endothelial cells. In this technique, derived from the atomic force microscopy, the AFM probe is employed as a nanoindenter. This review aims to discuss the nanomechanical properties of endothelial cells alongside selected biological parameters used to determine their physiological state. Changes in cellular elasticity are analyzed in the context of an intracellular mechanism involving nitric oxide, prostacyclin, calcium ions and reactive oxygen species levels. The manuscript compiles various articles on endothelial cells, assessing the impact of different agents such as drugs, cytokines and nanostructures. The review article addresses the endothelial dysfunction model, which is based on alteration in the mechanical properties of the cells, and explains how this model is used for potential drug testing. The next part of the study evaluates the toxic effects of nanostructures on endothelial cells. Additionally, the article addresses the finite element method, a promising new approach for modeling and simulating the behavior of cells treated as a multi-layered structure. Full article
Show Figures

Figure 1

Back to TopTop