Development of Photo-Active Chitosan-Based Films with Riboflavin for Enhanced Antimicrobial Food Packaging Applications
Abstract
1. Introduction
2. Results and Discussion
2.1. Riboflavin Behavior and Kinetics Under Light Exposure
2.2. CS/RF Film as Potential Food Packaging Material
2.3. Singlet Oxygen Production During Visible Light Exposure
2.4. Antimicrobial Activity of CS/RF Films: In Vitro Evaluation
3. Materials and Methods
3.1. Reagents
3.2. Preparation of Film-Forming Solutions and Films
3.3. Photodynamic Treatment of Film-Forming Solutions and Films
3.4. Study of Riboflavin Photodegradation in Film-Forming Solutions
3.4.1. UV/Vis Spectral Absorbance
3.4.2. NMR Measurements
3.5. Determination of Singlet Oxygen Production in Film-Forming Solutions and Films
3.6. Characterization of the Films
3.6.1. Color
3.6.2. Transmittance Analysis
3.6.3. Thickness
3.6.4. SEM Analysis
3.6.5. Thermal Properties
3.6.6. Barrier Properties
3.6.7. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)
3.6.8. Mechanical Properties
3.7. In Vitro Antibacterial Activity and Image Analysis
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RF | Riboflavin |
CS | Chitosan |
CS/RF | Chitosan/Riboflavin |
PDI | Photodynamic Inactivation |
ROS | Reactive Oxygen Species |
1O2 | Singlet Oxygen |
S0 | ground state |
S1 | singlet state |
T1 | triplet state |
LED | Light-Emitting Diode |
ADMA | 9,10-anthracenediyl-bis (methylene)dimalonic acid |
CDRF | cyclodehydroriboflavin |
LC | lumichrome |
LF | lumiflavin |
FMF | formylmethylflavin |
UV/Vis | Ultraviolet–Visible spectroscopy |
1H NMR | Proton Nuclear Magnetic Resonance spectroscopy |
SEM | Scanning Electron Microscopy |
TGA | Thermogravimetric Analysis |
ATR-FTIR | Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy |
O2TR | Oxygen Transmission Rate |
WVTR | Water Vapor Transmission Rate |
KP | Permeability coefficient |
∆E | Total color change |
YI | Yellowness Index |
O | Opacity |
RGB | Red–Green–Blue color space |
CFUs | Colony-forming Units |
References
- Yuan, Y.; Liu, Q.; Huang, Y.; Qi, M.; Yan, H.; Li, W.; Zhuang, H. Antibacterial Efficacy and Mechanisms of Curcumin-Based Photodynamic Treatment against Staphylococcus Aureus and Its Application in Juices. Molecules 2022, 27, 7136. [Google Scholar] [CrossRef] [PubMed]
- Munir, Z.; Banche, G.; Cavallo, L.; Mandras, N.; Roana, J.; Pertusio, R.; Ficiarà, E.; Cavalli, R.; Guiot, C. Exploitation of the Antibacterial Properties of Photoactivated Curcumin as ‘Green’ Tool for Food Preservation. Int. J. Mol. Sci. 2022, 23, 2600. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Zhu, S.; Liu, Y.; Song, Y.; Xue, F.; Xiong, X.; Li, C. Photodynamic Effect of Riboflavin on Chitosan Coatings and the Application in Pork Preservation. Molecules 2022, 27, 1355. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Wynands, E.; Roche, S.M.; Romo-Bernal, C.; Allan, N.; Olson, M.; Levengood, S.; Andersen, R.; Loebel, N.; Sabino, C.P.; et al. Photodynamic Inactivation of Foodborne Bacteria: Screening of 32 Potential Photosensitizers. Foods 2024, 13, 453. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J.; Xu, C.; Lu, N.; Gao, Y.; Xue, Y.; Li, Z.; Xue, C.; Tang, Q. Inactivation of Microbes on Fruit Surfaces Using Photodynamic Therapy and Its Influence on the Postharvest Shelf-Life of Fruits. Food Sci. Technol. Int. 2020, 26, 696–705. [Google Scholar] [CrossRef]
- Dong, D.L.; Du, W.Q.; Wu, X.Y.; Lin, S.L.; Riley, W.W.; Tang, S.Z. Photodynamic Inactivation Effects on Foodborne Pathogens and Its Application in Food Products. Trends Photochem. Photobiol. 2021, 20, 1. [Google Scholar] [CrossRef]
- Farah, N.; Chin, V.K.; Chong, P.P.; Lim, W.F.; Lim, C.W.; Basir, R.; Chang, S.K.; Lee, T.Y. Riboflavin as a Promising Antimicrobial Agent? A Multi-Perspective Review. Curr. Res. Microb. Sci. 2022, 3, 100111. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, P.; Chen, R.; Cai, X.; Zhang, W.; Fan, P.; Su, J. A Review of Curcumin-Mediated Photodynamic Bactericidal Technology for Food Preservation: Limitations and Improvement Strategies. Food Microbiol. 2025, 131, 104802. [Google Scholar] [CrossRef]
- Gao, S.; Tang, G.; Hua, D.; Xiong, R.; Han, J.; Jiang, S.; Zhang, Q.; Huang, C. Stimuli-Responsive Bio-Based Polymeric Systems and Their Applications. J. Mater. Chem. B 2019, 7, 709–729. [Google Scholar] [CrossRef]
- Wang, M.; Nian, L.; Wu, J.; Cheng, S.; Yang, Z.; Cao, C. Visible Light-Responsive Chitosan/Sodium Alginate/QDs@ZIF-8 Nanocomposite Films with Antibacterial and Ethylene Scavenging Performance for Kiwifruit Preservation. Food Hydrocoll. 2023, 145, 109073. [Google Scholar] [CrossRef]
- Guo, J.; Rawdkuen, S.; Zhang, W.; Kingwascharapong, P.; Xia, G. Research Progress of Biopolymer-Based Food Packaging Films/Coatings Functionalized with Edible Photosensitizers. Trends Food Sci. Technol. 2025, 162, 105078. [Google Scholar] [CrossRef]
- Ranade, T.; Sati, A.; Pratap, A.; Mali, S.N. Curcumin-Integrated Biopolymer Films for Active Packaging: Current Trends and Future Directions. Chem. Pap. 2025, 79, 1303–1334. [Google Scholar] [CrossRef]
- Hernández, C.C.; Abel, S.B.; Abraham, G.A.; Heredia, D.A.; Palacios, Y.; Lopez, E.G.; Durantini, E.N.; Bruno, M.M.; Agazzi, M.L. Polylactic Acid Photoactive Electrospun Fibers as Long-Lasting Antibacterial Materials. J. Photochem. Photobiol. A Chem. 2025, 469, 116528. [Google Scholar] [CrossRef]
- Lukseviciute, V.; Luksiene, Z. Inactivation of Molds on the Surface of Wheat Sprouts by Chlorophyllin-Chitosan Coating in the Presence of Visible LED-Based Light. J. Photochem. Photobiol. B Biol. 2020, 202, 111721. [Google Scholar] [CrossRef]
- Su, L.; Huang, J.; Li, H.; Pan, Y.; Zhu, B.; Zhao, Y.; Liu, H. Chitosan-Riboflavin Composite Film Based on Photodynamic Inactivation Technology for Antibacterial Food Packaging. Int. J. Biol. Macromol. 2021, 172, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tan, L.; Chen, B.; Huang, J.; Zeng, Q.; Liu, H.; Zhao, Y.; Wang, J.J. Antibacterial Potency of Riboflavin-Mediated Photodynamic Inactivation against Salmonella and Its Influences on Tuna Quality. LWT 2021, 146, 111462. [Google Scholar] [CrossRef]
- Wang, F.; Wang, R.; Pan, Y.; Du, M.; Zhao, Y.; Liu, H. Gelatin/Chitosan Films Incorporated with Curcumin Based on Photodynamic Inactivation Technology for Antibacterial Food Packaging. Polymers 2022, 14, 1600. [Google Scholar] [CrossRef] [PubMed]
- Wen, F.; Li, P.; Yan, H.; Su, W. Turmeric Carbon Quantum Dots Enhanced Chitosan Nanocomposite Films Based on Photodynamic Inactivation Technology for Antibacterial Food Packaging. Carbohydr. Polym. 2023, 311, 120784. [Google Scholar] [CrossRef]
- Borodina, T.N.; Tolordava, E.R.; Nikolaeva, M.E.; Solov’ev, A.I.; Romanova, Y.M.; Khaydukov, E.V.; Panchenko, V.Y. Antimicrobial Photodynamic Activity of Hydrophilic Riboflavin Derivatives. Mol. Genet. Microbiol. Virol. 2021, 36, 176–180. [Google Scholar] [CrossRef]
- Crocker, L.B.; Lee, J.H.; Mital, S.; Mills, G.C.; Schack, S.; Bistrović-Popov, A.; Franck, C.O.; Mela, I.; Kaminski, C.F.; Christie, G.; et al. Tuning Riboflavin Derivatives for Photodynamic Inactivation of Pathogens. Sci. Rep. 2022, 12, 6580. [Google Scholar] [CrossRef]
- Qiu, J.; Yang, H.; Zhang, Y.; Xiao, Y.; Wang, L.; Peng, Y.; Yu, X.; Huang, X.; Zhong, T. Emerging Trends in the Application of Riboflavin-Mediated Photodynamic Inactivation for Food Preservation. Trends Food Sci. Technol. 2024, 143, 104295. [Google Scholar] [CrossRef]
- Maldonado-Carmona, N.; Ouk, T.-S.; Leroy-Lhez, S. Latest Trends on Photodynamic Disinfection of Gram-Negative Bacteria: Photosensitizer’s Structure and Delivery Systems. Photochem. Photobiol. Sci. 2022, 21, 113–145. [Google Scholar] [CrossRef]
- Ahmad, I.; Fasihullah, Q.; Vaid, F.H.M. Effect of Light Intensity and Wavelengths on Photodegradation Reactions of Riboflavin in Aqueous Solution. J. Photochem. Photobiol. B Biol. 2006, 82, 21–27. [Google Scholar] [CrossRef]
- Fracassetti, D.; Limbo, S.; Pellegrino, L.; Tirelli, A. Light-Induced Reactions of Methionine and Riboflavin in Model Wine: Effects of Hydrolysable Tannins and Sulfur Dioxide. Food Chem. 2019, 298, 124952. [Google Scholar] [CrossRef]
- Limbo, S.; Pellegrino, L.; D’Incecco, P.; Gobbi, S.; Rosi, V.; Fracassetti, D. Storage of Pasteurized Milk in Clear PET Bottles Combined with Light Exposure on a Retail Display Case: A Possible Strategy to Define the Shelf Life and Support a Recyclable Packaging. Food Chem. 2020, 329, 127116. [Google Scholar] [CrossRef]
- Sheraz, M.A.; Kazi, S.H.; Ahmed, S.; Anwar, Z.; Ahmad, I. Photo, Thermal and Chemical Degradation of Riboflavin. Beilstein J. Org. Chem. 2014, 10, 1999–2012. [Google Scholar] [CrossRef]
- Grant-Preece, P.; Barril, C.; Schmidtke, L.M.; Scollary, G.R.; Clark, A.C. Light-Induced Changes in Bottled White Wine and Underlying Photochemical Mechanisms. Crit. Rev. Food Sci. Nutr. 2017, 57, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshi, R.; Rhim, J.-W. Chitosan-Based Biodegradable Functional Films for Food Packaging Applications. Innov. Food Sci. Emerg. Technol. 2020, 62, 102346. [Google Scholar] [CrossRef]
- El Knidri, H.; Belaabed, R.; Addaou, A.; Laajeb, A.; Lahsini, A. Extraction, Chemical Modification and Characterization of Chitin and Chitosan. Int. J. Biol. Macromol. 2018, 120, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cao, J.; Jiang, W. Analysis of Film-Forming Properties of Chitosan with Different Molecular Weights and Its Adhesion Properties with Different Postharvest Fruit Surfaces. Food Chem. 2022, 395, 133605. [Google Scholar] [CrossRef]
- Mutasher, S.H.; Al-Lami, H.S. The Effect of Different Molecular Weight Chitosan on the Physical and Mechanical Properties of Plasticized Films. Eur. J. Chem. 2022, 13, 460–467. [Google Scholar] [CrossRef]
- Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. Perspectives for Chitosan Based Antimicrobial Films in Food Applications. Food Chem. 2009, 114, 1173–1182. [Google Scholar] [CrossRef]
- Ardean, C.; Davidescu, C.M.; Nemeş, N.S.; Negrea, A.; Ciopec, M.; Duteanu, N.; Negrea, P.; Duda-Seiman, D.; Musta, V. Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization. Int. J. Mol. Sci. 2021, 22, 7449. [Google Scholar] [CrossRef]
- Sarfraz, M.H.; Hayat, S.; Siddique, M.H.; Aslam, B.; Ashraf, A.; Saqalein, M.; Khurshid, M.; Sarfraz, M.F.; Afzal, M.; Muzammil, S. Chitosan Based Coatings and Films: A Perspective on Antimicrobial, Antioxidant, and Intelligent Food Packaging. Prog. Org. Coat. 2024, 188, 108235. [Google Scholar] [CrossRef]
- Flórez, M.; Guerra-Rodríguez, E.; Cazón, P.; Vázquez, M. Chitosan for Food Packaging: Recent Advances in Active and Intelligent Films. Food Hydrocoll. 2022, 124, 107328. [Google Scholar] [CrossRef]
- Astanov, S.; Sharipov, M.Z.; Fayzullaev, A.R.; Kurtaliev, E.N.; Nizomov, N. Spectroscopic Study of Photo and Thermal Destruction of Riboflavin. J. Mol. Struct. 2014, 1071, 133–138. [Google Scholar] [CrossRef]
- Vaid, F.H.M.; Gul, W.; Faiyaz, A.; Anwar, Z.; Ejaz, M.A.; Zahid, S.; Ahmad, I. Divalent Anion Catalyzed Photodegradation of Riboflavin: A Kinetic Study. J. Photochem. Photobiol. A Chem. 2019, 371, 59–66. [Google Scholar] [CrossRef]
- Mills, B.; Kiang, A.; Mohanan, S.M.P.C.; Bradley, M.; Klausen, M. Riboflavin-Vancomycin Conjugate Enables Simultaneous Antibiotic Photo-Release and Photodynamic Killing against Resistant Gram-Positive Pathogens. JACS Au 2023, 3, 3014–3023. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Fasihullah, Q.; Vaid, F.H.M. A Study of Simultaneous Photolysis and Photoaddition Reactions of Riboflavin in Aqueous Solution. J. Photochem. Photobiol. B Biol. 2004, 75, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Bliumkin, L.; Dutta Majumdar, R.; Soong, R.; Adamo, A.; Abbatt, J.P.D.; Zhao, R.; Reiner, E.; Simpson, A.J. Development of an in Situ NMR Photoreactor To Study Environmental Photochemistry. Environ. Sci. Technol. 2016, 50, 5506–5516. [Google Scholar] [CrossRef]
- Liu, F.-C.; Su, C.-R.; Wu, T.-Y.; Su, S.-G.; Yang, H.-L.; Lin, J.H.-Y.; Wu, T.-S. Efficient 1H-NMR Quantitation and Investigation of N-Acetyl-D-Glucosamine (GlcNAc) and N,N’-Diacetylchitobiose (GlcNAc)2 from Chitin. Int. J. Mol. Sci. 2011, 12, 5828–5843. [Google Scholar] [CrossRef]
- Guzman-Puyol, S.; Benítez, J.J.; Heredia-Guerrero, J.A. Transparency of Polymeric Food Packaging Materials. Food Res. Int. 2022, 161, 111792. [Google Scholar] [CrossRef]
- Shah, Y.A.; Bhatia, S.; Al-Harrasi, A.; Oz, F.; Khan, M.H.; Roy, S.; Esatbeyoglu, T.; Pratap-Singh, A. Thermal Properties of Biopolymer Films: Insights for Sustainable Food Packaging Applications. Food Eng. Rev. 2024, 16, 497–512. [Google Scholar] [CrossRef]
- Cazón, P.; Vázquez, M. Mechanical and Barrier Properties of Chitosan Combined with Other Components as Food Packaging Film. Environ. Chem. Lett. 2020, 18, 257–267. [Google Scholar] [CrossRef]
- Aider, M. Chitosan Application for Active Bio-Based Films Production and Potential in the Food Industry: Review. LWT—Food Sci. Technol. 2010, 43, 837–842. [Google Scholar] [CrossRef]
- Piergiovanni, L.; Limbo, S. Food Packaging; Materiali, Tecnologie e Qualità degli Alimenti; Springer: Milan, Italy, 2010; ISBN 978-88-470-1456-5. [Google Scholar]
- Aguirre-Loredo, R.Y.; Rodríguez-Hernández, A.I.; Morales-Sánchez, E.; Gómez-Aldapa, C.A.; Velazquez, G. Effect of Equilibrium Moisture Content on Barrier, Mechanical and Thermal Properties of Chitosan Films. Food Chem. 2016, 196, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Murcia-Salvador, A.; Rodríguez-López, M.I.; Pellicer, J.A.; Gómez-Morte, T.; Auñón-Calles, D.; Yáñez-Gascón, M.J.; Cerón-Carrasco, J.P.; Gil-Izquierdo, Á.; Núñez-Delicado, E.; Gabaldón, J.A. Development of Chitosan Polysaccharide-Based Magnetic Gel for Direct Red 83:1 Removal from Water. Gels 2024, 10, 496. [Google Scholar] [CrossRef] [PubMed]
- Rivero, S.; García, M.A.; Pinotti, A. Crosslinking Capacity of Tannic Acid in Plasticized Chitosan Films. Carbohydr. Polym. 2010, 82, 270–276. [Google Scholar] [CrossRef]
- Ostrowska-Czubenko, J.; Gierszewska-Drużyńska, M. Effect of Ionic Crosslinking on the Water State in Hydrogel Chitosan Membranes. Carbohydr. Polym. 2009, 77, 590–598. [Google Scholar] [CrossRef]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.; Argüelles-Monal, W.; Desbrières, J.; Rinaudo, M. An Infrared Investigation in Relation with Chitin and Chitosan Characterization. Polymer 2001, 42, 3569–3580. [Google Scholar] [CrossRef]
- Leceta, I.; Guerrero, P.; de la Caba, K. Functional Properties of Chitosan-Based Films. Carbohydr. Polym. 2013, 93, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Kashef, N.; Hamblin, M.R. Can Microbial Cells Develop Resistance to Oxidative Stress in Antimicrobial Photodynamic Inactivation? Drug Resist. Updat. 2017, 31, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Choe, E.; Huang, R.; Min, D.B. Chemical Reactions and Stability of Riboflavin in Foods. J. Food Sci. 2005, 70, R28–R36. [Google Scholar] [CrossRef]
- Bloomfield, S.J.; Palau, R.; Holden, E.R.; Webber, M.A.; Mather, A.E. Genomic Characterization of Pseudomonas Spp. on Food: Implications for Spoilage, Antimicrobial Resistance and Human Infection. BMC Microbiol. 2024, 24, 20. [Google Scholar] [CrossRef]
- Camoirano, A.; de Flora, S.; Dahl, T.A. Genotoxicity of Volatile and Secondary Reactive Oxygen Species Generated by Photosensitization. Environ. Mol. Mutagen. 1993, 21, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Zimińska, A.; Lipska, I.; Gajewska, J.; Draszanowska, A.; Simões, M.; Olszewska, M.A. Antibacterial and Antibiofilm Effects of Photodynamic Treatment with Curcuma L. and Trans-Cinnamaldehyde against Listeria monocytogenes. Molecules 2024, 29, 685. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Xu, F.; Zhou, A.; Zeng, S.; Zheng, B.; Lin, S. Effective Preservation of Chilled Pork Using Photodynamic Antibacterial Film Based on Curcumin-β-Cyclodextrin Complex. Polymers 2023, 15, 1023. [Google Scholar] [CrossRef]
- Periyasamy, T.; Asrafali, S.P.; Lee, J. Recent Advances in Functional Biopolymer Films with Antimicrobial and Antioxidant Properties for Enhanced Food Packaging. Polymers 2025, 17, 1257. [Google Scholar] [CrossRef]
- ISO 187:2022; Paper, Board and Pulps—Standard Atmosphere for Conditioning and Testing and Procedure for Monitoring the Atmosphere and Conditioning of Samples. International Organization for Standardization: Geneva, Switzerland, 2022.
- CIE 015:2018; Colorimetry. 4th ed. International Commission on Illumination (CIE): Vienna, Austria, 2018.
- ISO 22196:2011; Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. International Organization for Standardization: Geneva, Switzerland, 2011.
- Rodrigues, P.M.; Luís, J.; Tavaria, F.K. Image Analysis Semi-Automatic System for Colony-Forming-Unit Counting. Bioengineering 2022, 9, 271. [Google Scholar] [CrossRef]
Sample | L* | a* | b* | ΔE | YI |
---|---|---|---|---|---|
CS/RF 0 min | 91.18 ± 0.49 a | −11.25 ± 0.14 a | 53.65 ± 1.80 a | / | 70.34 ± 2.02 a |
CS/RF 15 min | 90.69 ± 0.11 a | −10.24 ± 0.06 b | 48.57 ± 1.21 b | 5.21 ± 1.18 a | 65.69 ± 1.34 b |
CS/RF 30 min | 90.49 ± 0.27 a | −9.75 ± 0.19 b | 46.25 ± 1.38 b | 6.86 ± 0.78 a | 64.38 ± 0.80 b |
CS/RF 120 min | 90.24 ± 0.45 a | −9.72 ± 0.38 b | 46.45 ± 0.66 b | 7.43 ± 0.77 a | 63.93 ± 0.24 b |
Sample | O2TR, 23 °C, 1 Bar [cm3 m−2 Day−1] | KPO2 [cm3 µm m−2 Day−1 Bar−1] | WVTR, 23 °C, 65%RH [g m−2 Day−1] | KPWV [g µm m−2 Day−1 Bar−1] |
---|---|---|---|---|
CS film | 3.65 ± 0.10 a | 100.50 ± 3.10 a | 1058 ± 59 a | 1.58 × 106 ± 2.59 × 103 a |
CS/RF film | 2.37 ± 0.53 a | 71.06 ± 15.89 a | 1113 ± 46 a | 1.75 × 106 ± 2.38 × 105 a |
Sample | Young’s Modulus [MPa] | Yield Point | Modulus of Resilience [MPa] | Force at Break [kN/m] | Deformation at Break [mm] | Work at Break [MPa] | |
---|---|---|---|---|---|---|---|
Yield Strength | Yield Strain | ||||||
CS | 662.6 ± 56.3 a | 39.2 ± 4.5 a | 0.08 ± 0.01 a | 1.0 ± 0.2 a | 1.2 ± 0.1 a | 13.6 ± 4.5 a | 21.6 ± 8.8 a |
CS/RF 0 min | 614.7 ± 76.3 a | 41.2 ± 3.1 a | 0.09 ± 0.02 a | 1.3 ± 0.2 a | 1.3 ± 0.3 a | 7.7 ± 2.3 a | 19.6 ± 9.7 a |
CS/RF 120 min | 695.2 ± 75.0 a | 41.2 ± 4.4 a | 0.14 ± 0.11 a | 1.3 ± 0.4 a | 1.2 ± 0.2 a | 11.2 ± 6.0 a | 22.2 ± 16.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genovese, J.; Martins, D.M.; Silvetti, T.; Brasca, M.; Fracassetti, D.; Borgonovo, G.; Mazzini, S.; Limbo, S. Development of Photo-Active Chitosan-Based Films with Riboflavin for Enhanced Antimicrobial Food Packaging Applications. Molecules 2025, 30, 4166. https://doi.org/10.3390/molecules30214166
Genovese J, Martins DM, Silvetti T, Brasca M, Fracassetti D, Borgonovo G, Mazzini S, Limbo S. Development of Photo-Active Chitosan-Based Films with Riboflavin for Enhanced Antimicrobial Food Packaging Applications. Molecules. 2025; 30(21):4166. https://doi.org/10.3390/molecules30214166
Chicago/Turabian StyleGenovese, Jessica, Daniele Maria Martins, Tiziana Silvetti, Milena Brasca, Daniela Fracassetti, Gigliola Borgonovo, Stefania Mazzini, and Sara Limbo. 2025. "Development of Photo-Active Chitosan-Based Films with Riboflavin for Enhanced Antimicrobial Food Packaging Applications" Molecules 30, no. 21: 4166. https://doi.org/10.3390/molecules30214166
APA StyleGenovese, J., Martins, D. M., Silvetti, T., Brasca, M., Fracassetti, D., Borgonovo, G., Mazzini, S., & Limbo, S. (2025). Development of Photo-Active Chitosan-Based Films with Riboflavin for Enhanced Antimicrobial Food Packaging Applications. Molecules, 30(21), 4166. https://doi.org/10.3390/molecules30214166