Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,628)

Search Parameters:
Keywords = strong culture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1282 KiB  
Article
Biosolutions from Native Trichoderma Strains Against Grapevine Trunk Diseases
by Laura Zanfaño, Guzmán Carro-Huerga, Álvaro Rodríguez-González, Daniela Ramírez-Lozano, Sara Mayo-Prieto, Santiago Gutiérrez and Pedro A. Casquero
Agronomy 2025, 15(8), 1901; https://doi.org/10.3390/agronomy15081901 (registering DOI) - 7 Aug 2025
Abstract
Fungi of the genus Trichoderma show strong potential as biological control agents (BCAs) against grapevine trunk diseases (GTDs) through mechanisms like antibiotic metabolite production and lytic enzymes. This study evaluated the biocontrol activity of four native Trichoderma strains—T. gamsii T065 and T071, [...] Read more.
Fungi of the genus Trichoderma show strong potential as biological control agents (BCAs) against grapevine trunk diseases (GTDs) through mechanisms like antibiotic metabolite production and lytic enzymes. This study evaluated the biocontrol activity of four native Trichoderma strains—T. gamsii T065 and T071, T. carraovejensis T154, and T. harzianum T214—against Phaeoacremonium minimum, Phaeomoniella chlamydospora, and Diplodia seriata. Culture filtrates obtained at 8, 16, and 24 days post-incubation were tested using antibiogram and mycelial inhibition assays. Strains T071, T154, and T214 effectively inhibited D. seriata, while T154 and T214 also suppressed P. chlamydospora. Nevertheless, the limited effectiveness of all filtrates against P. minimum suggests that antibiosis is not the predominant mechanism involved in its control. These findings highlight the potential of specific Trichoderma strains and incubation times to directly control GTD pathogens and support the development of scalable biocontrol solutions. Full article
(This article belongs to the Special Issue Molecular Advances in Crop Protection and Agrobiotechnology)
Show Figures

Figure 1

21 pages, 826 KiB  
Article
Socio-Economic and Environmental Trade-Offs of Sustainable Energy Transition in Kentucky
by Sydney Oluoch, Nirmal Pandit and Cecelia Harner
Sustainability 2025, 17(15), 7133; https://doi.org/10.3390/su17157133 - 6 Aug 2025
Abstract
A just and sustainable energy transition in historically coal-dependent regions like Kentucky requires more than the adoption of new technologies and market-based solutions. This study uses a stated preferences approach to evaluate public support for various attributes of energy transition programs, revealing broad [...] Read more.
A just and sustainable energy transition in historically coal-dependent regions like Kentucky requires more than the adoption of new technologies and market-based solutions. This study uses a stated preferences approach to evaluate public support for various attributes of energy transition programs, revealing broad backing for moving away from coal, as indicated by a negative willingness to pay (WTP) for the status quo (–USD 4.63). Key findings show strong bipartisan support for solar energy, with Democrats showing the highest WTP at USD 8.29, followed closely by Independents/Others at USD 8.22, and Republicans at USD 8.08. Wind energy also garnered support, particularly among Republicans (USD 4.04), who may view it as more industry-compatible and less ideologically polarizing. Job creation was a dominant priority across political affiliations, especially for Independents (USD 9.07), indicating a preference for tangible, near-term economic benefits. Similarly, preserving cultural values tied to coal received support among Independents/Others (USD 4.98), emphasizing the importance of place-based identity in shaping preferences. In contrast, social support programs (e.g., job retraining) and certain post-mining land uses (e.g., recreation and conservation) were less favored, possibly due to their abstract nature, delayed benefits, and political framing. Findings from Kentucky offer insights for other coal-reliant states like Wyoming, West Virginia, Pennsylvania, Indiana, and Illinois. Ultimately, equitable transitions must integrate local voices, address cultural and economic realities, and ensure community-driven planning and investment. Full article
(This article belongs to the Special Issue Energy, Environmental Policy and Sustainable Development)
29 pages, 1483 KiB  
Article
Empowering Independence for Visually Impaired Museum Visitors Through Enhanced Accessibility
by Theresa Zaher Nasser, Tsvi Kuflik and Alexandra Danial-Saad
Sensors 2025, 25(15), 4811; https://doi.org/10.3390/s25154811 - 5 Aug 2025
Abstract
Museums serve as essential cultural centers, yet their mostly visual exhibits restrict access for blind and partially sighted (BPS) individuals. While recent technological advances have started to bridge this gap, many accessibility solutions focus mainly on basic inclusion rather than promoting independent exploration. [...] Read more.
Museums serve as essential cultural centers, yet their mostly visual exhibits restrict access for blind and partially sighted (BPS) individuals. While recent technological advances have started to bridge this gap, many accessibility solutions focus mainly on basic inclusion rather than promoting independent exploration. This research addresses this limitation by creating features that enable visitors’ independence through customizable interaction patterns and self-paced exploration. It improved upon existing interactive tangible user interfaces (ITUIs) by enhancing their audio content and adding more flexible user control options. A mixed-methods approach evaluated the ITUI’s usability, ability to be used independently, and user satisfaction. Quantitative data were gathered using ITUI-specific satisfaction, usability, comparison, and general preference scales, while insights were obtained through notes taken during a think-aloud protocol as participants interacted with the ITUIs, direct observation, and analysis of video recordings of the experiment. The results showed a strong preference for a Pushbutton-based ITUI, which scored highest in usability (M = 87.5), perceived independence (72%), and user control (76%). Participants stressed the importance of tactile interaction, clear feedback, and customizable audio features like volume and playback speed. These findings underscore the vital role of user control and precise feedback in designing accessible museum experiences. Full article
Show Figures

Figure 1

17 pages, 1489 KiB  
Article
Pro-Safety Education and Organizational Challenges in Building Sustainable Safety Culture in Polish Food Companies
by Patrycja Kabiesz
Sustainability 2025, 17(15), 7086; https://doi.org/10.3390/su17157086 - 5 Aug 2025
Viewed by 23
Abstract
The aim of this study was to verify whether comprehensive and inclusive pro-safety education contributes to building a strong safety culture in food companies. The study was conducted in 612 Polish companies, where special attention was paid to modern forms of education during [...] Read more.
The aim of this study was to verify whether comprehensive and inclusive pro-safety education contributes to building a strong safety culture in food companies. The study was conducted in 612 Polish companies, where special attention was paid to modern forms of education during pro-safety education, as well as the frequency and duration of this education. The results of the study showed that safety culture is poorly developed, even when it is consciously and formally implemented in the company. One of the identified problems was the discrepancy between the company’s declared commitment to pro-safety education and the actual behavior of employees. This indicates that formal company strategies may not be effectively embedded in the attitudes and actions of employees. The research emphasizes the importance of adapting pro-safety efforts to the organizational culture in order to ensure significant results and avoid superficial implementation. Full article
Show Figures

Figure 1

15 pages, 2361 KiB  
Article
Galacto-Oligosaccharides Exert Bifidogenic Effects at Capsule-Compatible Ultra-Low Doses
by Lucien F. Harthoorn, Jasmine Heyse, Aurélien Baudot, Ingmar A. J. van Hengel and Pieter Van den Abbeele
Metabolites 2025, 15(8), 530; https://doi.org/10.3390/metabo15080530 - 5 Aug 2025
Viewed by 62
Abstract
Background: Prebiotics are selectively used by host microorganisms to promote health. Because effective prebiotic doses (1.5–30 g/day) often require inconvenient delivery formats, this study aims to explore whether capsule-compatible doses of galacto-oligosaccharides (GOS) can effectively modulate the gut microbiome. Methods: The impact of [...] Read more.
Background: Prebiotics are selectively used by host microorganisms to promote health. Because effective prebiotic doses (1.5–30 g/day) often require inconvenient delivery formats, this study aims to explore whether capsule-compatible doses of galacto-oligosaccharides (GOS) can effectively modulate the gut microbiome. Methods: The impact of Bimuno® GOS (Reading, UK) at 0.5, 0.75, 1.83, and 3.65 g on the adult gut microbiome was assessed using the ex vivo SIFR® technology (n = 8), a clinically validated, bioreactor-based technology. Results: The GOS were rapidly fermented and significantly increased beneficial Bifidobacterium species (B. adolescentis, B. bifidum, and B. longum), even at the lowest tested dose. In doing so, GOS strongly promoted SCFA production, particularly acetate (significant from 0.5 g) and butyrate (significant from 0.75 g). Gas production only mildly increased, likely as Bifidobacterium species do not produce gases. Based on the ability of the SIFR® technology to cultivate strictly anaerobic, hard-to-culture gut microbes, unlike in past in vitro studies, we elucidated that GOS also enriched specific Lachnospiraceae species. Besides Anaerobutyricum hallii, this included Bariatricus comes, Blautia species (B. massiliensis, Blautia_A, B. faecis), Oliverpabstia intestinalis, Mediterraneibacter faecis, and Fusicatenibacter species. Finally, GOS also promoted propionate (significant from 0.75 g), linked to increases in Phocaeicola vulgatus. Conclusions: GOS displayed prebiotic potential at capsule-compatible doses, offering greater flexibility in nutritional product formulation and consumer convenience. Notably, the strong response at the lowest dose suggests effective microbiome modulation at lower levels than previously expected. Full article
Show Figures

Graphical abstract

22 pages, 4669 KiB  
Article
Metabolomic Insights into the Antimicrobial Effects of Metschnikowia Yeast on Phytopathogens
by Zofia Perek, Sumi Krupa, Joanna Nizioł, Dorota Kręgiel, Tomasz Ruman and Beata Gutarowska
Molecules 2025, 30(15), 3268; https://doi.org/10.3390/molecules30153268 - 4 Aug 2025
Viewed by 110
Abstract
One of the most important features of Metschnikowia pulcherrima is its strong antimicrobial activity against phytopathogens, which makes it a suitable candidate for use in biocontrol during crop cultivation. However, the mechanisms of its antimicrobial activity are not currently well understood. In this [...] Read more.
One of the most important features of Metschnikowia pulcherrima is its strong antimicrobial activity against phytopathogens, which makes it a suitable candidate for use in biocontrol during crop cultivation. However, the mechanisms of its antimicrobial activity are not currently well understood. In this study, we used metabolomic methods to investigate the possible mechanisms of antimicrobial activity by M. pulcherrima against phytopathogenic fungi. First, we tested the antimicrobial activity of five selected isolates against eleven phytopathogenic molds. Based on the results, selected yeast–pathogen co-cultures were cultivated on liquid and solid media. The supernatants from the liquid co-cultures were analyzed using the UHPLC-QToF-UHRMS and MS/MS methods. Co-culture growth on solid agar media was examined using the LARAPPI/CI MSI method. The yeast exhibited strong antagonism toward the mold phytopathogens. The LARAPPI/CI MSI method revealed the presence of various compounds with potential antifungal activity. The complex UHPLC-QToF-UHRMS analysis confirmed that the metabolic response of M. pulcherrima depends on specific yeast–pathogen interactions. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

19 pages, 1363 KiB  
Article
Non-Structural Carbohydrate Concentration Increases and Relative Growth Decreases with Tree Size in the Long-Lived Agathis australis (D.Don) Lindl.
by Julia Kaplick, Benjamin M. Cranston and Cate Macinnis-Ng
Forests 2025, 16(8), 1270; https://doi.org/10.3390/f16081270 - 3 Aug 2025
Viewed by 191
Abstract
The southern conifer Agathis australis (D.Don) Lindl. is a large and long-lived species endemic to Aotearoa New Zealand. It is threatened due to past logging activities, pathogen attack and potentially climate change, with increasing severity and frequency of drought and heatwaves across its [...] Read more.
The southern conifer Agathis australis (D.Don) Lindl. is a large and long-lived species endemic to Aotearoa New Zealand. It is threatened due to past logging activities, pathogen attack and potentially climate change, with increasing severity and frequency of drought and heatwaves across its distribution. Like many large tree species, little is known about the carbon dynamics of this ecologically and culturally significant species. We explored seasonal variations in non-structural carbohydrates (NSCs) and growth in trees ranging from 20 to 175 cm diameter at breast height (DBH). NSCs were seasonally stable with no measurable pattern across seasons. However, we found growth rates standardised to basal area and sapwood area (growth efficiency) declined with tree age and stem NSC concentrations (including total NSCs, sugars and starch) all increased as trees aged. Total NSC concentrations were 0.3%–0.6% dry mass for small trees and 0.8%–1.8% dry mass for larger trees, with strong relationships between DBH and total NSC, sugar and starch in stems but not roots. Cumulative growth efficiency across the two-year study period declined as tree size increased. Furthermore, there was an inverse relationship between growth efficiency across the two-year study period and NSC concentrations of stems. This relationship was driven by differences in carbon dynamics in trees of different sizes, with trees progressing to a more conservative carbon strategy as they aged. Simultaneously declining growth efficiency and increasing NSC concentrations as trees age could be evidence for active NSC accumulation to buffer against carbon starvation in larger trees. Our study provides new insights into changing carbon dynamics as trees age and may be evidence for active carbon accumulation in older trees. This may provide the key for understanding the role of carbon processes in tree longevity. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

17 pages, 1511 KiB  
Article
Impact of Selected Starter-Based Sourdough Types on Fermentation Performance and Bio-Preservation of Bread
by Khadija Atfaoui, Sara Lebrazi, Anas Raffak, Youssef Chafai, Karima El Kabous, Mouhcine Fadil and Mohammed Ouhssine
Fermentation 2025, 11(8), 449; https://doi.org/10.3390/fermentation11080449 - 1 Aug 2025
Viewed by 280
Abstract
The aim of this study is to evaluate the effects of different types of sourdough (I to IV), developed with a specific starter culture (including Lactiplantibacillus plantarum, Levilactobacillus brevis, and Candida famata), on bread fermentation performance and shelf-life. Real-time tracking of multiple [...] Read more.
The aim of this study is to evaluate the effects of different types of sourdough (I to IV), developed with a specific starter culture (including Lactiplantibacillus plantarum, Levilactobacillus brevis, and Candida famata), on bread fermentation performance and shelf-life. Real-time tracking of multiple parameters (pH, dough rising, ethanol release, and total titratable acidity) was monitored by a smart fermentation oven. The impact of the different treatments on the lactic acid, acetic acid, and ethanol content of the breads were quantified by high performance liquid chromatography analysis. In addition, the bio-preservation capacity of the breads contaminated with fungi was analyzed. The results show that liquid sourdough (D3: Type 2) and backslopped sourdough (D4: Type 3) increased significantly (p < 0.05) in dough rise, dough acidification (lower pH, higher titratable acidity), production of organic acids (lactic and acetic), and presented the optimal fermentation quotient. These findings were substantiated by chemometric analysis, which successfully clustered the starters based on performance and revealed a strong positive correlation between acetic acid production and dough-rise, highlighting the superior heterofermentative profile of D3 and D4. These types of sourdough also stood out for their antifungal capacity, preventing the visible growth of Aspergillus niger and Penicillium commune for up to 10 days after inoculation. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

20 pages, 2168 KiB  
Article
Microbial Profiling of Buffalo Mozzarella Whey and Ricotta Exhausted Whey: Insights into Potential Probiotic Subdominant Strains
by Andrea Bonfanti, Romano Silvestri, Ettore Novellino, Gian Carlo Tenore, Elisabetta Schiano, Fortuna Iannuzzo, Massimo Reverberi, Luigi Faino, Marzia Beccaccioli, Francesca Sivori, Carlo Giuseppe Rizzello and Cristina Mazzoni
Microorganisms 2025, 13(8), 1804; https://doi.org/10.3390/microorganisms13081804 - 1 Aug 2025
Viewed by 141
Abstract
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of [...] Read more.
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of lactic acid bacteria (LAB), including Streptococcus thermophilus, Lactobacillus delbrueckii, and Lactobacillus helveticus, alongside diverse heat-resistant yeasts such as Cyberlindnera jadinii. Culture-based isolation identified subdominant lactic acid bacteria strains, not detected by sequencing, belonging to Leuconostoc mesenteroides, Enterococcus faecalis, and Enterococcus durans. These strains were further assessed for their probiotic potential. E. faecalis CW1 and E. durans RCEW2 showed tolerance to acidic pH, bile salts, and lysozyme, as well as a strong biofilm-forming capacity and antimicrobial activity against Bacillus cereus and Staphylococcus aureus. Moreover, bile salt resistance suggests potential functionality in cholesterol metabolism. These findings support the potential use of CW and RCEW as reservoirs of novel, autochthonous probiotic strains and underscore the value of regional dairy by-products in food biotechnology and gut health applications. Full article
(This article belongs to the Special Issue Microbial Fermentation, Food and Food Sustainability)
Show Figures

Figure 1

22 pages, 6617 KiB  
Article
Natural Plant Oils as Anti-Algae Biocides for Sustainable Application in Cultural Heritage Protection
by Michał Komar, Nathnael Derese, Kamil Szymczak, Paulina Nowicka-Krawczyk and Beata Gutarowska
Sustainability 2025, 17(15), 6996; https://doi.org/10.3390/su17156996 - 1 Aug 2025
Viewed by 267
Abstract
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use [...] Read more.
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use in heritage conservation. This study evaluates the anti-algal activity of Salvia officinalis and Equisetum arvense (essential oils, hydrolates, and extracts) against a mixed culture of five green algae species (Bracteacoccus minor, Stichococcus bacillaris, Klebsormidium nitens, Chloroidium saccharophilum, and Diplosphaera chodatii). The plant materials were processed using hydrodistillation and solvent extraction, followed by chemical characterization through gas chromatography–mass spectrometry (GC-MS). Biological efficacy was assessed by measuring algal growth inhibition, changes in biomass colour, chlorophyll a concentration, and fluorescence. S. officinalis yielded higher extract quantities (extraction yield: 23%) than E. arvense and contained bioactive compounds such as thujone, camphor, and cineole, which correlated with its strong anti-algal effects. The essential oil of S. officinalis demonstrated the highest efficacy, significantly inhibiting biofilm formation (zones of inhibition: 15–94 mm) and photosynthetic activity at 0.5% concentration (reduction in chlorophyll a concentration 90–100%), without causing visible discolouration of treated surfaces (∆E < 2). These findings highlight the potential of S. officinalis essential oil as a natural, effective, and material-safe algicidal biocide for the sustainable protection of cultural heritage sites. Full article
Show Figures

Figure 1

27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 - 1 Aug 2025
Viewed by 337
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

22 pages, 6172 KiB  
Article
Ethnomedicinal Properties of Wild Edible Fruit Plants and Their Horticultural Potential Among Indigenous Isan Communities in Roi Et Province, Northeastern Thailand
by Piyaporn Saensouk, Surapon Saensouk, Thawatphong Boonma, Auemporn Junsongduang, Min Khant Naing and Tammanoon Jitpromma
Horticulturae 2025, 11(8), 885; https://doi.org/10.3390/horticulturae11080885 - 1 Aug 2025
Viewed by 244
Abstract
Wild edible fruit plants are integral to the cultural, nutritional, medicinal, and economic practices of Indigenous Isan communities in Roi Et Province, northeastern Thailand, a region characterized by plateau and lowland topography and a tropical monsoon climate. This study aimed to document the [...] Read more.
Wild edible fruit plants are integral to the cultural, nutritional, medicinal, and economic practices of Indigenous Isan communities in Roi Et Province, northeastern Thailand, a region characterized by plateau and lowland topography and a tropical monsoon climate. This study aimed to document the diversity, traditional uses, phenology, and conservation status of these species to inform sustainable management and conservation efforts. Field surveys and ethnobotanical interviews with 200 informants (100 men, 100 women; random ages) were conducted across 20 local communities to identify species diversity and usage patterns, while phenological observations and conservation assessments were performed to understand reproductive cycles and species vulnerability between January and December 2023. A total of 68 species from 32 families were recorded, with peak flowering in March–April and fruiting in May–June. Analyses of Species Use Value (0.19–0.48) and Relative Frequency of Citation (0.15–0.44) identified key species with significant roles in food security and traditional medicine. Uvaria rufa had the highest SUV (0.48) and RFC (0.44). Informant consensus on medicinal applications was strong for ailments such as gastrointestinal and lymphatic disorders. Economically important species were also identified, with some contributing notable income through local trade. Conservation proposed one species as Critically Endangered and several others as Vulnerable. The results highlight the need for integrated conservation strategies, including community-based initiatives and recognition of Other Effective area-based Conservation Measures (OECMs), to ensure the preservation of biodiversity, traditional knowledge, and local livelihoods. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

11 pages, 1139 KiB  
Article
Effect of Akkermansia muciniphila on GLP-1 and Insulin Secretion
by Ananta Prasad Arukha, Subhendu Nayak and Durga Madhab Swain
Nutrients 2025, 17(15), 2516; https://doi.org/10.3390/nu17152516 - 31 Jul 2025
Viewed by 338
Abstract
Background/Objectives: Gut microbiota research has gained momentum in recent years broadening knowledge of microbial components and their potential effects on health and well-being. Strong association between explicit microbes and metabolic diseases associated with obesity and type 2 diabetes mellitus, gastrointestinal disorders, neurodegenerative diseases, [...] Read more.
Background/Objectives: Gut microbiota research has gained momentum in recent years broadening knowledge of microbial components and their potential effects on health and well-being. Strong association between explicit microbes and metabolic diseases associated with obesity and type 2 diabetes mellitus, gastrointestinal disorders, neurodegenerative diseases, and even cancers have been established. Akkermansia muciniphila is a budding next-generation probiotic that plays an important role in systemic metabolism, intestinal health, and immune regulation, establishing strong implications for its use as a potent therapeutic intervention in diverse diseases. This project aimed at evaluating whether bacterial cell extracts of VH Akkermansia muciniphila (Vidya Strain; VS) can stimulate insulin secretion in INS-1 pancreatic beta cells and GLP-1 secretion in NCI-H716 human L-cells, both established in vitro models for studying metabolic regulation. Methods: Cultured VH Akkermansia muciniphila extracts were administered in a dose-dependent manner on INS-1 cells, and glucose-stimulated insulin secretion (GSIS) was measured via ELISA. Treated Human L-cell lines (NCI-H716) were analyzed for GLP-1 secretion. Results: Our study demonstrated that VH Akkermansia muciniphila extracts modestly increase insulin secretion from INS-1 beta cells and, more notably, induce a robust, dose-dependent rise in GLP-1 secretion from NCI-H716 L-cells, with the highest dose achieving over a 2000% increase comparable to glutamine. Conclusions: These findings suggest that VH A. muciniphila extracts may offer metabolic benefits by enhancing GLP-1 release, highlighting their potential for managing type 2 diabetes and obesity. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

15 pages, 299 KiB  
Article
Adaptation and Validation of the Compassionate Capacity Scale for Portuguese Healthcare Students (CCS-PHS)
by María Dolores Ruiz-Fernández, Andrea Alcaraz-Córdoba, Irma Brito, Maria Jacinta Dantas, Tania Alcaraz-Córdoba and Angela María Ortega-Galán
Behav. Sci. 2025, 15(8), 1039; https://doi.org/10.3390/bs15081039 - 31 Jul 2025
Viewed by 248
Abstract
Compassion is a critical competence for university students in the healthcare field when dealing with the suffering of patients and relatives. However, there are no tools that measure compassionate capacity during students’ training. Recently, the Compassion Capacity Scale (CCS) was developed for health [...] Read more.
Compassion is a critical competence for university students in the healthcare field when dealing with the suffering of patients and relatives. However, there are no tools that measure compassionate capacity during students’ training. Recently, the Compassion Capacity Scale (CCS) was developed for health professionals, exhibiting good psychometric properties. The aim of this study was to translate, culturally adapt, and validate the CCS for Portuguese university students in the healthcare field. The study was divided into two phases: (1) translation and adaptation of the CCS for Portuguese university students in the healthcare field; (2) validation and analysis of psychometric properties. The CCS-PHS showed good internal consistency (Cronbach’s α = 0.886), temporal stability (rho = 0.703), and content validity (CVI-i = 1). Criterion validity analysis showed strong correlations between all of the CCS-PHS’s dimensions and the chosen reference criteria scale. Construct validity analysis revealed that the CCS-PHS is composed of 17 items, classified into four factors. The differences found in the exploratory factor analysis in relation to the original scale may be due to the differences in the life experiences of healthcare professionals when compared to those of students. Our psychometric analysis suggests that the CCS-PHS is a reliable and valid tool to assess compassionate capacity in healthcare students. Knowing the compassionate competence of students is vital for guiding educational strategies, implementing compassion training programs and evaluating their effectiveness, as well as reinforcing key attitudes and behaviors for humanized and ethical healthcare. Full article
18 pages, 8458 KiB  
Article
Exploring the Biosynthetic Potential of Microorganisms from the South China Sea Cold Seep Using Culture-Dependent and Culture-Independent Approaches
by Gang-Ao Hu, Huai-Ying Sun, Qun-Jian Yin, He Wang, Shi-Yi Liu, Bin-Gui Wang, Hong Wang, Xin Li and Bin Wei
Mar. Drugs 2025, 23(8), 313; https://doi.org/10.3390/md23080313 - 30 Jul 2025
Viewed by 268
Abstract
Cold seep ecosystems harbor unique microbial communities with potential for producing secondary metabolites. However, the metabolic potential of cold seep microorganisms in the South China Sea remains under-recognized. This study employed both culture-dependent and culture-independent approaches, including 16S rRNA amplicon sequencing and metagenomics, [...] Read more.
Cold seep ecosystems harbor unique microbial communities with potential for producing secondary metabolites. However, the metabolic potential of cold seep microorganisms in the South China Sea remains under-recognized. This study employed both culture-dependent and culture-independent approaches, including 16S rRNA amplicon sequencing and metagenomics, to investigate microbial communities and their potential for secondary metabolite production in the South China Sea cold seep. The results indicate microbial composition varied little between two non-reductive sediments but differed significantly from the reductive sediment, primarily due to Planctomycetes and Actinobacteria. Predicting the Secondary Metabolism Potential using Amplicon (PSMPA) predictions revealed 115 strains encoding more than 10 biosynthetic gene clusters (BGCs), with lower BGC abundance in reductive sediment. Culture-dependent studies showed Firmicutes as the dominant cultivable phylum, with strains from shallow samples encoding fewer BGCs. Metagenomic data confirmed distinct microbial compositions and BGC distributions across sediment types, with cold seep type having a stronger influence than geographic location. Certain BGCs showed strong correlations with sediment depth, reflecting microbial adaptation to nutrient-limited environments. This study provides a comprehensive analysis of the metabolic capabilities of South China Sea cold seep microorganisms and reveals key factors influencing their secondary metabolic potential, offering valuable insights for the efficient exploration of cold seep biological resources. Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
Show Figures

Graphical abstract

Back to TopTop