Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,395)

Search Parameters:
Keywords = stress markers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7385 KiB  
Article
Microbial Alliance of Paenibacillus sp. SPR11 and Bradyrhizobium yuanmingense PR3 Enhances Nitrogen Fixation, Yield, and Salinity Tolerance in Black Gram Under Saline, Nutrient-Depleted Soils
by Praveen Kumar Tiwari, Anchal Kumar Srivastava, Rachana Singh and Alok Kumar Srivastava
Nitrogen 2025, 6(3), 66; https://doi.org/10.3390/nitrogen6030066 - 7 Aug 2025
Abstract
Salinity is a major abiotic stress limiting black gram (Vigna mungo) productivity, particularly in arid and semi-arid regions. Saline soils negatively impact plant growth, nodulation, nitrogen fixation, and yield. This study evaluated the efficacy of co-inoculating salt-tolerant plant growth-promoting bacteria Paenibacillus [...] Read more.
Salinity is a major abiotic stress limiting black gram (Vigna mungo) productivity, particularly in arid and semi-arid regions. Saline soils negatively impact plant growth, nodulation, nitrogen fixation, and yield. This study evaluated the efficacy of co-inoculating salt-tolerant plant growth-promoting bacteria Paenibacillus sp. SPR11 and Bradyrhizobium yuanmingense PR3 on black gram performance under saline field conditions (EC: 8.87 dS m−1; pH: 8.37) with low organic carbon (0.6%) and nutrient deficiencies. In vitro assays demonstrated the biocontrol potential of SPR11, inhibiting Fusarium oxysporum and Macrophomina phaseolina by 76% and 62%, respectively. Germination assays and net house experiments under 300 mM NaCl stress showed that co-inoculation significantly improved physiological traits, including germination rate, root length (61.39%), shoot biomass (59.95%), and nitrogen fixation (52.4%) in nitrogen-free media. Field trials further revealed enhanced stress tolerance markers: chlorophyll content increased by 54.74%, proline by 50.89%, and antioxidant enzyme activities (SOD, CAT, PAL) were significantly upregulated. Electrolyte leakage was reduced by 55.77%, indicating improved membrane stability. Agronomic performance also improved, with co-inoculated plants showing increased root length (7.19%), grain yield (15.55 q ha−1; 77.04% over control), total biomass (26.73 q ha−1; 57.06%), and straw yield (8.18 q ha−1). Pod number, seed count, and seed weight were also enhanced. Nutrient analysis showed elevated uptake of nitrogen, phosphorus, potassium, and key micronutrients (Zn, Fe) in both grain and straw. To the best of our knowledge, this is the very first field-based report demonstrating the synergistic benefits of co-inoculating Paenibacillus sp. SPR11 and Bradyrhizobium yuanmingense PR3 in black gram under saline, nutrient-poor conditions without external nitrogen inputs. The results highlight a sustainable strategy to enhance legume productivity and resilience in salt-affected soils. Full article
Show Figures

Graphical abstract

24 pages, 2085 KiB  
Article
Transcriptomic Characterization of Candidate Genes for Fusarium Resistance in Maize (Zea mays L.)
by Aleksandra Sobiech, Agnieszka Tomkowiak, Tomasz Jamruszka, Tomasz Kosiada, Julia Spychała, Maciej Lenort and Jan Bocianowski
Pathogens 2025, 14(8), 779; https://doi.org/10.3390/pathogens14080779 - 6 Aug 2025
Abstract
Fusarium diseases are among the most dangerous fungal diseases of plants. To date, there are no plant protectants that completely prevent fusariosis. Current breeding trends are therefore focused on increasing genetic resistance. While global modern maize breeding relies on various molecular genetics techniques, [...] Read more.
Fusarium diseases are among the most dangerous fungal diseases of plants. To date, there are no plant protectants that completely prevent fusariosis. Current breeding trends are therefore focused on increasing genetic resistance. While global modern maize breeding relies on various molecular genetics techniques, they are useless without a precise characterization of genomic regions that determine plant physiological responses to fungi. The aim of this study was thus to characterize the expression of candidate genes that were previously reported by our team as harboring markers linked to fusarium resistance in maize. The plant material included one susceptible and four resistant varieties. Biotic stress was induced in adult plants by inoculation with fungal spores under controlled conditions. qRT-PCR was performed. The analysis focused on four genes that encode for GDSL esterase/lipase (LOC100273960), putrescine hydroxycinnamyltransferase (LOC103649226), peroxidase 72 (LOC100282124), and uncharacterized protein (LOC100501166). Their expression showed differences between analyzed time points and varieties, peaking at 6 hpi. The resistant varieties consistently showed higher levels of expression compared to the susceptible variety, indicating their stronger defense responses. Moreover, to better understand the function of these genes, their expression in various organs and tissues was also evaluated using publicly available transcriptomic data. Our results are consistent with literature reports that clearly indicate the involvement of these genes in the resistance response to fusarium. Thus, they further emphasize the high usefulness of the previously selected markers in breeding programs to select fusarium-resistant maize genotypes. Full article
(This article belongs to the Special Issue Current Research on Fusarium: 2nd Edition)
Show Figures

Figure 1

18 pages, 2476 KiB  
Article
Fucoidan Modulates Osteoarthritis Progression Through miR-22/HO-1 Pathway
by Tsung-Hsun Hsieh, Jar-Yi Ho, Chih-Chien Wang, Feng-Cheng Liu, Chian-Her Lee, Herng-Sheng Lee and Yi-Jen Peng
Cells 2025, 14(15), 1208; https://doi.org/10.3390/cells14151208 - 6 Aug 2025
Abstract
Introduction: Osteoarthritis (OA), a leading cause of disability among the elderly, is characterized by progressive joint tissue destruction. Fucoidan, a sulfated polysaccharide with known anti-inflammatory and antioxidant properties, has been investigated for its potential to protect against interleukin-1 beta (IL-1β)-induced articular tissue damage. [...] Read more.
Introduction: Osteoarthritis (OA), a leading cause of disability among the elderly, is characterized by progressive joint tissue destruction. Fucoidan, a sulfated polysaccharide with known anti-inflammatory and antioxidant properties, has been investigated for its potential to protect against interleukin-1 beta (IL-1β)-induced articular tissue damage. Methods: Human primary chondrocytes and synovial fibroblasts were pre-treated with 100 μg/mL fucoidan before stimulation with 1 ng/mL of IL-1β. The protective effects of fucoidan were assessed by measuring oxidative stress markers and catabolic enzyme levels. These in vitro findings were corroborated using a rat anterior cruciate ligament transection-induced OA model. To explore the underlying mechanisms, particularly the interaction between microRNAs (miRs) and heme oxygenase-1 (HO-1), five candidate miRs were identified in silico and experimentally validated. Luciferase reporter assays were used to confirm direct interactions. Results: Fucoidan exhibited protective effects against IL-1β-induced oxidative stress and catabolic processes in both chondrocytes and synovial fibroblasts, consistent with in vivo observations. Fucoidan treatment restored HO-1 expression while reducing inducible nitric oxide synthase and matrix metalloproteinase levels in IL-1β-stimulated cells. Notably, this study revealed that fucoidan modulates the miR-22/HO-1 pathway, a previously uncharacterized mechanism in OA. Specifically, miR-22 was upregulated by IL-1β and subsequently attenuated by fucoidan. Luciferase reporter assays confirmed a direct interaction between miR-22 and HO-1. Conclusion: The results demonstrate that fucoidan mitigates OA-related oxidative stress in chondrocytes and synovial fibroblasts through the novel modulation of the miR-22/HO-1 axis. The miR-22/HO-1 pathway represents a crucial therapeutic target for OA, and fucoidan may offer a promising therapeutic intervention. Full article
Show Figures

Figure 1

12 pages, 441 KiB  
Article
Cytokine Regulation and Oxidative Stress in Helicobacter Pylori-Associated Gastric Adenocarcinoma at Different Stages: Insights from a Cross-Sectional Study
by Olga Smirnova, Aleksander Sinyakov and Eduard Kasparov
Int. J. Mol. Sci. 2025, 26(15), 7609; https://doi.org/10.3390/ijms26157609 - 6 Aug 2025
Abstract
Gastric adenocarcinoma is a malignant tumor that develops from the glandular cells of the inner wall of the stomach. The prevalence of this type of disease varies from 90 to 95% of all types of gastric cancer. The aim of our study was [...] Read more.
Gastric adenocarcinoma is a malignant tumor that develops from the glandular cells of the inner wall of the stomach. The prevalence of this type of disease varies from 90 to 95% of all types of gastric cancer. The aim of our study was to investigate the differences in the content of cytokines and oxidative stress markers in patients with gastric adenocarcinoma associated with H. pylori infection depending on the stage. The study included 281 patients with gastric cancer. At stage I of the disease—75 people, stage II—70 people, stage III—69 people, and stage IV of the disease—67 people. The levels of TNF-α, IL-2, IL-8, IFNγ, TNF-β, IL-17A, IL-6, IL-10, and IL-4 in the blood serum of patients and healthy individuals were determined by enzyme immunoassay and plasma oxidative stress scores (MDA, SOD, CAT, GST, GPO, CP). The present study revealed that H. pylori-infected gastric adenocarcinoma at different stages is associated with different plasma levels of cytokines, lipid peroxidation products, and antioxidant defense factors. Further studies are needed to evaluate the effectiveness of therapeutic strategies combining cytokine regulation and oxidative stress to improve clinical outcomes in gastric cancer. Full article
Show Figures

Figure 1

20 pages, 1831 KiB  
Article
Saccharomyces boulardii CNCM I-745 Supernatant Improves Markers of Gut Barrier Function and Inflammatory Response in Small Intestinal Organoids
by Louisa Filipe Rosa, Steffen Gonda, Nadine Roese and Stephan C. Bischoff
Pharmaceuticals 2025, 18(8), 1167; https://doi.org/10.3390/ph18081167 - 6 Aug 2025
Abstract
Objectives: Saccharomyces boulardii CNCM I-745, a probiotic yeast, is effectively used for the treatment of acute diarrhea as well as for the prevention and treatment of traveller‘s diarrhea and diarrhea under tube feeding. The underlying mechanisms are not fully elucidated. Both antitoxic [...] Read more.
Objectives: Saccharomyces boulardii CNCM I-745, a probiotic yeast, is effectively used for the treatment of acute diarrhea as well as for the prevention and treatment of traveller‘s diarrhea and diarrhea under tube feeding. The underlying mechanisms are not fully elucidated. Both antitoxic and regulatory effects on the intestinal barrier, mediated either by the yeast or yeast-derived substrates, have been discussed. Methods: To examine the effects of Saccharomyces boulardii released substrates (S.b.S) on gastrointestinal (GI) barrier function, a murine small intestinal organoid cell model under stress was used. Stress was induced by lipopolysaccharide (LPS) exposure or withdrawal of growth factors from cell culture medium (GFRed). Stressed organoids were treated with S.b.S (200 µg/mL), and markers of GI barrier and inflammatory response were assessed. Results: GFRed-induced stress was characterized by disturbances in selected tight junction (TJ) (p < 0.05), adherent junction (AJ) (p < 0.001), and mucin (Muc) formation (p < 0.01), measured by gene expressions, whereby additional S.b.S treatment was found to reverse these effects by increasing Muc2 (from 0.22 to 0.97-fold change, p < 0.05), Occludin (Ocln) (from 0.37 to 3.5-fold change, p < 0.0001), and Claudin (Cldn)7 expression (from 0.13 ± 0.066-fold change, p < 0.05) and by decreasing Muc1, Cldn2, Cldn5, and junctional adhesion molecule A (JAM-A) expression (all p < 0.01). Further, S.b.S normalized expression of nucleotide binding oligomerization domain (Nod)2- (from 44.5 to 0.51, p < 0.0001) and matrix metalloproteinase (Mmp)7-dependent activation (from 28.3 to 0.02875 ± 0.0044 ** p < 0.01) of antimicrobial peptide defense and reduced the expression of several inflammatory markers, such as myeloid differentiation primary response 88 (Myd88) (p < 0.01), tumor necrosis factor α (Tnfα) (p < 0.01), interleukin (IL)-6 (p < 0.01), and IL-1β (p < 0.001). Conclusions: Our data provide new insights into the molecular mechanisms by which Saccharomyces boulardii CNCM I-745-derived secretome attenuates inflammatory responses and restores GI barrier function in small intestinal organoids. Full article
(This article belongs to the Topic Probiotics: New Avenues)
Show Figures

Graphical abstract

16 pages, 1898 KiB  
Article
Screening of qPCR Reference Genes in Quinoa Under Cold, Heat, and Drought Gradient Stress
by Qiuwei Lu, Xueying Wang, Suxuan Dong, Jinghan Fu, Yiqing Lin, Ying Zhang, Bo Zhao and Fuye Guo
Plants 2025, 14(15), 2434; https://doi.org/10.3390/plants14152434 - 6 Aug 2025
Abstract
Quinoa (Chenopodium quinoa), a stress-tolerant pseudocereal ideal for studying abiotic stress responses, was used to systematically identify optimal reference genes for qPCR normalization under gradient stresses: low temperatures (LT group: −2 °C to −10 °C), heat (HT group: 39° C to [...] Read more.
Quinoa (Chenopodium quinoa), a stress-tolerant pseudocereal ideal for studying abiotic stress responses, was used to systematically identify optimal reference genes for qPCR normalization under gradient stresses: low temperatures (LT group: −2 °C to −10 °C), heat (HT group: 39° C to 45 °C), and drought (DR group: 7 to 13 days). Through multi-algorithm evaluation (GeNorm, NormFinder, BestKeeper, the ΔCt method, and RefFinder) of eleven candidates, condition-specific optimal genes were established as ACT16 (Actin), SAL92 (IT4 phosphatase-associated protein), SSU32 (Ssu72-like family protein), and TSB05 (Tryptophan synthase beta-subunit 2) for the LT group; ACT16 and NRP13 (Asparagine-rich protein) for the HT group; and ACT16, SKP27 (S-phase kinase), and NRP13 for the DR group, with ACT16, NRP13, WLIM96 (LIM domain-containing protein), SSU32, SKP27, SAL92, and UBC22 (ubiquitin-conjugating enzyme E2) demonstrating cross-stress stability (global group). DHDPS96 (dihydrodipicolinate synthase) and EF03 (translation elongation factor) showed minimal stability. Validation using stress-responsive markers—COR72 (LT), HSP44 (HT), COR413-PM (LT), and DREB12 (DR)—confirmed reliability; COR72 and COR413-PM exhibited oscillatory cold response patterns, HSP44 peaked at 43 °C before declining, and DREB12 showed progressive drought-induced upregulation. Crucially, normalization with unstable genes (DHDPS96 and EF03) distorted expression profiles. This work provides validated reference standards for quinoa transcriptomics under abiotic stresses. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

24 pages, 3858 KiB  
Review
Emerging Strategies for Aflatoxin Resistance in Peanuts via Precision Breeding
by Archana Khadgi, Saikrisha Lekkala, Pankaj K. Verma, Naveen Puppala and Madhusudhana R. Janga
Toxins 2025, 17(8), 394; https://doi.org/10.3390/toxins17080394 - 6 Aug 2025
Abstract
Aflatoxin contamination, primarily caused by Aspergillus flavus, poses a significant threat to peanut (Arachis hypogaea L.) production, food safety, and global trade. Despite extensive efforts, breeding for durable resistance remains difficult due to the polygenic and environmentally sensitive nature of resistance. [...] Read more.
Aflatoxin contamination, primarily caused by Aspergillus flavus, poses a significant threat to peanut (Arachis hypogaea L.) production, food safety, and global trade. Despite extensive efforts, breeding for durable resistance remains difficult due to the polygenic and environmentally sensitive nature of resistance. Although germplasm such as J11 have shown partial resistance, none of the identified lines demonstrated stable or comprehensive protection across diverse environments. Resistance involves physical barriers, biochemical defenses, and suppression of toxin biosynthesis. However, these traits typically exhibit modest effects and are strongly influenced by genotype–environment interactions. A paradigm shift is underway with increasing focus on host susceptibility (S) genes, native peanut genes exploited by A. flavus to facilitate colonization or toxin production. Recent studies have identified promising S gene candidates such as AhS5H1/2, which suppress salicylic acid-mediated defense, and ABR1, a negative regulator of ABA signaling. Disrupting such genes through gene editing holds potential for broad-spectrum resistance. To advance resistance breeding, an integrated pipeline is essential. This includes phenotyping diverse germplasm under stress conditions, mapping resistance loci using QTL and GWAS, and applying multi-omics platforms to identify candidate genes. Functional validation using CRISPR/Cas9, Cas12a, base editors, and prime editing allows precise gene targeting. Validated genes can be introgressed into elite lines through breeding by marker-assisted and genomic selection, accelerating the breeding of aflatoxin-resistant peanut varieties. This review highlights recent advances in peanut aflatoxin resistance research, emphasizing susceptibility gene targeting and genome editing. Integrating conventional breeding with multi-omics and precision biotechnology offers a promising path toward developing aflatoxin-free peanut cultivars. Full article
(This article belongs to the Special Issue Strategies for Mitigating Mycotoxin Contamination in Food and Feed)
Show Figures

Figure 1

20 pages, 8071 KiB  
Article
Analysis of the Differences Among Camellia oleifera Grafting Combinations in Its Healing Process
by Zhilong He, Ying Zhang, Chengfeng Xun, Zhen Zhang, Yushen Ma, Xin Wei, Zhentao Wan and Rui Wang
Plants 2025, 14(15), 2432; https://doi.org/10.3390/plants14152432 - 6 Aug 2025
Abstract
Grafting serves as a crucial propagation technique for superior Camellia oleifera varieties, where rootstock–scion compatibility significantly determines survival and growth performance. To systematically evaluate grafting compatibility in this economically important woody oil crop, we examined 15 rootstock–scion combinations using ‘Xianglin 210’ as the [...] Read more.
Grafting serves as a crucial propagation technique for superior Camellia oleifera varieties, where rootstock–scion compatibility significantly determines survival and growth performance. To systematically evaluate grafting compatibility in this economically important woody oil crop, we examined 15 rootstock–scion combinations using ‘Xianglin 210’ as the scion, assessing growth traits and conducting physiological assays (enzymatic activities of SOD and POD and levels of ROS and IAA) at multiple timepoints (0–32 days post-grafting). The results demonstrated that Comb. 4 (Xianglin 27 rootstock) exhibited superior compatibility, characterized by systemic antioxidant activation (peaking at 4–8 DPG), rapid auxin accumulation (4 DPG), and efficient sugar allocation. Transcriptome sequencing and WGCNA analysis identified 3781 differentially expressed genes, with notable enrichment in stress response pathways (Hsp70, DnaJ) and auxin biosynthesis (YUCCA), while also revealing key hub genes (FKBP19) associated with graft-healing efficiency. These findings establish that successful grafting in C. oleifera depends on coordinated rapid redox regulation, auxin-mediated cell proliferation, and metabolic reprogramming, with Comb. 4 emerging as the optimal rootstock choice. The identified molecular markers not only advance our understanding of grafting mechanisms in woody plants but also provide valuable targets for future breeding programs aimed at improving grafting success rates in this important oil crop. Full article
(This article belongs to the Special Issue Advances in Planting Techniques and Production of Horticultural Crops)
Show Figures

Figure 1

18 pages, 732 KiB  
Article
L-Arginine Effect as an Additive on Overall Performance, Health Status, and Expression of Stress Molecular Markers in Nile Tilapia (Oreochromis niloticus) Under Chronic Salinity Exposure
by Andrea Itzel Munguía-Casillas, María Teresa Viana, Miroslava Vivanco-Aranda, Luis Eduardo Ruiz-González, Emyr Saul Peña-Marín and Oscar Basilio Del Rio-Zaragoza
Fishes 2025, 10(8), 387; https://doi.org/10.3390/fishes10080387 - 6 Aug 2025
Abstract
Growing freshwater fish in saline environments is being explored as a potential solution to the freshwater shortage. However, growing these organisms in suboptimal salinity conditions leads to chronic stress that can be challenging to manage. To address this goal, it is crucial to [...] Read more.
Growing freshwater fish in saline environments is being explored as a potential solution to the freshwater shortage. However, growing these organisms in suboptimal salinity conditions leads to chronic stress that can be challenging to manage. To address this goal, it is crucial to improve the health of fish through the use of dietary supplements. This study evaluated the effects of varying levels of arginine supplementation on the growth, health status, and expression of stress-related molecular markers in juveniles of Nile tilapia exposed to chronic salinity stress. The tilapia were fed four experimental diets supplemented with 0, 1, 2, and 3% of L-arginine (T0, T1, T2, and T3). After an acclimatization period, the tilapias were exposed to a salinity level of 20‰ for 57 days in a recirculating aquaculture system. Our findings revealed that overall performance parameters were significantly influenced by L-arginine supplementation, except for the condition factor, viscerosomatic index, and hepatosomatic index. Additionally, intermediate levels of L-arginine supplementation positively influenced various blood parameters, including hematological profiles (hemoglobin and leukocytes), blood chemistry (total protein, albumin, globulin, and triglycerides), and the frequency of certain nuclear abnormalities. Furthermore, L-arginine supplementation appeared to regulate the expression of molecular markers related to stress and the immune system. In conclusion, this study indicates that L-arginine supplementation can help alleviate the chronic stress caused by salinity in juvenile Nile tilapia. Full article
(This article belongs to the Special Issue Fish Hematology)
Show Figures

Figure 1

13 pages, 745 KiB  
Article
Optimizing Selenium Polysaccharide Supplementation: Impacts on Growth, Oxidative Stress, and Tissue Selenium in Juvenile Large Yellow Croaker (Larimichthys crocea)
by Jinxing Xiao, Zhoudi Miao, Shiliang Dong, Kaiyang Wang, Fan Zhou and Zilong Li
Animals 2025, 15(15), 2292; https://doi.org/10.3390/ani15152292 - 6 Aug 2025
Abstract
Selenium (Se) is an essential trace element critical for animal growth and immune function. This study investigated the dietary selenium requirement of juvenile large yellow croaker (Larimichthys crocea) through an 8-week feeding trial. Five experimental diets were formulated by supplementing a [...] Read more.
Selenium (Se) is an essential trace element critical for animal growth and immune function. This study investigated the dietary selenium requirement of juvenile large yellow croaker (Larimichthys crocea) through an 8-week feeding trial. Five experimental diets were formulated by supplementing a basal diet with selenium polysaccharides (Se-PS) at 0, 20, 30, 40, and 50 mg/kg, resulting in analyzed Se concentrations of 0.35, 0.54, 0.71, 0.93, and 1.11 mg/kg, respectively. The results demonstrated that growth performance and feed efficiency improved with increasing dietary selenium, peaking at 0.93 mg/kg before declining at higher levels. Antioxidant enzyme activities—superoxide dismutase (SOD) and catalase (CAT)—in serum and liver tissues exhibited a dose-dependent increase, reaching maximal levels at 1.11 mg/kg. Conversely, malondialdehyde (MDA), a marker of oxidative stress, progressively decreased in both serum and liver, attaining its lowest concentration at 1.11 mg/kg, though this did not differ significantly from the 0.93 mg/kg group (p = 0.056). Tissue selenium accumulation was highest at these optimal dietary levels. Based on the growth performance, oxidative stress response, and tissue selenium retention, the recommended dietary selenium requirement for juvenile large yellow croaker is 0.93 mg/kg. These findings highlight the importance of optimal Se supplementation in aquafeeds to enhance growth and physiological health in farmed fish. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

20 pages, 8344 KiB  
Article
Gum Acacia–Dexamethasone Combination Attenuates Sepsis-Induced Acute Kidney Injury in Rats via Targeting SIRT1-HMGB1 Signaling Pathway and Preserving Mitochondrial Integrity
by Fawaz N. Alruwaili, Omnia A. Nour and Tarek M. Ibrahim
Pharmaceuticals 2025, 18(8), 1164; https://doi.org/10.3390/ph18081164 - 5 Aug 2025
Abstract
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley [...] Read more.
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley rats were separated into six groups, including the control, GA group, LPS-induced AKI group, DEX + LPS group, GA + LPS group, and GA + DEX + LPS group. AKI was induced in rats using LPS (10 mg/kg, i.p.). GA was administered orally (7.5 g/kg) for 14 days before LPS injection, and DEX was injected (1 mg/kg, i.p.) 2 h after LPS injection. Results: LPS injection significantly (p < 0.05, vs. control group) impaired renal function, as evidenced through increased levels of kidney function biomarkers, decreased creatinine clearance, and histopathological alterations in the kidneys. LPS also significantly (p < 0.05, vs. control group) elevated levels of oxidative stress markers, while it reduced levels of antioxidant enzymes. Furthermore, LPS triggered an inflammatory response, manifested by significant (p < 0.05, vs. control group) upregulation of Toll-like receptor 4, myeloid differentiation primary response 88, interleukin-1β, tumor necrosis factor-α, and nuclear factor-κB, along with increased expression of high-mobility group box 1. Administration of GA significantly ameliorated LPS-induced renal impairment by enhancing antioxidant defenses and suppressing inflammatory pathways (p < 0.05, vs. LPS group). Furthermore, GA-DEX-treated rats showed improved kidney function, reduced oxidative stress, and attenuated inflammatory markers (p < 0.05, vs. LPS group). Conclusions: The GA-DEX combination exhibited potent renoprotective effects against LPS-induced SA-AKI, possibly due to their antioxidant and anti-inflammatory properties. These results suggest that the GA-DEX combination could be a promising and effective therapeutic agent for managing SA-AKI. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

30 pages, 3316 KiB  
Systematic Review
Preclinical Evidence of Curcuma longa Linn. as a Functional Food in the Management of Metabolic Syndrome: A Systematic Review and Meta-Analysis of Rodent Studies
by Samuel Abiodun Kehinde, Zahid Naeem Qaisrani, Rinrada Pattanayaiying, Wai Phyo Lin, Bo Bo Lay, Khin Yadanar Phyo, Myat Mon San, Nurulhusna Awaeloh, Sasithon Aunsorn, Ran Kitkangplu and Sasitorn Chusri
Biomedicines 2025, 13(8), 1911; https://doi.org/10.3390/biomedicines13081911 - 5 Aug 2025
Abstract
Background/Objectives: Metabolic syndrome (MetS) is a multifactorial condition characterized by abdominal obesity, dyslipidemia, insulin resistance, hypertension, and chronic inflammation. As its global prevalence rises, there is increasing interest in natural, multi-targeted approaches to manage MetS. Curcuma longa Linn. (turmeric), especially its active [...] Read more.
Background/Objectives: Metabolic syndrome (MetS) is a multifactorial condition characterized by abdominal obesity, dyslipidemia, insulin resistance, hypertension, and chronic inflammation. As its global prevalence rises, there is increasing interest in natural, multi-targeted approaches to manage MetS. Curcuma longa Linn. (turmeric), especially its active compound curcumin, has shown therapeutic promise in preclinical studies. This systematic review and meta-analysis evaluated the effects of Curcuma longa and its derivatives on MetS-related outcomes in rodent models. Methods: A comprehensive search was conducted across six databases (PubMed, Scopus, AMED, LILACS, MDPI, and Google Scholar), yielding 47 eligible in vivo studies. Data were extracted on key metabolic, inflammatory, and oxidative stress markers and analyzed using random-effects models. Results were presented as mean differences (MD) with 95% confidence intervals (CI). Results: Meta-analysis showed that curcumin significantly reduced body weight (rats: MD = −42.10; mice: MD = −2.91), blood glucose (rats: MD = −55.59; mice: MD = −28.69), triglycerides (rats: MD = −70.17; mice: MD = −24.57), total cholesterol (rats: MD = −35.77; mice: MD = −52.61), and LDL cholesterol (rats: MD = −69.34; mice: MD = −42.93). HDL cholesterol increased significantly in rats but not in mice. Inflammatory cytokines were markedly reduced, while oxidative stress improved via decreased malondialdehyde (MDA) and elevated superoxide dismutase (SOD) and catalase (CAT) levels. Heterogeneity was moderate to high, primarily due to variations in curcumin dosage (ranging from 10 to 500 mg/kg) and treatment duration (2 to 16 weeks) across studies. Conclusions: This preclinical evidence supports Curcuma longa as a promising functional food component for preventing and managing MetS. Its multi-faceted effects warrant further clinical studies to validate its translational potential. Full article
(This article belongs to the Special Issue The Role of Cytokines in Health and Disease: 3rd Edition)
Show Figures

Graphical abstract

17 pages, 1416 KiB  
Article
Humic Substances Promote the Activity of Enzymes Related to Plant Resistance
by Rakiely M. Silva, Fábio L. Olivares, Lázaro E. P. Peres, Etelvino H. Novotny and Luciano P. Canellas
Agriculture 2025, 15(15), 1688; https://doi.org/10.3390/agriculture15151688 - 5 Aug 2025
Abstract
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve [...] Read more.
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve satisfactory results. Plants induce defense responses to natural elicitors by interpreting multiple genes that encode proteins, including enzymes, secondary metabolites, and pathogenesis-related (PR) proteins. These responses characterize systemic acquired resistance. Humic substances trigger positive local and systemic physiological responses through a complex network of hormone-like signaling pathways and can be used to induce biotic and abiotic stress resistance. This study aimed to assess the effect of humic substances on the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POX), and β-1,3-glucanase (GLU) used as a resistance marker in various plant species, including orange, coffee, sugarcane, soybeans, maize, and tomato. Seedlings were treated with a dilute aqueous suspension of humic substances (4 mM C L−1) as a foliar spray or left untreated (control). Leaf tissues were collected for enzyme assessment two days later. Humic substances significantly promoted the systemic acquired resistance marker activities compared to the control in all independent assays. Overall, all enzymes studied in this work, PAL, GLUC, and POX, showed an increase in activity by 133%, 181%, and 149%, respectively. Among the crops studied, citrus and coffee achieved the highest activity increase in all enzymes, except for POX in coffee, which showed a decrease of 29% compared to the control. GLUC exhibited the highest response to HS treatment, the enzyme most prominently involved in increasing enzymatic activity in all crops. Plants can improve their resistance to pathogens through the exogenous application of HSs as this promotes the activity of enzymes related to plant resistance. Finally, we consider the potential use of humic substances as a natural chemical priming agent to boost plant resistance in agriculture Full article
(This article belongs to the Special Issue Biocontrol Agents for Plant Pest Management)
Show Figures

Figure 1

18 pages, 1602 KiB  
Article
Interacting Effects of Heat and Nanoplastics Affect Wheat (Triticum turgidum L.) Seedling Growth and Physiology
by Debora Fontanini, Stefania Bottega, Monica Ruffini Castiglione and Carmelina Spanò
Plants 2025, 14(15), 2426; https://doi.org/10.3390/plants14152426 - 5 Aug 2025
Abstract
Nano- and microplastic pollution, together with the ongoing rise in global temperatures driven by climate change, represent increasingly critical environmental challenges. Although these stressors often co-occur in the environment, their combined effects on plant systems remain largely unexplored. To test the hypothesis that [...] Read more.
Nano- and microplastic pollution, together with the ongoing rise in global temperatures driven by climate change, represent increasingly critical environmental challenges. Although these stressors often co-occur in the environment, their combined effects on plant systems remain largely unexplored. To test the hypothesis that their interaction may exacerbate the effects observed under each stressor individually, we investigated the response of seedlings of Triticum turgidum to treatments with fluorescent polystyrene nanoplastics under optimal (25 °C) and elevated (35 °C) temperature conditions. We evaluated seedling growth, photosynthetic pigment content, and oxidative stress markers using both biochemical and histochemical techniques. In addition, we assessed enzymatic and non-enzymatic antioxidant responses. The use of fluorescently labeled nanoplastics enabled the visualization of their uptake and translocation within plant tissues. Elevated temperatures negatively affect plant growth, increasing the production of proline, a key protective molecule, and weakly activating secondary defense mechanisms. Nanoplastics disturbed wheat seedling physiology, with these effects being amplified under high temperature conditions. Combined stress enhances nanoplastic uptake in roots, increases oxidative damage, and alters antioxidant responses, reducing defense capacity in leaves while triggering compensatory mechanisms in roots. These findings underscore a concerning interaction between plastic pollution and climate warming in crop plants. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

11 pages, 225 KiB  
Article
Influence of Trace Mineral Sources and Levels on Growth Performance, Carcass Traits, Bone Characteristics, Oxidative Stress, and Immunity of Broiler
by Tassanee Trairatapiwan, Rachakris Lertpatarakomol, Sucheera Chotikatum, Achara Lukkananukool and Jamlong Mitchaothai
Animals 2025, 15(15), 2287; https://doi.org/10.3390/ani15152287 - 5 Aug 2025
Abstract
This study investigated the effects of reducing organic trace minerals below commercial inclusion levels and compared them with both low-dose and commercial levels of inorganic trace minerals, focusing on growth performance, carcass traits, tibia characteristics, oxidative stress (superoxide dismutase [SOD] and malondialdehyde [MDA]), [...] Read more.
This study investigated the effects of reducing organic trace minerals below commercial inclusion levels and compared them with both low-dose and commercial levels of inorganic trace minerals, focusing on growth performance, carcass traits, tibia characteristics, oxidative stress (superoxide dismutase [SOD] and malondialdehyde [MDA]), and immune response (serum IgG) in broilers. A total of 384 one-day-old Ross 308 chicks were randomly assigned to three dietary treatments: (1) commercial-level inorganic trace minerals (ILI; Zn 100 ppm; Cu 15 ppm; Fe 100 ppm; Mn 80 ppm; Se 0.2 ppm; I 3 ppm); (2) low-level organic trace minerals (LLO; Zn 30 ppm; Cu 4 ppm; Fe 11 ppm; Mn 30 ppm; Se 0.225 ppm; I 3 ppm), and (3) low-level inorganic trace minerals (LLI; Zn 30 ppm; Cu 4 ppm; Fe 11 ppm; Mn 30 ppm; Se 0.2 ppm; I 3 ppm). Each treatment consisted of eight replicates with 16 birds per replicate, and diets were provided in two phases: starter (days 1–21) and grower (days 22–35). The results showed that the LLO group demonstrated a significantly improved feed conversion ratio (FCR) during the starter phase, 2.4% better than that of the ILI and LLI groups (p = 0.02). Additionally, filet and thigh muscle yields in the LLO group were higher by 11.9% (p = 0.03) and 13.9% (p = 0.02), respectively, compared to the ILI group. Other carcass traits, as well as pH and drip loss, were not significantly affected. However, tibia breaking strength at day 35 was 15.1% lower in the LLO group compared to the ILI group (p = 0.02). No significant differences were observed in oxidative stress markers or IgG levels among groups. This study demonstrated that reducing the inclusion level of inorganic trace minerals did not negatively affect broiler growth performance, whereas supplementation with low levels of organic trace minerals improved both growth performance and carcass quality. Full article
(This article belongs to the Section Animal Nutrition)
Back to TopTop