Influence of Trace Mineral Sources and Levels on Growth Performance, Carcass Traits, Bone Characteristics, Oxidative Stress, and Immunity of Broiler
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Cares
2.2. Animals, Diets, and Experimental Design
2.3. Carcass Characteristics and Meat Quality
2.4. Bone Characteristics
2.5. Determinations of Oxidative Stress and Humeral Immunity
2.6. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Carcass Characteristics and Meat Quality
3.3. Bone Characteristics
3.4. Oxidative Stress and Immunity
4. Discussion
4.1. Growth Performance
4.2. Carcass Characteristics and Meat Quality
4.3. Bone Characteristics
4.4. Oxidation Stress and Immunity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bao, Y.; Choct, M.; Iji, P.; Bruerton, K. Trace mineral interactions in broiler chicken diets. Br. Poult. Sci. 2010, 51, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F.; Fisinin, V.I. Selenium in poultry breeder nutrition: An update. Anim. Feed. Sci. Technol. 2014, 191, 1–15. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Velichko, O.A. Selenium in poultry nutrition: From sodium selenite to organic selenium sources. J. Poult. Sci. 2018, 2, 79–93. [Google Scholar] [CrossRef]
- Güz, B.C.; de Jong, I.C.; Bol, U.E.; Kemp, B.; van Krimpen, M.; Molenaar, R.; van den Brand, H. Effects of organic macro and trace minerals in fast and slower growing broiler breeders’ diet on offspring growth performance and tibia characteristics. Poult. Sci. 2022, 101, 101647. [Google Scholar] [CrossRef]
- Byrne, L.; Murphy, R.A. Relative bioavailability of trace minerals in production animal nutrition: A Review. Animals 2022, 12, 1981. [Google Scholar] [CrossRef]
- Brugger, D.; Wagner, B.; Windisch, W.M.; Schenkel, H.; Schulz, K.; Südekum, K.H.; Berk, A.; Pieper, R.; Kowalczyk, J.; Spolders, M. Review: Bioavailability of trace elements in farm animals: Definition and practical considerations for improved assessment of efficacy and safety. Animal 2022, 16, 100598. [Google Scholar] [CrossRef]
- Wang, F.; Shu, G.; Peng, X.; Fang, J.; Chen, K.; Cui, H.; Chen, Z.; Zuo, Z.; Deng, J.; Geng, Y.; et al. Protective effects of sodium selenite against aflatoxin B1-induced oxidative stress and apoptosis in broiler spleen. Int. J. Environ. Res. Public Health 2013, 10, 2834–2844. [Google Scholar] [CrossRef]
- Oswald, I.P.; Marin, D.E.; Bouhet, S.; Pinton, P.; Taranu, I.; Accensi, F. Immunotoxicological risk of mycotoxins for domestic animals. Food Addit. Contam. 2005, 22, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Lu, L.; Wang, R.L.; Lei, H.L.; Li, S.F.; Zhang, L.Y.; Luo, X.G. Effects of supplemental zinc source and level on antioxidant ability and fat metabolism-related enzymes of broilers1. Poult. Sci. 2015, 94, 2686–2694. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, K.; Asnayanti, A.; Do, A.D.T.; Perera, R.; Al-Mitib, L.; Shwani, A.; Rebollo, M.A.; Kidd, M.T.; Alrubaye, A.A.K. Identifying dietary timing of organic trace minerals to reduce the incidence of osteomyelitis lameness in broiler chickens using the aerosol transmission model. Animals 2024, 14, 1526. [Google Scholar] [CrossRef] [PubMed]
- Franklin, S.B.; Young, M.B.; Ciacciariello, M. The impact of different sources of zinc, manganese, and copper on broiler performance and excreta output. Animals 2022, 12, 1067. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.V.; Bittencourt, L.C.; Hermes, R.G.; Rönnau, M.; Rorig, A.I.; Lima, F.K.; Fernandes, J.I.M. Mineral source and vitamin level in broiler diets: Effects on performance, yield, and meat quality. Braz. J. Poult. Sci. 2020, 22, 1–14. [Google Scholar] [CrossRef]
- Huang, Y.L.; Lu, L.; Luo, X.G.; Liu, B. An optimal dietary zinc level of broiler chicks fed a corn-soybean meal diet. Poult. Sci. 2007, 86, 2582–2589. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Caesar, D.D.; Pradesh Pashu-Chikitsa, M.; Vishwavidyalaya, V.; Jain, A.K.; Kumar Jain, A.; Shakkarpude, J.; Mourya, A.; Baghel, R.; Sharma, R.K. Can different concentration of chelated and inorganic trace minerals (Zn, Se and Cr) be an effective supplement for better production performance and carcass traits in broilers? J. Entomol. Zool. Stud. 2020, 8, 197–204. [Google Scholar]
- Ravindran, V.; Elliott, S. Influence of selenium source on the performance, feathering and meat quality of broilers. J. Appl. Anim. Nutr. 2017, 5, e6. [Google Scholar] [CrossRef]
- Vieira, R.; Ferket, P.; Malheiros, R.; Hannas, M.; Crivellari, R.; Moraes, V.; Elliott, S. Feeding low dietary levels of organic trace minerals improves broiler performance and reduces excretion of minerals in litter. Br. Poult. Sci. 2020, 61, 574–582. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirement of Poultry; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- AOAC. Official Methods of Analysis, 20th ed.; Association of Official Analytic Chemists: Washington, DC, USA, 2012. [Google Scholar]
- Nollet, L.; Van Der Klis, J.D.; Lensing, M.; Spring, P. The effect of replacing inorganic with organic trace minerals in broiler diets on productive performance and mineral excretion. J. Appl. Poult. Res. 2007, 16, 592–597. [Google Scholar] [CrossRef]
- M’Sadeq, S.A.; Wu, S.B.; Choct, M.; Swick, R.A. Influence of trace mineral sources on broiler performance, lymphoid organ weights, apparent digestibility, and bone mineralization. Poult. Sci. 2018, 97, 3176–3182. [Google Scholar] [CrossRef]
- Núñez, R.; Elliott, S.; Riboty, R. The effect of dietary supplementation of organic trace minerals on performance, mineral retention, lymphoid organs and antibody titres of broilers. J. Appl. Anim. Nutr. 2023, 11, 23–32. [Google Scholar] [CrossRef]
- Świaȩtkiewicz, S.; Arczewska-WŁosek, A.; Józefiak, D. The efficacy of organic minerals in poultry nutrition: Review and implications of recent studies. World Poult. Sci. J. 2014, 70, 475–486. [Google Scholar] [CrossRef]
- Ashmead, H. The absorption and metabolism iron amino acid chelate. Arch. Latinoam. Nutr. 2001, 51, 13–21. [Google Scholar] [PubMed]
- Wedekind, K.J.; Hortin, A.E.; Baker, D.H.; Wedekind, K.J.; Baker, D. Methodology for assessing zinc bioavailability: Efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide. J. Anim. Sci. 1992, 70, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Winiarska-Mieczan, A.; Kwiecień, M.; Purwin, C.; Jachimowicz-Rogowska, K.; Borsuk-Stanulewicz, M.; Pogorzelska-Przybyłek, P.; Kiczorowska, B. Fatty acid profile and dietary value of thigh meat of broiler chickens receiving mineral or organic forms of Zn. Animals 2024, 14, 1156. [Google Scholar] [CrossRef] [PubMed]
- Leeson, S.; Summers, J.D. Nutrition of the Chicken; University Books: Brussels, Belgium, 2001. [Google Scholar]
- Underwood, E.J.; Suttle, N.F. The Mineral Nutrition of Livestock; CABI Pub: Wallingford, UK, 1999. [Google Scholar]
- Perry, T.W.; Cullison, A.E.; Lowrey, R.S. Feeds & Feeding; Prentice Hall: Hoboken, NJ, USA, 2003. [Google Scholar]
- Church, D.C.; Pond, W.G. Basic Animal Nutrition and Feeding; Wiley: Hoboken, NJ, USA, 1988. [Google Scholar]
- van der Eijk, J.A.J.; Bakker, J.; Güz, B.C.; van Krimpen, M.M.; Molenaar, R.; van den Brand, H.; de Jong, I.C. Providing organic macro minerals and an elevated platform improved tibia characteristics, and increased locomotion and performance of fast- and slower-growing broilers. Poult. Sci. 2022, 101, 101973. [Google Scholar] [CrossRef]
- Frandson, R.D.; Wilke, W.L.; Fails, A.D. Anatomy and Physiology of Farm Animals; Wiley-Blackwell: Hoboken, NJ, USA, 2016. [Google Scholar]
- Azad, S.K.; Shariatmadari, F.; Torshizi, M.A.K.; Chiba, L. Comparative effect of zinc concentration and sources on growth performance, accumulation in tissues, tibia status, mineral excretion and immunity of broiler chickens. Braz. J. Poult. Sci. 2020, 22, 1–10. [Google Scholar] [CrossRef]
- Jain, A.K.; Mishra, A.; Singh, A.P.; Patel, P.; Sheikh, A.A.; Chandraker, T.R.; Vandre, R. Effects of different concentration of organic and inorganic trace minerals (zinc, selenium, and chromium) supplementation on expression of chTLR4 gene and humoral immune response in broilers. Vet. World 2021, 14, 1093–1101. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhao, F.; Li, Y.; Wu, Q.; Xiao, H.; Cao, S.; Yang, X.; Gao, K.; Jiang, Z.; Hu, S.; et al. Impact of low-dose amino acid-chelated trace minerals on performance, antioxidant capacity, and fecal excretion in growing-finishing pigs. Animals 2025, 15, 1213. [Google Scholar] [CrossRef]
Ingredients (%) | Starter (1–21 Days) | Grower (22–35 Days) |
---|---|---|
Corn | 48.35 | 54.99 |
Soybean meal (44%) | 32.57 | 28.73 |
Full fat soybean | 10.00 | 7.50 |
Soybean oil | 4.80 | 4.69 |
Lysine | 0.12 | 0.17 |
Methionine | 0.25 | 0.30 |
Limestone | 1.44 | 1.27 |
Mono-calcium phosphate (MCP) | 1.47 | 1.34 |
Choline chloride (60%) | 0.05 | 0.06 |
Salt | 0.44 | 0.44 |
Premix * | 0.50 | 0.50 |
Calculated nutrient analysis | ||
Metabolizable energy (ME, kcal/kg) | 3100.00 | 3150.00 |
Crude protein (%) | 22.00 | 20.00 |
Calcium (%) | 0.90 | 0.80 |
Total phosphorus (%) | 0.70 | 0.65 |
Available phosphorus (%) | 0.46 | 0.42 |
Digestible lysine (%) | 1.20 | 1.20 |
Digestible methionine (%) | 0.56 | 0.61 |
Digestible methionine + cystine (%) | 0.90 | 0.85 |
Digestible threonine (%) | 0.78 | 0.70 |
Digestible valine (%) | 0.96 | 0.87 |
Treatments | Starter Phase (d 1–21) | Grower Phase (d 22–35) | Overall Performance (d 1–35) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Int wt (g/bird) | BWG (g/bird) | FI (g/bird) | FCR | Mortal (%) | BWG (g/bird) | FI (g/bird) | FCR | Mortal (%) | BWG (g/bird) | FI (g/bird) | FCR | Mortal (%) | |
ILI | 48.87 | 963.39 | 1216.20 | 1.26 a | 1.56 | 1289.65 | 2191.26 | 1.71 | 0.00 | 2253.04 | 3407.46 | 1.51 | 1.56 |
LLO | 48.87 | 982.63 | 1204.37 | 1.23 b | 0.00 | 1316.58 | 2228.20 | 1.70 | 0.00 | 2299.21 | 3432.56 | 1.50 | 0.00 |
LLI | 48.65 | 963.43 | 1208.24 | 1.26 a | 0.00 | 1329.03 | 2157.18 | 1.62 | 0.00 | 2292.46 | 3365.42 | 1.47 | 0.00 |
SEM | 0.08 | 6.05 | 5.91 | 0.01 | 0.36 | 17.17 | 19.62 | 0.02 | 0.00 | 19.43 | 22.07 | 0.01 | 0.36 |
p-value | 0.50 | 0.34 | 0.72 | 0.02 | 0.12 | 0.65 | 0.35 | 0.15 | 1.00 | 0.60 | 0.47 | 0.21 | 0.12 |
Treatments | Average Weight | Relative Weight of Primal Cut (% of LW) | Internal Organs (% of LW) | Meat Quality | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LW (g/bird) | PW (g/bird) | CW (%) | Head Neck | Wing | Breast | Filet | Thigh | Drum Stick | Leg Feet | Ribs | Heart | Liver | Gizzard | Ult pH | DL (%) | |
ILI | 2577.94 | 2322.47 | 90.07 | 5.19 | 7.35 | 18.58 | 3.45 b | 10.52 a | 9.05 | 3.51 | 18.18 | 0.48 | 2.28 | 1.44 | 5.95 | 1.40 |
LLO | 2595.63 | 2337.88 | 90.11 | 5.59 | 7.94 | 19.42 | 3.86 a | 11.99 b | 9.13 | 3.65 | 16.56 | 0.49 | 2.25 | 1.42 | 5.96 | 1.37 |
LLI | 2619.75 | 2357.56 | 89.98 | 5.56 | 7.68 | 17.71 | 3.52 b | 11.18 ab | 9.34 | 3.50 | 17.70 | 0.49 | 2.34 | 1.50 | 5.94 | 1.45 |
SEM | 38.81 | 34.79 | 0.15 | 0.13 | 0.16 | 0.33 | 0.07 | 0.23 | 0.10 | 0.05 | 0.43 | 0.01 | 0.06 | 0.04 | 0.00 | 0.03 |
p-value | 0.91 | 0.92 | 0.94 | 0.38 | 0.31 | 0.10 | 0.03 | 0.02 | 0.50 | 0.37 | 0.30 | 0.93 | 0.84 | 0.63 | 0.94 | 0.09 |
Treatments | Day 21 | Day 35 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fresh Weight (mg) | Ash (%) | Length (mm) | W:L | BS (N) | Small OD (mm) | Large OD (mm) | Fresh weight (mg) | Ash (%) | Length (mm) | W:L | BS (N) | Small OD (mm) | Large OD (mm) | |
ILI | 5754.47 | 41.16 | 76.71 | 74.85 | 196.69 | 7.03 | 19.20 | 13,913.04 | 39.16 | 101.42 | 136.52 | 406.40 a | 9.03 | 26.18 |
LLO | 6137.59 | 40.28 | 76.45 | 80.25 | 197.10 | 7.09 | 19.84 | 14,355.36 | 37.02 | 101.87 | 139.90 | 345.01 b | 8.78 | 26.15 |
LLI | 6054.38 | 38.80 | 76.45 | 79.16 | 192.82 | 7.15 | 19.87 | 13,714.88 | 40.7 | 101.43 | 133.98 | 342.62 b | 8.98 | 25.66 |
SEM | 113.69 | 0.51 | 0.38 | 1.27 | 4.06 | 0.07 | 0.14 | 368.55 | 0.84 | 1.17 | 2.46 | 11.00 | 0.11 | 0.20 |
p-value | 0.37 | 0.16 | 0.96 | 0.19 | 0.9 | 0.82 | 0.10 | 0.78 | 0.21 | 0.99 | 0.63 | 0.02 | 0.64 | 0.49 |
Treatments | Day 21 | Day 35 | |||
---|---|---|---|---|---|
SOD (% Inhibition Rate) | MDA (nmol/mL) | SOD (% Inhibition Rate) | MDA (nmol/mL) | Total IgG (ng/mL) | |
ILI | 65.76 | 6.39 | 61.94 | 7.88 | 103.51 |
LLO | 66.00 | 6.15 | 65.62 | 7.52 | 106.40 |
LLI | 58.76 | 6.34 | 67.68 | 6.77 | 100.09 |
SEM | 0.42 | 0.10 | 0.59 | 0.08 | 1.23 |
p-value | 0.61 | 0.31 | 0.99 | 0.70 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trairatapiwan, T.; Lertpatarakomol, R.; Chotikatum, S.; Lukkananukool, A.; Mitchaothai, J. Influence of Trace Mineral Sources and Levels on Growth Performance, Carcass Traits, Bone Characteristics, Oxidative Stress, and Immunity of Broiler. Animals 2025, 15, 2287. https://doi.org/10.3390/ani15152287
Trairatapiwan T, Lertpatarakomol R, Chotikatum S, Lukkananukool A, Mitchaothai J. Influence of Trace Mineral Sources and Levels on Growth Performance, Carcass Traits, Bone Characteristics, Oxidative Stress, and Immunity of Broiler. Animals. 2025; 15(15):2287. https://doi.org/10.3390/ani15152287
Chicago/Turabian StyleTrairatapiwan, Tassanee, Rachakris Lertpatarakomol, Sucheera Chotikatum, Achara Lukkananukool, and Jamlong Mitchaothai. 2025. "Influence of Trace Mineral Sources and Levels on Growth Performance, Carcass Traits, Bone Characteristics, Oxidative Stress, and Immunity of Broiler" Animals 15, no. 15: 2287. https://doi.org/10.3390/ani15152287
APA StyleTrairatapiwan, T., Lertpatarakomol, R., Chotikatum, S., Lukkananukool, A., & Mitchaothai, J. (2025). Influence of Trace Mineral Sources and Levels on Growth Performance, Carcass Traits, Bone Characteristics, Oxidative Stress, and Immunity of Broiler. Animals, 15(15), 2287. https://doi.org/10.3390/ani15152287