Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,444)

Search Parameters:
Keywords = stress fracture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4738 KB  
Article
Comparative Study of the Degradation of CFRP–Concrete Interfacial Bond Performance with EP and MPC Adhesives Under Sulfate Freeze–Thaw Cycles
by Qingyang Wu, Jiawei Zhang, Wei Huang, Shuhao Han, Yong Zheng, Pu Hu and Yuanchun Niu
Buildings 2025, 15(22), 4111; https://doi.org/10.3390/buildings15224111 - 14 Nov 2025
Abstract
In the saline, cold, and arid regions of Western China, the adhesive performance at the carbon fiber-reinforced polymer (CFRP)–concrete interface critically affects the long-term reliability of CFRP-strengthened structures. Replacing the organic epoxy resin (EP) with inorganic magnesium phosphate cement (MPC) has been proposed [...] Read more.
In the saline, cold, and arid regions of Western China, the adhesive performance at the carbon fiber-reinforced polymer (CFRP)–concrete interface critically affects the long-term reliability of CFRP-strengthened structures. Replacing the organic epoxy resin (EP) with inorganic magnesium phosphate cement (MPC) has been proposed as an alternative. However, comparative studies on the deterioration of MPC- and EP-bonded CFRP–concrete under sulfate freeze–thaw cycles are limited. This study employed double-shear tests to systematically compare the failure modes, ductility, and bond performance of the CFRP–concrete interface bonded with MPC and EP after 25, 50, and 75 sulfate freeze–thaw cycles. The results indicate that, as the number of cycles increased, MPC-bonded specimens exhibited progressive interfacial peeling, whereas EP-bonded specimens underwent abrupt brittle fracture. At 0, 25, 50, and 75 cycles, the peak strains of MPC specimens exceeded those of EP specimens by 9.28%, 10.13%, 5.99%, and 0.86%, respectively, indicating greater ductility. Bond performance declined markedly for both groups as cycles increased, with MPC specimens showing greater deterioration. After 75 cycles, compared with EP-bonded specimens, MPC-bonded specimens showed a 16.56% lower interfacial load capacity, a 21.53% reduction in peak bond stress, and a 6.03% shorter effective bond length. This systematic comparison of MPC- and EP-bonded CFRP–concrete under sulfate freeze–thaw exposure provides guidance for adhesive selection and strengthening practices in saline, cold, and arid regions. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 4029 KB  
Article
Temperature-Dependent Mechanical and Structural Properties of Uniaxially Strained Planar Graphene
by Sané Erasmus, Charalampos Skokos and George Kalosakas
Materials 2025, 18(22), 5179; https://doi.org/10.3390/ma18225179 - 14 Nov 2025
Abstract
Using molecular dynamics simulations of a planar graphene sheet, we investigate the temperature dependence of its mechanical behavior under uniaxial tensile stress applied either in the armchair or zigzag direction. Stress–strain curves are calculated for different temperatures, and the corresponding dependence of various [...] Read more.
Using molecular dynamics simulations of a planar graphene sheet, we investigate the temperature dependence of its mechanical behavior under uniaxial tensile stress applied either in the armchair or zigzag direction. Stress–strain curves are calculated for different temperatures, and the corresponding dependence of various elastic parameters is discussed. Fracture stress and strain, as well as the Young’s modulus, decrease almost linearly with temperature, in accordance with previous investigations. An almost linear variation in the third-order elastic modulus with temperature is demonstrated, revealing opposite trends for uniaxial loadings in the armchair or zigzag direction. The detailed dependence of the distributions of bond lengths and bond angles both on strain and temperature is presented for the first time, along with approximate analytical expressions. The latter accurately describe the numerically obtained distributions. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

19 pages, 4749 KB  
Article
Modeling Fatigue Crack Growth Under Compressive Loads: The Role of Non-Monotonic Stress and Crack Closure
by Yahya Ali Fageehi and Abdulnaser M. Alshoaibi
Crystals 2025, 15(11), 979; https://doi.org/10.3390/cryst15110979 - 14 Nov 2025
Abstract
A comprehensive numerical investigation of Fatigue Crack Growth (FCG) under negative stress ratios (R < 0) was conducted using the Finite Element Method (FEM) and the ANSYS Benchmark 19.2 SMART crack growth module on modified Compact Tension (CT) specimens. This study addresses [...] Read more.
A comprehensive numerical investigation of Fatigue Crack Growth (FCG) under negative stress ratios (R < 0) was conducted using the Finite Element Method (FEM) and the ANSYS Benchmark 19.2 SMART crack growth module on modified Compact Tension (CT) specimens. This study addresses the critical challenge posed by the compressive portion of cyclic loading, which traditional Linear Elastic Fracture Mechanics (LEFM) models often fail to capture accurately due to the complex interaction of crack closure and reversed plastic zones. The analysis focused on the evolution of the von Mises stress and maximum principal stress distributions at the crack tip across a range of stress ratios, including R = 0.1, −0.1, −0.2, −0.3, −0.4, −0.5, and −1.0. The results demonstrate a significant inverse correlation between fatigue life cycles and the magnitude of the negative stress ratio, consistent with the detrimental effect of increasing tensile stress. Crucially, the numerical simulation successfully captured the non-monotonic behavior of the crack tip stress field, revealing that the compressive load phase substantially alters the effective stress intensity factor range and the crack growth path, which was governed by the Maximum Tangential Stress (MTS) criterion. This research provides a validated computational methodology for accurately predicting FCG life in engineering components subjected to demanding, fully reversed, or compressive–dominant cyclic loading environments. Full article
(This article belongs to the Special Issue Fatigue and Fracture of Crystalline Metal Structures)
Show Figures

Figure 1

14 pages, 1985 KB  
Review
Toughening Mechanisms of Diamond-like Carbon Films via Non-Carbide Metal Doping
by Jiahao Liu, Zhifang Yang, Guangying Cui, Jiayin Lv and Xiang Yu
Lubricants 2025, 13(11), 496; https://doi.org/10.3390/lubricants13110496 - 14 Nov 2025
Abstract
The inherent brittleness and poor fracture toughness of diamond-like carbon (DLC) films significantly limit their long-term reliability in mechanical and tribological applications. Among various strategies to enhance toughness, doping with non-carbide-forming metals (e.g., Ag, Cu) has emerged as a highly effective approach due [...] Read more.
The inherent brittleness and poor fracture toughness of diamond-like carbon (DLC) films significantly limit their long-term reliability in mechanical and tribological applications. Among various strategies to enhance toughness, doping with non-carbide-forming metals (e.g., Ag, Cu) has emerged as a highly effective approach due to their ductile properties and compatibility with carbon matrices. This review comprehensively examines the underlying toughening mechanisms induced by non-carbide metal doping in DLC films. We systematically analyze how metal incorporation influences film microstructure, stress state, and crack behavior throughout the entire lifecycle—from deposition to mechanical testing. Five primary toughening mechanisms are identified and discussed: (I) bombardment-induced compressive stress relaxation during film growth; (II) refinement of carbon atomic clusters and enhancement of grain boundary sliding; (III) inhibition of dislocation accumulation through moderated carbon atom repulsion; (IV) plastic deformation, crack bridging, and strain field relaxation at crack tips; (V) shear-induced stress relief via soft metal particles. Among these, Mechanism IV (ductile phase toughening) is identified as the dominant contributor, and their synergistic action can lead to orders of magnitude improvement in wear resistance and a significant increase in crack propagation resistance. Furthermore, the critical role of doping content is emphasized, revealing an optimal concentration range (e.g., ~10–15 at.% for Ag and Cu) beyond which toughness may deteriorate due to excessive boundary formation or hardness loss. This work provides a mechanistic framework for designing toughened DLC films and guides future efforts in developing high-performance, durable carbon-based coatings. Full article
(This article belongs to the Special Issue Recent Advances in Lubricated Tribological Contacts)
Show Figures

Figure 1

19 pages, 2391 KB  
Article
Investigating the Cracking Processes and Bearing Performance of Fissured Concrete SCB Specimens via DEM-Based Mesoscopic Modeling Considering Fissure Angle, Aggregate Content and Porosity
by Qinrong Li, Suyi Liu, Yifei Li, Mingyue Qiu, Ruitong Zhang, Cheng Chen and Shuyang Yu
Materials 2025, 18(22), 5140; https://doi.org/10.3390/ma18225140 - 12 Nov 2025
Abstract
To reveal the mesoscopic fracture mechanism of fissured concrete, this study employed the discrete element method (DEM) and adopted the parallel bond model (PBM) within the two-dimensional particle flow code (PFC2D) to construct a mesoscopic model of concrete semi-circular bending (SCB) specimens with [...] Read more.
To reveal the mesoscopic fracture mechanism of fissured concrete, this study employed the discrete element method (DEM) and adopted the parallel bond model (PBM) within the two-dimensional particle flow code (PFC2D) to construct a mesoscopic model of concrete semi-circular bending (SCB) specimens with prefabricated fissures. Three sets of schemes were designed by varying prefabricated fissure angles (0–45°), aggregate contents (30–45%), and porosities (3–6%), and numerical simulations of three-point bending loads were conducted to explore the effects of each parameter on the crack propagation law and load-bearing performance of the specimens. Validation was performed by comparing the simulated load–displacement curves with the typical quasi-brittle mechanical characteristics of concrete (exhibiting “linear elastic rise–pre-peak stress fluctuation–nonlinear decline”) and verifying that the DEM could accurately capture the entire process from microcrack initiation at the aggregate–mortar interface, crack deflection/bifurcation induced by pores, to macroscopic fracture penetration—consistent with the known mesoscopic damage evolution law of concrete. The results indicate that the crack propagation mode evolves from straight extension to tortuous branching as parameters change. Moreover, the peak strength first increases and then decreases with the increase in each parameter: when the fissure angle is 15°, the aggregate content is 35%, and the porosity is 4%, the specimens achieve an optimal balance between crack propagation resistance and energy dissipation, resulting in the best load-bearing performance. Specifically, the prefabricated fissure angle dominates the stress type (tension–shear transition); aggregates regulate crack resistance through a “blocking–diverting” effect; and pores, acting as defects, influence stress concentration. This study verifies the reliability of DEM in simulating concrete fracture behavior, enriches the mesoscopic fracture theory of concrete, and provides reliable references for the optimization of concrete material proportioning (e.g., aggregate–porosity ratio adjustment) and anti-cracking design of infrastructure (e.g., pavement, tunnel linings) in engineering practices. Full article
Show Figures

Figure 1

15 pages, 1219 KB  
Article
Association Between Lower-Limb Fractures and Carpal Tunnel Syndrome: A Nationwide Population-Based Cohort Study
by Chun-Hui Chang, Hao-Yu Tseng, Wen-Tien Wu, Ru-Ping Lee, Jen-Hung Wang and Kuang-Ting Yeh
Healthcare 2025, 13(22), 2879; https://doi.org/10.3390/healthcare13222879 - 12 Nov 2025
Abstract
Background: Lower-limb fractures often require prolonged use of assistive devices, which may increase mechanical stress on the upper extremities. However, the association between lower-limb fractures and subsequent carpal tunnel syndrome (CTS) remains unclear. Methods: This nationwide population-based cohort study used Taiwan’s National Health [...] Read more.
Background: Lower-limb fractures often require prolonged use of assistive devices, which may increase mechanical stress on the upper extremities. However, the association between lower-limb fractures and subsequent carpal tunnel syndrome (CTS) remains unclear. Methods: This nationwide population-based cohort study used Taiwan’s National Health Insurance Research Database (2011–2019) to identify 10,140 patients with lower-limb fractures and 10,140 propensity score-matched controls. Cox regression analysis estimated CTS risk after adjusting for demographics and comorbidities. Results: Patients with lower-limb fractures demonstrated increased CTS risk compared to controls (adjusted hazard ratio [HR] = 1.12, 95% confidence interval [CI]: 1.003–1.26; p = 0.044), with stronger associations in males (HR = 1.28, 95% CI: 1.05–1.55) and younger adults aged 20–65 years (HR = 1.19, 95% CI: 1.03–1.38). Conclusions: Lower-limb fractures are associated with modestly increased CTS risk, particularly in males and younger patients. Though biologically plausible, this observational study cannot establish causality. Heightened clinical awareness may be warranted, though prospective validation is needed. Full article
Show Figures

Figure 1

23 pages, 7340 KB  
Article
Monocrystalline Sapphire Stress Field Analysis with Orthorhombic Crystal Orientation Under Vickers Indentation
by Zhongyang Li, Zhaohui Deng, Weiye Yang and Jimin Ge
Materials 2025, 18(22), 5136; https://doi.org/10.3390/ma18225136 - 12 Nov 2025
Viewed by 94
Abstract
As an irreplaceable optical ceramic material in energy, aviation, and commerce, sapphire is making a further expansion of its application boundaries. Owing to the anisotropy of sapphire, the material properties analysis in the fabrication process is hard but essential. Hence, aiming at investigating [...] Read more.
As an irreplaceable optical ceramic material in energy, aviation, and commerce, sapphire is making a further expansion of its application boundaries. Owing to the anisotropy of sapphire, the material properties analysis in the fabrication process is hard but essential. Hence, aiming at investigating the damage behavior of sapphire with different crystal orientations during machining, the nucleation and propagation of cracks in the orthogonal a, c, and m orientations of sapphire under Vickers indentation were explored experimentally and numerically. Firstly, the indentation morphology and indentation cracks of sapphire with different crystal orientations under different loads were studied based on a Vickers indentation tester. In general, the relative errors of the three characteristic parameters, including the half-length of indentation diagonal, the length of crack, and the maximum depth of indentation, are all within 20% between the simulation model and the indentation test results. Then, the nucleation critical loads of different cracks in sapphire under Vickers indentation are determined on the basis of the ceramic materials’ fracture mechanics theory. The critical load value of the median crack of sapphire in both A- and M-planes is less than 0.1 kgf experimentally and simulatively, while C-plane sapphire is between 1 kgf and 2 kgf. Finally, the stress field, displacement–load curve, plastic piling-up height, and dynamic propagation process during Vickers indentation are analyzed, combining the experimental results with a numerical calculation approach. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

21 pages, 13092 KB  
Article
Study on the Influence of the Mechanical Characteristics of the Cutting-Type Anti-Climbing Energy Absorber on the Collision Behavior of the GFRP Head Cover for Subways
by Xuan Liu, Ping Xu, Yifan Hu, Ying Gao and Dongtao Wang
Machines 2025, 13(11), 1043; https://doi.org/10.3390/machines13111043 - 12 Nov 2025
Viewed by 61
Abstract
Anti-climbing energy absorbers (AEAs) are often installed at the ends of subway vehicles to prevent climbing in the event of a head-on collision or rear-end collision, thereby improving safety performance. To reduce the air resistance of the vehicle during operation, the AEA is [...] Read more.
Anti-climbing energy absorbers (AEAs) are often installed at the ends of subway vehicles to prevent climbing in the event of a head-on collision or rear-end collision, thereby improving safety performance. To reduce the air resistance of the vehicle during operation, the AEA is usually wrapped with the GFRP head cover. However, the collision behavior of the head cover during a collision requires further research. The effects of mechanical properties of cutting anti-climbing energy absorbers (CAEAs) on the collision behavior of glass fiber reinforced polymer (GFRP) head covers for subway vehicles are investigated in this study. Firstly, the force–displacement curve of the CAEA was obtained through a dynamic impact test, and the finite element (FE) model of the CAEA with a GFRP head cover was constructed and verified. Subsequently, the effects of the four mechanical characteristics of the CAEA (i.e., initial peak crushing force (IPCF), platform force, compaction force, and eccentric height difference) on the collision behavior of the GFRP head cover were systematically analyzed. The results show that the increase in IPCF improves the energy absorption of CAEA, but that damage and stress concentration of the head cover at the moving end also occur. The increase in platform force induced the premature fracture of the GFRP head cover. The collision behavior of the head cover reaches a critical value when the compaction force is between 2500 and 3000 kN. Increasing the eccentric height difference between the anti-climbing teeth weakens the cutting energy absorption efficiency of CAEA and changes its deformation mode. This study can provide important insights into the design and optimization of anti-climbing energy absorbers for subway vehicles, and has important engineering value for improving the durability of the head cover and the collision safety of the vehicle. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

15 pages, 3672 KB  
Article
Direct Experimental Calibration of Hosford–Coulomb and Modified Mohr–Coulomb Damage Criteria in AHSS Using Digital Image Correlation
by Rui Pereira, Nuno Peixinho and Sérgio L. Costa
Metals 2025, 15(11), 1238; https://doi.org/10.3390/met15111238 - 11 Nov 2025
Viewed by 68
Abstract
This study presents a Digital Image Correlation (DIC)-based experimental framework for the calibration of the Hosford-Coulomb (HC) and Modified-Mohr Coulomb (MMC) damage initiation criteria in an Advanced High Strength Steel (AHSS) DP1000. Three characteristic loading conditions in sheet metal forming—pure shear, uniaxial tension, [...] Read more.
This study presents a Digital Image Correlation (DIC)-based experimental framework for the calibration of the Hosford-Coulomb (HC) and Modified-Mohr Coulomb (MMC) damage initiation criteria in an Advanced High Strength Steel (AHSS) DP1000. Three characteristic loading conditions in sheet metal forming—pure shear, uniaxial tension, and plane strain tension—were reproduced using flat specimens in a universal tensile testing machine, thus eliminating the need for costly and time-consuming tooling systems. An additional notch tension specimen was employed to validate the stress-state sensitivity of the proposed calibration approach. By integrating full-field strain data from DIC with tensile test results, stress–strain relationships were directly obtained without finite element modeling. The results confirm the effectiveness of dogbone, mini shear, and plane strain tension specimens in achieving proportional loading path histories up to fracture initiation, with constant stress state evolution during deformation. Comparison of the HC and MMC damage criteria reveals similar fracture loci, with the HC model exhibiting slightly higher resistance between shear and uniaxial tension conditions. This study discusses the suitability of a fully experimental DIC-based methodology for the calibration of stress-state-dependent damage initiation criteria. The results highlight the ability of the proposed methodology as a simplified and lower time-consuming alternative to traditional numerical assisted frameworks. Full article
(This article belongs to the Special Issue Feature Papers in Metal Failure Analysis)
Show Figures

Figure 1

18 pages, 8743 KB  
Article
Unveiling the Role of Graphite Morphology in Ductile Iron: A 3D FEM-Based Micromechanical Framework for Damage Evolution and Mechanical Performance Prediction with Applicability to Multiphase Alloys
by Jing Tao, Yufei Jiang, Shuhui Xie, Yujian Wang, Ziyue Zhou, Lingxiao Fu, Chengrong Mao, Lingyu Li, Junrui Huang and Shichao Liu
Materials 2025, 18(22), 5128; https://doi.org/10.3390/ma18225128 - 11 Nov 2025
Viewed by 111
Abstract
The mechanical performance of cast iron is strongly governed by the morphology of its graphite phase, yet establishing a quantitative link between microstructure and macroscopic properties remains a challenge. In this study, a three-dimensional finite element method (FEM)-based micromechanical framework is proposed to [...] Read more.
The mechanical performance of cast iron is strongly governed by the morphology of its graphite phase, yet establishing a quantitative link between microstructure and macroscopic properties remains a challenge. In this study, a three-dimensional finite element method (FEM)-based micromechanical framework is proposed to analyze and predict the mechanical behavior of cast iron with representative graphite morphologies, spheroidal and flake graphite. Realistic representative volume elements (RVEs) are reconstructed based on experimental microstructural characterization and literature-based X-ray computed tomography data, ensuring geometric fidelity and statistical representativeness. Cohesive zone modeling (CZM) is implemented at the graphite/matrix interface and within the graphite phase to simulate interfacial debonding and brittle fracture, respectively. Full-field simulations of plastic strain and stress evolution under uniaxial tensile loading reveal that spheroidal graphite promotes uniform deformation, delayed damage initiation, and enhanced ductility through effective stress distribution and progressive plastic flow. In contrast, flake graphite induces severe stress concentration at sharp tips, leading to early microcrack nucleation and rapid crack propagation along the flake planes, resulting in brittle-like failure. The simulated stress–strain responses and failure modes are consistent with experimental observations, validating the predictive capability of the model. This work establishes a microstructure–property relationship in multiphase alloys through a physics-informed computational approach, demonstrating the potential of FEM-based modeling as a powerful tool for performance prediction and microstructure-guided design of cast iron and other heterogeneous materials. Full article
Show Figures

Figure 1

18 pages, 4280 KB  
Article
A Damage Model for Predicting Fatigue Life of 0Cr17Ni4Cu4Nb Stainless Steel Under Near-Yield Stress-Controlled Cyclic Loading
by Xiang Cheng, Ruomin Wang, Yong Li, Zhongkang Zhou, Yingfeng Pan, He Wu and Xiaolei Chen
Coatings 2025, 15(11), 1318; https://doi.org/10.3390/coatings15111318 - 11 Nov 2025
Viewed by 126
Abstract
Fatigue damage is critical for 0Cr17Ni4Cu4Nb stainless-steel components that may operate near yield under stress-controlled cycles and occasional peak holds. This work investigates the cyclic response of 0Cr17Ni4Cu4Nb stainless-steel under near-yield-stress-controlled (NYSC) loading and proposes a unified damage framework that bridges monotonic ductile [...] Read more.
Fatigue damage is critical for 0Cr17Ni4Cu4Nb stainless-steel components that may operate near yield under stress-controlled cycles and occasional peak holds. This work investigates the cyclic response of 0Cr17Ni4Cu4Nb stainless-steel under near-yield-stress-controlled (NYSC) loading and proposes a unified damage framework that bridges monotonic ductile fracture, near-yield stress-controlled fatigue. Building on the Enhanced Lou-Yoon model, an elastic-damage term is introduced and embedded within a continuum damage mechanics framework, allowing elastic (sub-yield) and plastic (post-yield, Ultra-Low-Cycle-Fatigue/Low-Cycle-Fatigue (ULCF/LCF)) damage to be treated in a unified, path-averaged stress-state description defined by stress triaxiality and the Lode parameter. Five stress-controlled test groups are examined, with applied load amplitudes from 20.6 to 25.1 kN (equivalent stress amplitudes 858~1044 MPa) yielding fatigue lives ranging from 32 to 13,570 cycles. The extended model captures the evolution of damage origin mechanisms from elasticity-dominated to plasticity-dominated as loading severity increases, demonstrating a unified elastic-plastic damage modeling approach. As a result, it accurately predicts fatigue lives spanning two orders of magnitude with an average absolute percentage error of approximately 14.5% across all conditions. Full article
Show Figures

Figure 1

25 pages, 9232 KB  
Article
Distributed Fiber Optic Sensing for Monitoring Mining-Induced Overburden Deformation
by Shunjie Huang, Xiangrui Meng, Guangming Zhao, Xiang Cheng, Xiangqian Wang and Kangshuo Xia
Coatings 2025, 15(11), 1317; https://doi.org/10.3390/coatings15111317 - 11 Nov 2025
Viewed by 169
Abstract
The accurate real-time delineation of overburden failure zones, specifically the caved and water-conducted fracture zones, remains a significant challenge in longwall mining, as conventional monitoring methods often lack the spatial continuity and resolution for precise, full-profile strain measurement. Based on the hydrogeological data [...] Read more.
The accurate real-time delineation of overburden failure zones, specifically the caved and water-conducted fracture zones, remains a significant challenge in longwall mining, as conventional monitoring methods often lack the spatial continuity and resolution for precise, full-profile strain measurement. Based on the hydrogeological data of the E9103 working face in Hengjin Coal Mine, a numerical calculation model for the overburden strata of the E9103 working face was established to simulate and analyze the stress distribution, failure characteristics, and development height of the water-conducting fracture zones in the overburden strata of the working face. To address this problem, this study presents the application of a distributed optical fiber sensing (DOFS) system, centering on an innovative fiber installation technology. The methodology involves embedding the sensing fiber into boreholes within the overlying strata and employing grouting to achieve effective coupling with the rock mass, a critical step that restores the in situ geological environment and ensures measurement reliability. Field validation at the E9103 longwall face successfully captured the dynamic evolution of the strain field during mining. The results quantitatively identified the caved zone at a height of 13.1–16.33 m and the water-conducted fracture zone at 58–60.6 m. By detecting abrupt strain changes, the system enables the back-analysis of fracture propagation paths and the identification of potential seepage channels. This work demonstrates that the proposed DOFS-based monitoring system, with its precise spatial resolution and real-time capability, provides a robust scientific basis for the early warning of roof hazards, such as water inrushes, thereby contributing to the advancement of intelligent and safe mining practices. Full article
Show Figures

Figure 1

17 pages, 2719 KB  
Article
Predicting the Tensile Performance of 3D-Printed PE Fibre-Reinforced ECC Based on Micromechanics Model
by Binrong Zhu, Xuhua Liu, Yang Wei and Jinlong Pan
Buildings 2025, 15(22), 4058; https://doi.org/10.3390/buildings15224058 - 11 Nov 2025
Viewed by 68
Abstract
To elucidate the influence of the extrusion-based 3D printing of concrete on the tensile performance of polyethylene fibre-based engineered cementitious composites (PE-ECC), quantitative analyses of reinforcing filament alignment and pore morphology were carried out using backscattered electron (BSE) imaging and X-ray computed tomography [...] Read more.
To elucidate the influence of the extrusion-based 3D printing of concrete on the tensile performance of polyethylene fibre-based engineered cementitious composites (PE-ECC), quantitative analyses of reinforcing filament alignment and pore morphology were carried out using backscattered electron (BSE) imaging and X-ray computed tomography (X-CT). A micromechanics analytical model based on microstructural characteristics was further employed to predict the tensile response of additively manufactured PE-ECC. Due to the extrusion process, fibres in 3D-printed PE-ECC were predominantly oriented along the printing path, resulting in a smaller average inclination angle compared with the randomly distributed fibres in cast specimens. Internal pores exhibited elongated flattened ellipsoidal shapes, with more pronounced anisotropy in axial lengths across the three principal directions. Taking the major semi-axis of the equivalent ellipsoidal voids as a representative pore parameter, the analytical model accurately reproduced the cracking strength, stress-strain evolution, and crack pattern of the printed PE-ECC. This extrusion process enhanced multiple cracking capacity and strain-hardening performance by improving fibre orientation, strengthening interfacial bonding, and altering matrix fracture toughness. The integration of micromechanical modelling with experimentally measured microstructural parameters effectively revealed the intrinsic mechanisms underlying the enhanced tensile behaviour of 3D-printed PE-ECC and provides theoretical support for the optimized design of fibre-reinforced cementitious composites in 3D printing. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 9058 KB  
Article
Polyformaldehyde Fiber Shotcrete Bending Fracture Test and Finite Element Simulation Research
by Yuelong Zheng, Guangjin Wang, Bing Zhao, Menglai Wang, Yanlin Li, Shujian Li, Mingli Yuan, Mingqiang Wang and Yubo Ma
Eng 2025, 6(11), 322; https://doi.org/10.3390/eng6110322 - 11 Nov 2025
Viewed by 167
Abstract
As a support material for mine roadways, shotcrete (SC) exhibits performance limitations in extreme deep-mining environments characterized by high stress and water seepage. Polyoxymethylene (POM) fiber, with its properties of high strength, high modulus, and corrosion resistance, holds potential for application in surrounding [...] Read more.
As a support material for mine roadways, shotcrete (SC) exhibits performance limitations in extreme deep-mining environments characterized by high stress and water seepage. Polyoxymethylene (POM) fiber, with its properties of high strength, high modulus, and corrosion resistance, holds potential for application in surrounding rock support of deep roadways. To investigate the effect of POM fiber on the flexural performance of shotcrete, four-point bending tests were conducted on fiber-reinforced concrete specimens with different fiber lengths and dosages. Combined with ABAQUS numerical simulation, damage simulation analysis was performed on each group of specimens, and the stress propagation state of the fibers was tracked. The results show that the flexural strength of polyoxymethylene fiber shotcrete (PFS) increases with the increase in fiber length and dosage, and the influence of fiber dosage is more significant. POM fiber can effectively inhibit the crack development of shotcrete, enhancing its crack resistance and residual strength. The load-deflection curves indicate that PFS exhibits excellent fracture toughness, with the P9L42 group showing the highest flexural strength improvement, reaching an increase of 94%. The numerical simulation results are in good agreement with the experimental conditions, accurately reflecting the damage state and load-deflection response of each group of concrete specimens. Based on the above research, POM fiber is more conducive to meeting the stability requirements of roadway surrounding rock support, providing a scientific basis for the application of PFS in mine roadway surrounding rock support. Full article
Show Figures

Figure 1

14 pages, 8397 KB  
Communication
Investigation of Degradation Behavior and Mechanical Performance Deterioration of Magnesium Alloys in Hank’s Solution
by Hongmin Jia, Yifan Li, Shanna Xu, Yuntao Xi and Weimin Gui
Materials 2025, 18(22), 5102; https://doi.org/10.3390/ma18225102 - 11 Nov 2025
Viewed by 252
Abstract
The mechanical deterioration of Mg alloys during degradation significantly impairs their service performance as biomaterial implants. In the present study, the degradation behavior of a Mg-6Zn-0.5Cu alloy was systematically examined through electrochemical measurements and immersion tests, while the mechanical integrity was assessed via [...] Read more.
The mechanical deterioration of Mg alloys during degradation significantly impairs their service performance as biomaterial implants. In the present study, the degradation behavior of a Mg-6Zn-0.5Cu alloy was systematically examined through electrochemical measurements and immersion tests, while the mechanical integrity was assessed via tensile tests under different immersion periods. The results revealed a severe loss in mechanical properties was disproportionate to the corrosion rate. After 7 days’ immersion, the ultimate tensile strength (UTS) and elongation to failure (EL) decreased by 34.4% and 60.1%, respectively, while the corrosion rate was 0.11 mm/y based on the weight loss. This severe mechanical deterioration was primarily caused by pronounced localized corrosion, which induced aggravated local stress concentration at corrosion sites, promoting microcracks initiation and leading to premature fracture of the alloy. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop