Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = stratospheric sudden warming (SSW)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5087 KiB  
Article
SD-WACCM-X Study of Nonmigrating Tidal Responses to the 2019 Antarctic Minor SSW
by Chen-Ke-Min Teng, Zhiqiang Fan, Wei Cheng, Yusong Qin, Zhenlin Yang and Jingzhe Sun
Atmosphere 2025, 16(7), 848; https://doi.org/10.3390/atmos16070848 - 12 Jul 2025
Viewed by 242
Abstract
The 2019 Antarctic sudden stratospheric warming (SSW) is well captured by the specified dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD-WACCM-X). This SSW is dominated by a strong quasi-stationary planetary wave with zonal wavenumber 1 (SPW1) activity, and nonmigrating [...] Read more.
The 2019 Antarctic sudden stratospheric warming (SSW) is well captured by the specified dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD-WACCM-X). This SSW is dominated by a strong quasi-stationary planetary wave with zonal wavenumber 1 (SPW1) activity, and nonmigrating tides show great variations. The nonlinear interactions between SPW1 and diurnal, semidiurnal and terdiurnal migrating tides triggered by this SSW also have significant impacts on the variabilities of corresponding nonmigrating tides. This is clearly proven by the fact that the variations of the secondary nonmigrating tides, generated by the nonlinear interaction, show higher correlation during this SSW than those during the non-SSW period. Meanwhile, the SPW1 dominates the nonlinear interactions with diurnal, semidiurnal and terdiurnal migrating tides, and the corresponding secondary nonmigrating tides show concurrent increases with SPW1. In the ionosphere, the nonmigrating tidal oscillations exhibit consistent temporal variabilities with those shown in the neutral atmosphere, which demonstrates the neutral–ion coupling through nonmigrating tides and that nonmigrating tides are significant sources for the short-term ionospheric variability during this SSW event. Specifically, the enhancement of the ionospheric longitudinal wavenumber 4 structure coincides with the increase of the eastward-propagating diurnal tide with zonal wavenumber 3 (DE3), semidiurnal tide with zonal wavenumber 2 (SE2) and terdiurnal tide with zonal wavenumber 1 (TE1). Also, DE3 dominates the influence of nonmigrating tides on the ionospheric longitudinal wavenumber 4 structure during this SSW. Full article
(This article belongs to the Special Issue Ionospheric Disturbances and Space Weather)
Show Figures

Figure 1

17 pages, 5098 KiB  
Article
Dynamic Impact of the Southern Annular Mode on the Antarctic Ozone Hole Area
by Jae N. Lee and Dong L. Wu
Remote Sens. 2025, 17(5), 835; https://doi.org/10.3390/rs17050835 - 27 Feb 2025
Viewed by 772
Abstract
This study investigates the impact of dynamic variability of the Southern Hemisphere (SH) polar middle atmosphere on the ozone hole area. We analyze the influence of the southern annular mode (SAM) and planetary waves (PWs) on ozone depletion from 19 years (2005–2023) of [...] Read more.
This study investigates the impact of dynamic variability of the Southern Hemisphere (SH) polar middle atmosphere on the ozone hole area. We analyze the influence of the southern annular mode (SAM) and planetary waves (PWs) on ozone depletion from 19 years (2005–2023) of aura microwave limb sounder (MLS) geopotential height (GPH) measurements. We employ empirical orthogonal function (EOF) analysis to decompose the GPH variability into distinct spatial patterns. EOF analysis reveals a strong relationship between the first EOF (representing the SAM) and the Antarctic ozone hole area (γ = 0.91). A significant negative lag correlation between the August principal component of the second EOF (PC2) and the September SAM index (γ = −0.76) suggests that lower stratospheric wave activity in August can precondition the polar vortex strength in September. The minor sudden stratospheric warming (SSW) event in 2019 is an example of how strong wave activity can disrupt the polar vortex, leading to significant temperature anomalies and reduced ozone depletion. The coupling of PWs is evident in the lag correlation analysis between different altitudes. A “bottom-up” propagation of PWs from the lower stratosphere to the mesosphere and a potential “top-down” influence from the mesosphere to the lower stratosphere are observed with time lags of 21–30 days. These findings highlight the complex dynamics of PW propagation and their potential impact on the SAM and ozone layer. Further analysis of these correlations could improve one-month lead predictions of the SAM and the ozone hole area. Full article
Show Figures

Figure 1

17 pages, 10252 KiB  
Article
Planetary Wave Activity During 2019 Sudden Stratospheric Warming Event Revealed by ERA5 Reanalysis Data
by Yushun Yang and Haiyan Li
Remote Sens. 2024, 16(24), 4739; https://doi.org/10.3390/rs16244739 - 19 Dec 2024
Viewed by 937
Abstract
The minor sudden stratospheric warming (SSW) event and the relevant planetary waves are investigated by analyzing ERA5 reanalysis data from July to December 2019. Frequency-wavenumber spectral analysis shows that the quasi-10-day and quasi-16-day waves dominate the stratosphere over the Southern Hemispheric polar region [...] Read more.
The minor sudden stratospheric warming (SSW) event and the relevant planetary waves are investigated by analyzing ERA5 reanalysis data from July to December 2019. Frequency-wavenumber spectral analysis shows that the quasi-10-day and quasi-16-day waves dominate the stratosphere over the Southern Hemispheric polar region with the eastward-propagating wavenumber 1 during the SSW event. The corresponding amplitudes and phases of each wave mode have been fitted using the two-dimensional harmonic fitting method. The result suggests that quasi-16-day and quasi-10-day waves prior to the SSW event had an important effect on the occurrence of the SSW event. Furthermore, the Eliassen–Palm flux diagnosis shows that the quasi-16-day wave and quasi-10-day wave had poleward and equatorward-propagating components. The poleward-propagating component may have come from the tropical tropospheric convective activity. The equatorward component may have been excited by the atmospheric barotropic/baroclinic instability. Full article
Show Figures

Figure 1

12 pages, 3040 KiB  
Article
Role of QBO and MJO in Sudden Stratospheric Warmings: A Case Study
by Eswaraiah Sunkara, Kyong-Hwan Seo, Chalachew Kindie Mengist, Madineni Venkat Ratnam, Kondapalli Niranjan Kumar and Gasti Venkata Chalapathi
Atmosphere 2024, 15(12), 1458; https://doi.org/10.3390/atmos15121458 - 5 Dec 2024
Cited by 2 | Viewed by 1282
Abstract
The impact of the quasi-biennial oscillation (QBO) and Madden–Julian oscillation (MJO) on the dynamics of major sudden stratospheric warmings (SSWs) observed in the winters of 2018, 2019, and 2021 is investigated. Using data from the MERRA-2 reanalysis, we analyze the daily mean variability [...] Read more.
The impact of the quasi-biennial oscillation (QBO) and Madden–Julian oscillation (MJO) on the dynamics of major sudden stratospheric warmings (SSWs) observed in the winters of 2018, 2019, and 2021 is investigated. Using data from the MERRA-2 reanalysis, we analyze the daily mean variability of critical atmospheric parameters at the 10 hPa level, including zonal mean polar cap temperature, zonal mean zonal wind, and the amplitudes of planetary waves 1 and 2. The results reveal dramatic increases in polar cap temperature and significant wind reversals during the SSW events, particularly in 2018. The analysis of planetary wave (PW) amplitudes demonstrates intensified wave activity coinciding with the onset of SSWs, underscoring the pivotal role of PWs in these stratospheric disruptions. Further examination of outgoing long-wave radiation (OLR) anomalies highlights the influence of QBO phases on tropical convection patterns. During westerly QBO (w-QBO) phases, enhanced convective activity is observed in the western Pacific, whereas the easterly QBO (e-QBO) phase shifts convection patterns to the maritime continent and central Pacific. This modulation by QBO phases influences the MJO’s role during SSWs, affecting tropical and extra-tropical weather patterns. The day-altitude variability of upward heat flux reveals distinct spatiotemporal patterns, with pronounced warming in the polar regions and mixed heat flux patterns in low latitudes. The differences observed between the SSWs of 2017–2018 and 2018–2019 are likely related to the varying QBO phases, emphasizing the complexity of heat flux dynamics during these events. The northern annular mode (NAM) index analysis shows varied responses to SSWs, with stronger negative anomalies observed during the e-QBO phase compared to the w-QBO phases. This variability highlights the significant role of the QBO in shaping the stratospheric and tropospheric responses to SSWs, impacting surface weather patterns and the persistence of stratospheric anomalies. Overall, the study demonstrates the intricate interactions between stratospheric dynamics, QBO, and MJO during major SSW events, providing insights into the broader implications of these atmospheric phenomena on global weather patterns. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

12 pages, 2323 KiB  
Article
SuperDARN Radar Wind Observations of Eastward-Propagating Planetary Waves
by Tina Mirzaamin, Yvan J. Orsolini, Patrick J. Espy and Christian T. Rhodes
Atmosphere 2024, 15(11), 1333; https://doi.org/10.3390/atmos15111333 - 6 Nov 2024
Viewed by 889
Abstract
An array of SuperDARN meteor radars at northern high latitudes was used to investigate the sources and characteristics of eastward-propagating planetary waves (EPWs) at 95 km, with a focus on wintertime. The nine radars provided the daily mean meridional winds and their anomalies [...] Read more.
An array of SuperDARN meteor radars at northern high latitudes was used to investigate the sources and characteristics of eastward-propagating planetary waves (EPWs) at 95 km, with a focus on wintertime. The nine radars provided the daily mean meridional winds and their anomalies over 180 degrees of longitude, and these anomalies were separated into eastward and westward waves using a fast Fourier transform (FFT) method to extract the planetary wave components of zonal wavenumbers 1 and 2. Years when a sudden stratospheric warming event with an elevated stratopause (ES-SSW) occurred during the winter were contrasted with years without such events and composited through superposed epoch analysis. The results show that EPWs are a ubiquitous—and unexpected—feature of meridional wind variability near 95 km. Present even in non-ES-SSW years, they display a regular annual cycle peaking in January or February, depending on the zonal wavenumber. In years when an ES-SSW occurred, the EPWs were highly variable but enhanced before and after the onset. Full article
(This article belongs to the Special Issue Observations and Analysis of Upper Atmosphere)
Show Figures

Figure 1

15 pages, 3766 KiB  
Article
Mechanisms Underlying the Changes in Sporadic E Layers During Sudden Stratospheric Warming
by Haiyang Zheng, Hanxian Fang, Chao Xiao, Hongtao Huang, Die Duan and Ganming Ren
Atmosphere 2024, 15(10), 1258; https://doi.org/10.3390/atmos15101258 - 21 Oct 2024
Viewed by 1258
Abstract
During sudden stratospheric warming (SSW) events, significant modifications occur, not only in the neutral atmosphere, but also in the ionosphere. Specifically, sporadic E layers in the mesosphere and lower thermosphere regions significantly disrupt satellite communication. Although research has frequently focused on ionospheric alterations [...] Read more.
During sudden stratospheric warming (SSW) events, significant modifications occur, not only in the neutral atmosphere, but also in the ionosphere. Specifically, sporadic E layers in the mesosphere and lower thermosphere regions significantly disrupt satellite communication. Although research has frequently focused on ionospheric alterations during SSW events, detailed studies on sporadic E layers remain limited. Examining these variations during SSW events could enhance our understanding of the interaction mechanisms between the ionosphere and the neutral atmosphere, and provide insights into the patterns of sporadic E layer alterations. This study analyzed the behavior of sporadic E layers during the 2008/2009 winter SSW period using data from three Japanese stations and satellite observations. The principal findings included the following: (1) The enhancement in the critical frequency of the sporadic E layers was most notable following the transition from easterly to westerly winds at 60° N at a 10 hPa altitude, accompanied by quasi 6-day and quasi 16-day oscillations in frequency. (2) The daily average zonal and meridional wind speeds in the MLT region also exhibited quasi 6-day and quasi 16-day oscillations, aligning with the observed periodicities in the critical frequency of the sporadic E layers. (3) Planetary waves were shown to modulate the amplitude of diurnal and semidiurnal tides, influencing the sporadic E layers. Furthermore, a wavelet analysis of foEs data with a time resolution of 0.25 h demonstrated that planetary waves also modulate the frequency of diurnal tides, thereby affecting the sporadic E layers. This research contributes to a deeper understanding of the formation mechanisms and prediction of sporadic E layer behavior. Full article
(This article belongs to the Special Issue Ionospheric Irregularity)
Show Figures

Figure 1

23 pages, 8471 KiB  
Article
Impact of Polar Vortex Modes on Winter Weather Patterns in the Northern Hemisphere
by Alexis Mariaccia, Philippe Keckhut and Alain Hauchecorne
Atmosphere 2024, 15(9), 1062; https://doi.org/10.3390/atmos15091062 - 2 Sep 2024
Cited by 1 | Viewed by 1821 | Correction
Abstract
This study is an additional investigation of stratosphere–troposphere coupling based on the recent stratospheric winter descriptions in five distinct modes: January, February, Double, Dynamical, and Radiative. These modes, established in a previous study, categorize the main stratospheric winter typologies modulated by the timing [...] Read more.
This study is an additional investigation of stratosphere–troposphere coupling based on the recent stratospheric winter descriptions in five distinct modes: January, February, Double, Dynamical, and Radiative. These modes, established in a previous study, categorize the main stratospheric winter typologies modulated by the timing of important sudden stratospheric warmings (SSWs) and final stratospheric warmings (FSWs). The novelty of this research is to investigate the Northern Annular Mode, mean sea level pressure (MSLP) anomalies in the Ural and Aleutian regions, and the decomposition of Eliassen–Palm flux into wavenumbers 1 and 2 within each mode. The results show that the January and Double modes exhibit similar pre-warming surface signals, characterized by Ural blocking and Aleutian trough events preceding weak polar vortex events. The January mode displays a positive MSLP anomaly of +395 Pa (−191 Pa) in the Ural (Aleutian) region in December, while the Double mode shows +311 Pa (−89 Pa) in November. These modes are primarily wave-1 driven, generating tropospheric responses via negative Arctic Oscillation patterns. Conversely, the February and Dynamical modes show opposite signals, with Aleutian blocking and Ural trough events preceding strong polar vortex events. In December, the February mode exhibits MSLP anomalies of +119 Pa (Aleutian) and −180 Pa (Ural), while the Dynamical mode shows +77 Pa and −184 Pa, respectively. These modes, along with important SSWs in February and dynamical FSWs, are driven by both wave-1 and wave-2 and do not significantly impact the troposphere. The Radiative mode’s occurrence is strongly related to the Aleutian blocking presence. These findings confirm that SSW timing is influenced by specific dynamical forcing related to surface precursors and underscore its importance in subsequent tropospheric responses. This study establishes a connection between early winter tropospheric conditions and upcoming stratospheric states, potentially improving seasonal forecasts in the northern hemisphere. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

12 pages, 873 KiB  
Article
The Impact of Polar Vortex Strength on the Longitudinal Structure of the Noontime Mid-Latitude Ionosphere and Thermosphere
by Loredana Perrone and Andrey Mikhailov
Remote Sens. 2024, 16(14), 2652; https://doi.org/10.3390/rs16142652 - 20 Jul 2024
Cited by 1 | Viewed by 1009
Abstract
Ground-based ionospheric, CHAMP/STAR, and GOCE satellite neutral density ρ observations under deep solar minimum conditions were used to find whether there is a dependence of longitudinal variations on polar vortex strength. Ionospheric stations at fixed-dipole geomagnetic Φ ≈ 38° and geographic φ ≈ [...] Read more.
Ground-based ionospheric, CHAMP/STAR, and GOCE satellite neutral density ρ observations under deep solar minimum conditions were used to find whether there is a dependence of longitudinal variations on polar vortex strength. Ionospheric stations at fixed-dipole geomagnetic Φ ≈ 38° and geographic φ ≈ 40°N latitudes located in ‘near-pole’ and ‘far-from-pole’ longitudinal sectors were used in the analysis. No significant longitudinal NmF2 (electron concentration in the F2-layer maximum) dependence on the polar vortex strength was revealed. Geomagnetic control was shown to be responsible for the observed longitudinal NmF2 variations. Satellite-observed longitudinal variations in neutral density did not show any visible reaction to the polar vortex strength. However, the impact of sudden stratospheric warming (SSW) on the upper atmosphere is strong enough to change the neutral density longitudinal distribution. The impact of SSW shows a global occurrence and ‘works’ within 3–5 days in geographic coordinates in the vicinity of the SSW peak. Atomic oxygen values retrieved under ‘strong’ and ‘weak’ polar vortex strengths confirm the results obtained on longitudinal variations in NmF2 and ρ. In conclusion, no visible effects related to ‘strong’ or ‘weak’ polar vortex strengths have been revealed in either NmF2 or satellite neutral density longitudinal variations. Alternatively, such effects may be very small and therefore cannot be confirmed experimentally. Full article
Show Figures

Figure 1

17 pages, 6269 KiB  
Article
The Influence of Sudden Stratospheric Warming on the Development of Ionospheric Storms: The Alma-Ata Ground-Based Ionosonde Observations
by Galina Gordiyenko, Artur Yakovets, Yuriy Litvinov and Alexey Andreev
Atmosphere 2024, 15(6), 626; https://doi.org/10.3390/atmos15060626 - 23 May 2024
Viewed by 1012
Abstract
This paper examines the response of the ionosphere to the impact of two moderate geomagnetic storms observed on January 17 and 26–27, 2013, under conditions of strong sudden stratospheric warming. The study uses data from ground-based ionosonde measurements at the Alma-Ata ionospheric station [...] Read more.
This paper examines the response of the ionosphere to the impact of two moderate geomagnetic storms observed on January 17 and 26–27, 2013, under conditions of strong sudden stratospheric warming. The study uses data from ground-based ionosonde measurements at the Alma-Ata ionospheric station (43.25 N, 76.92 E) combined with optical observation data (The Spectral Airglow Temperature Imager (SATI)). Ionosonde data showed that the geomagnetic storms under consideration do not generate ionospheric storms but demonstrate some unusual types of diurnal foF2 variations with large (up to 60%) deviations in foF2 from median values observed during the night/morning periods on 13–15 and 20–23 January, which do not have any relation to solar or geomagnetic activity. Wave-like disturbances in ΔfoF2, Δh’F, and daily averaged foF2 values with a quasi-period of 5–8 days and peak-to-peak amplitude from about 1 MHz to 2 MHz (~from 20% to ~40%) and ~40 km are observed during the period 9–28 January, after registration of the occurrence of the major SSW event on 6–7 January. The observed variations in the OH emission rate are found to be quite similar to those observed in the ionospheric parameters that assume a community of processes in the stratosphere/mesosphere/ionosphere system. The study shows that the F region of the ionosphere is influenced by processes in the lower ionosphere, in this case by processes associated with sudden stratospheric warming SSW-2013, which led to modification of the structure of the ionosphere and compensation of processes associated with the development of the ionospheric storms. Full article
(This article belongs to the Special Issue Effect of Solar Activities to the Earth's Atmosphere)
Show Figures

Figure 1

17 pages, 1665 KiB  
Article
Impacts of the Sudden Stratospheric Warming on Equatorial Plasma Bubbles: Suppression of EPBs and Quasi-6-Day Oscillations
by Ercha Aa, Nicholas M. Pedatella and Guiping Liu
Remote Sens. 2024, 16(8), 1469; https://doi.org/10.3390/rs16081469 - 21 Apr 2024
Cited by 1 | Viewed by 1602
Abstract
This study investigates the day-to-day variability of equatorial plasma bubbles (EPBs) over the Atlantic–American region and their connections to atmospheric planetary waves during the sudden stratospheric warming (SSW) event of 2021. The investigation is conducted on the basis of the GOLD (Global Observations [...] Read more.
This study investigates the day-to-day variability of equatorial plasma bubbles (EPBs) over the Atlantic–American region and their connections to atmospheric planetary waves during the sudden stratospheric warming (SSW) event of 2021. The investigation is conducted on the basis of the GOLD (Global Observations of the Limb and Disk) observations, the ICON (Ionospheric Connection Explorer) neutral wind dataset, ionosonde measurements, and simulations from the WACCM-X (Whole Atmosphere Community Climate Model with thermosphere–ionosphere eXtension). We found that the intensity of EPBs was notably reduced by 35% during the SSW compared with the non-SSW period. Furthermore, GOLD observations and ionosonde data show that significant quasi-6-day oscillation (Q6DO) was observed in both the intensity of EPBs and the localized growth rate of Rayleigh–Taylor (R-T) instability during the 2021 SSW event. The analysis of WACCM-X simulations and ICON neutral winds reveals that the Q6DO pattern coincided with an amplification of the quasi-6-day wave (Q6DW) in WACCM-X simulations and noticeable ∼6-day periodicity in ICON zonal winds. The combination of these multi-instrument observations and numerical simulations demonstrates that certain planetary waves like the Q6DW can significantly influence the day-to-day variability of EPBs, especially during the SSW period, through modulating the strength of prereversal enhancement and the growth rate of R-T instability via the wind-driven dynamo. These findings provide novel insights into the connection between atmospheric planetary waves and ionospheric EPBs. Full article
Show Figures

Figure 1

35 pages, 9464 KiB  
Article
A Data-Driven Study of the Drivers of Stratospheric Circulation via Reduced Order Modeling and Data Assimilation
by Julie Sherman, Christian Sampson, Emmanuel Fleurantin, Zhimin Wu and Christopher K. R. T. Jones
Meteorology 2024, 3(1), 1-35; https://doi.org/10.3390/meteorology3010001 - 19 Dec 2023
Cited by 1 | Viewed by 2266
Abstract
Stratospheric dynamics are strongly affected by the absorption/emission of radiation in the Earth’s atmosphere and Rossby waves that propagate upward from the troposphere, perturbing the zonal flow. Reduced order models of stratospheric wave–zonal interactions, which parameterize these effects, have been used to study [...] Read more.
Stratospheric dynamics are strongly affected by the absorption/emission of radiation in the Earth’s atmosphere and Rossby waves that propagate upward from the troposphere, perturbing the zonal flow. Reduced order models of stratospheric wave–zonal interactions, which parameterize these effects, have been used to study interannual variability in stratospheric zonal winds and sudden stratospheric warming (SSW) events. These models are most sensitive to two main parameters: Λ, forcing the mean radiative zonal wind gradient, and h, a perturbation parameter representing the effect of Rossby waves. We take one such reduced order model with 20 years of ECMWF atmospheric reanalysis data and estimate Λ and h using both a particle filter and an ensemble smoother to investigate if the highly-simplified model can accurately reproduce the averaged reanalysis data and which parameter properties may be required to do so. We find that by allowing additional complexity via an unparameterized Λ(t), the model output can closely match the reanalysis data while maintaining behavior consistent with the dynamical properties of the reduced-order model. Furthermore, our analysis shows physical signatures in the parameter estimates around known SSW events. This work provides a data-driven examination of these important parameters representing fundamental stratospheric processes through the lens and tractability of a reduced order model, shown to be physically representative of the relevant atmospheric dynamics. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2023))
Show Figures

Figure 1

17 pages, 8096 KiB  
Article
Stratospheric Warming Events in the Period January–March 2023 and Their Impact on Stratospheric Ozone in the Northern Hemisphere
by Plamen Mukhtarov, Nikolay Miloshev and Rumiana Bojilova
Atmosphere 2023, 14(12), 1762; https://doi.org/10.3390/atmos14121762 - 29 Nov 2023
Cited by 4 | Viewed by 1752
Abstract
In this investigation, a comparison is presented between variations in temperature and ozone concentration at different altitude levels in the stratosphere for the Northern Hemisphere in the conditions of Sudden Stratospheric Warming (SSW) for the period January–March 2023. Spatial and altitude distribution of [...] Read more.
In this investigation, a comparison is presented between variations in temperature and ozone concentration at different altitude levels in the stratosphere for the Northern Hemisphere in the conditions of Sudden Stratospheric Warming (SSW) for the period January–March 2023. Spatial and altitude distribution of atmospheric characteristics derived from MERRA-2 are represented by their Fourier decomposition. A cross-correlation analysis between temperature and Total Ozone Column (TOC) is used. The longitudinal inhomogeneities in temperature, caused by stationary Planetary Waves with wavenumber 1 (SPW1), are found to be significant at altitudes around the maximum of the maximum of the ozone number density vertical distribution. As a result, it is established that the latitudinal and longitudinal distribution of TOC has a noticeable similarity with that of the temperature at altitudes close to the ozone concentration maximum. The results of correlation between temperature at individual stratospheric levels and ozone concentration show that (i) in the region around the ozone concentration maximum, the correlation is high and positive, (ii) at higher altitudes the sign of the correlation changes to negative (~37 km). The examination shows that the anomalous increases in TOC during SSW are due to an increase in ozone concentration in the altitudes between 10 km and 15 km. Full article
Show Figures

Figure 1

14 pages, 11121 KiB  
Article
Influence of Sudden Stratospheric Warmings on the Migrating Diurnal Tide in the Equatorial Middle Atmosphere Observed by Aura/Microwave Limb Sounder
by Klemens Hocke
Atmosphere 2023, 14(12), 1743; https://doi.org/10.3390/atmos14121743 - 27 Nov 2023
Cited by 3 | Viewed by 1585
Abstract
The Microwave Limb Sounder (MLS) onboard the satellite Aura measures the temperature at 01:44 LST (after midnight) and at 13:44 LST after noon in the equatorial middle atmosphere. The signatures of the migrating solar diurnal tide (DW1) show up in the difference between [...] Read more.
The Microwave Limb Sounder (MLS) onboard the satellite Aura measures the temperature at 01:44 LST (after midnight) and at 13:44 LST after noon in the equatorial middle atmosphere. The signatures of the migrating solar diurnal tide (DW1) show up in the difference between the night-time and the daytime temperature profiles. We find a good agreement between the equatorial DW1 proxy of the Aura/MLS observations and the migrating diurnal tide estimated by the Global Scale Wave Model (GSWM) in March. The equatorial DW1 proxy is shown for the time interval from 2004 to 2021 reaching a temporal resolution of 1 day. The amplitude modulations of the DW1 proxy are correlated at several altitudes. There are indications of a semi-annual and annual oscillation (SAO and AO) of the DW1 proxy. The composite of 17 events of major sudden stratospheric warmings (SSWs) shows that the equatorial, mesospheric DW1 proxy is reduced by about 10% during the first week after the SSW event. The nodes and bellies of the equatorial DW1 proxy are shifted downward by about 1–2 km in the first week after the SSW. The 14 day-oscillation of the DW1 proxy in the equatorial mesosphere is enhanced from 25 days before the SSW onset to 5 days after the SSW onset. Full article
(This article belongs to the Special Issue Observations and Analysis of Upper Atmosphere)
Show Figures

Figure 1

16 pages, 6793 KiB  
Article
Influences of Sudden Stratospheric Warming Events on Tropopause Based on GNSS Radio Occultation Data
by Yifan Wang, Ying Li, Guofang Wang, Yunbin Yuan and Hao Geng
Atmosphere 2023, 14(10), 1553; https://doi.org/10.3390/atmos14101553 - 11 Oct 2023
Cited by 3 | Viewed by 2073
Abstract
Sudden Stratospheric Warming (SSW) events have a strong impact on the tropospheric weather and climate. Past researchers have carried out extensive studies investigating the theories of interactions between the stratosphere and the troposphere. However, detailed studies on the influences of the global tropopause [...] Read more.
Sudden Stratospheric Warming (SSW) events have a strong impact on the tropospheric weather and climate. Past researchers have carried out extensive studies investigating the theories of interactions between the stratosphere and the troposphere. However, detailed studies on the influences of the global tropopause are rarely shown. This study uses Global Navigation Satellite System (GNSS) Radio Occultation (RO) data from the years 2007 to 2013 to investigate the influences of different types of SSW events on the tropopause over latitude bands from 30° S to 90° N. It was found that SSW events have strong influences on the tropopause over 60° N–90° N and over 20° N–30° N regions. In 60° N–90° N, SSW events cause a tropopause temperature increase and, therefore, a tropopause height decrease. The increment in the tropopause temperature are more than 10 K and the decrement in the tropopause height is about to 2 km during strong events. Such influences last for about 1.5 months for strong split events and about 10 days for weaker and/or displacement type events. The influences of SSW events on 20° N–30° N are weaker. Only the January 2009 SSW event shows a visible influence on the tropopause layer with a tropopause temperature decrease of about 4 K and a tropopause height increase of about 1 km. Other SSW events share no common characteristics on the tropical tropopause. This is mainly because SSW events are not strong enough to dominate the tropopause variations and other factors, especially the planetary waves in the troposphere, have stronger impacts on the tropopause layer. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

20 pages, 5618 KiB  
Article
Intriguing Aspects of Polar-to-Tropical Mesospheric Teleconnections during the 2018 SSW: A Meteor Radar Network Study
by Sunkara Eswaraiah, Kyong-Hwan Seo, Kondapalli Niranjan Kumar, Andrey V. Koval, Madineni Venkat Ratnam, Chalachew Kindie Mengist, Gasti Venkata Chalapathi, Huixin Liu, Young-Sil Kwak, Eugeny Merzlyakov, Christoph Jacobi, Yong-Ha Kim, Sarangam Vijaya Bhaskara Rao and Nicholas J. Mitchell
Atmosphere 2023, 14(8), 1302; https://doi.org/10.3390/atmos14081302 - 17 Aug 2023
Cited by 1 | Viewed by 1909
Abstract
Using a network of meteor radar observations, observational evidence of polar-to-tropical mesospheric coupling during the 2018 major sudden stratosphere warming (SSW) event in the northern hemisphere is presented. In the tropical lower mesosphere, a maximum zonal wind reversal (−24 m/s) is noted and [...] Read more.
Using a network of meteor radar observations, observational evidence of polar-to-tropical mesospheric coupling during the 2018 major sudden stratosphere warming (SSW) event in the northern hemisphere is presented. In the tropical lower mesosphere, a maximum zonal wind reversal (−24 m/s) is noted and compared with that identified in the extra-tropical regions. Moreover, a time delay in the wind reversal between the tropical/polar stations and the mid-latitudes is detected. A wide spectrum of waves with periods of 2 to 16 days and 30–60 days were observed. The wind reversal in the mesosphere is due to the propagation of dominant intra-seasonal oscillations (ISOs) of 30–60 days and the presence and superposition of 8-day period planetary waves (PWs). The ISO phase propagation is observed from high to low latitudes (60° N to 20° N) in contrast to the 8-day PW phase propagation, indicating the change in the meridional propagation of winds during SSW, hence the change in the meridional circulation. The superposition of dominant ISOs and weak 8-day PWs could be responsible for the delay of the wind reversal in the tropical mesosphere. Therefore, this study has strong implications for understanding the reversed (polar to tropical) mesospheric meridional circulation by considering the ISOs during SSW. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

Back to TopTop