Impacts of the Sudden Stratospheric Warming on Equatorial Plasma Bubbles: Suppression of EPBs and Quasi-6-Day Oscillations
Abstract
:1. Introduction
2. Observations and Simulations
3. Results
4. Conclusions
- We found that the intensity of EPBs was notably reduced by 35% during the SSW period compared with the non-SSW period. Such a significant inhibition of EPBs during the SSW period could be collectively attributed to the suppression of gravity waves seeding, changes in the dusk equatorial vertical plasma drifts and in the growth rate of the R-T instability, and the modification of Pedersen conductivity due to the variations in neutral winds. In addition to SSW, there could also be some effects due to seasonal variations and changes in solar flux.
- We found that significant Q6DO signatures were observed in both the intensity of EPBs and the associated growth rate of R-T instability during the SSW, which were coincident with the amplification of the Q6DW in the WACCM-X simulation and noticeable ∼6-day periodicity in ICON-MIGHTI zonal winds. These results demonstrate that certain planetary waves like the Q6DW can play a crucial role in controlling the day-to-day variability of EPBs, especially during the SSW event. This influence is exerted through the modulation of zonal winds and the ionospheric E-region dynamo via the interaction between planetary waves and tides, which led to periodic oscillations in the PRE strength and the growth rate of the R-T instability, ultimately resulting in the Q6DO in the intensity of EPBs. These findings provide new insights into the day-to-day variability of ionospheric irregularities and their potential correlation with atmospheric planetary waves.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forbes, J.M.; Palo, S.E.; Zhang, X. Variability of the ionosphere. J. Atmos. Sol. Terr. Phys. 2000, 62, 685–693. [Google Scholar] [CrossRef]
- Liu, H.L. Variability and predictability of the space environment as related to lower atmosphere forcing. Space Weather 2016, 14, 634–658. [Google Scholar] [CrossRef]
- Matsuno, T. A Dynamical Model of the Stratospheric Sudden Warming. J. Atmos. Sci. 1971, 28, 1479–1494. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Ayarzagüena, B.; Birner, T.; Butchart, N.; Butler, A.H.; Charlton-Perez, A.J.; Domeisen, D.I.V.; Garfinkel, C.I.; Garny, H.; Gerber, E.P.; et al. Sudden Stratospheric Warmings. Rev. Geophys. 2021, 59, e2020RG000708. [Google Scholar] [CrossRef]
- Goncharenko, L.P.; Harvey, V.L.; Liu, H.; Pedatella, N.M. Sudden Stratospheric Warming Impacts on the Ionosphere-Thermosphere System: A Review of Recent Progress. In Proceedings of the Ionosphere Dynamics and Applications; Huang, C., Lu, G., Eds.; AGU Publications: Washington, DC, USA, 2021; Volume 3, p. 369. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Chau, J.; Schmidt, H.; Goncharenko, L.; Stolle, C.; Hocke, K.; Harvey, V.; Funke, B.; Siddiqui, T. How sudden stratospheric warming affects the whole atmosphere. EOS 2018, 99, 35–38. [Google Scholar] [CrossRef]
- Forbes, J.M.; Zhang, X. Lunar tide amplification during the January 2009 stratosphere warming event: Observations and theory. J. Geophys. Res. Space Phys. 2012, 117, A12312. [Google Scholar] [CrossRef]
- Zhang, X.; Forbes, J.M. Lunar tide in the thermosphere and weakening of the northern polar vortex. Geophys. Res. Lett. 2014, 41, 8201–8207. [Google Scholar] [CrossRef]
- Chau, J.L.; Goncharenko, L.P.; Fejer, B.G.; Liu, H.L. Equatorial and Low Latitude Ionospheric Effects During Sudden Stratospheric Warming Events. Ionospheric Effects During SSW Events. Space Sci. Rev. 2012, 168, 385–417. [Google Scholar] [CrossRef]
- Chau, J.L.; Fejer, B.G.; Goncharenko, L.P. Quiet variability of equatorial E × B drifts during a sudden stratospheric warming event. Geophys. Res. Lett. 2009, 36, L05101. [Google Scholar] [CrossRef]
- Fang, T.W.; Fuller-Rowell, T.; Wang, H.; Akmaev, R.; Wu, F. Ionospheric response to sudden stratospheric warming events at low and high solar activity. J. Geophys. Res. Space Phys. 2014, 119, 7858–7869. [Google Scholar] [CrossRef]
- Fejer, B.G.; Tracy, B.D.; Olson, M.E.; Chau, J.L. Enhanced lunar semidiurnal equatorial vertical plasma drifts during sudden stratospheric warmings. Geophys. Res. Lett. 2011, 38, L21104. [Google Scholar] [CrossRef]
- Goncharenko, L.P.; Chau, J.L.; Liu, H.L.; Coster, A.J. Unexpected connections between the stratosphere and ionosphere. Geophys. Res. Lett. 2010, 37, L10101. [Google Scholar] [CrossRef]
- Maute, A.; Hagan, M.E.; Richmond, A.D.; Roble, R.G. TIME-GCM study of the ionospheric equatorial vertical drift changes during the 2006 stratospheric sudden warming. J. Geophys. Res. Space Phys. 2014, 119, 1287–1305. [Google Scholar] [CrossRef]
- Maute, A.; Fejer, B.G.; Forbes, J.M.; Zhang, X.; Yudin, V. Equatorial vertical drift modulation by the lunar and solar semidiurnal tides during the 2013 sudden stratospheric warming. J. Geophys. Res. Space Phys. 2016, 121, 1658–1668. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, L.; Ma, H.; Chen, Y.; Le, H. ICON Observations of Equatorial Ionospheric Vertical ExB and Field-Aligned Plasma Drifts During the 2020-2021 SSW. Geophys. Res. Lett. 2022, 49, e99238. [Google Scholar] [CrossRef]
- Fejer, B.G.; Olson, M.E.; Chau, J.L.; Stolle, C.; Lühr, H.; Goncharenko, L.P.; Yumoto, K.; Nagatsuma, T. Lunar-dependent equatorial ionospheric electrodynamic effects during sudden stratospheric warmings. J. Geophys. Res. Space Phys. 2010, 115, A00G03. [Google Scholar] [CrossRef]
- Park, J.; Lühr, H.; Kunze, M.; Fejer, B.G.; Min, K.W. Effect of sudden stratospheric warming on lunar tidal modulation of the equatorial electrojet. J. Geophys. Res. Space Phys. 2012, 117, A03306. [Google Scholar] [CrossRef]
- Patra, A.K.; Pavan Chaitanya, P.; Sripathi, S.; Alex, S. Ionospheric variability over Indian low latitude linked with the 2009 sudden stratospheric warming. J. Geophys. Res. Space Phys. 2014, 119, 4044–4061. [Google Scholar] [CrossRef]
- Siddiqui, T.A.; Maute, A.; Pedatella, N.; Yamazaki, Y.; Lühr, H.; Stolle, C. On the variability of the semidiurnal solar and lunar tides of the equatorial electrojet during sudden stratospheric warmings. Ann. Geophys. 2018, 36, 1545–1562. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Yumoto, K.; McNamara, D.; Hirooka, T.; Uozumi, T.; Kitamura, K.; Abe, S.; Ikeda, A. Ionospheric current system during sudden stratospheric warming events. J. Geophys. Res. Space Phys. 2012, 117, A03334. [Google Scholar] [CrossRef]
- Fagundes, P.R.; Goncharenko, L.P.; Abreu, A.J.; Venkatesh, K.; Pezzopane, M.; Jesus, R.; Gende, M.; Coster, A.J.; Pillat, V.G. Ionospheric response to the 2009 sudden stratospheric warming over the equatorial, low, and middle latitudes in the South American sector. J. Geophys. Res. Space Phys. 2015, 120, 7889–7902. [Google Scholar] [CrossRef]
- Jin, H.; Miyoshi, Y.; Pancheva, D.; Mukhtarov, P.; Fujiwara, H.; Shinagawa, H. Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations. J. Geophys. Res. Space Phys. 2012, 117, A10323. [Google Scholar] [CrossRef]
- Lin, C.H.; Lin, J.T.; Chang, L.C.; Liu, J.Y.; Chen, C.H.; Chen, W.H.; Huang, H.H.; Liu, C.H. Observations of global ionospheric responses to the 2009 stratospheric sudden warming event by FORMOSAT-3/COSMIC. J. Geophys. Res. Space Phys. 2012, 117, A06323. [Google Scholar] [CrossRef]
- Liu, H.; Yamamoto, M.; Tulasi Ram, S.; Tsugawa, T.; Otsuka, Y.; Stolle, C.; Doornbos, E.; Yumoto, K.; Nagatsuma, T. Equatorial electrodynamics and neutral background in the Asian sector during the 2009 stratospheric sudden warming. J. Geophys. Res. Space Phys. 2011, 116, A08308. [Google Scholar] [CrossRef]
- Oberheide, J. Day-to-Day Variability of the Semidiurnal Tide in the F-Region Ionosphere During the January 2021 SSW From COSMIC-2 and ICON. Geophys. Res. Lett. 2022, 49, e00369. [Google Scholar] [CrossRef]
- Pancheva, D.; Mukhtarov, P. Stratospheric warmings: The atmosphere-ionosphere coupling paradigm. J. Atmos.-Sol.-Terr. Phys. 2011, 73, 1697–1702. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Forbes, J.M. Evidence for stratosphere sudden warming-ionosphere coupling due to vertically propagating tides. Geophys. Res. Lett. 2010, 37, L11104. [Google Scholar] [CrossRef]
- Gan, Q.; Eastes, R.W.; Burns, A.G.; Wang, W.; Qian, L.; Solomon, S.C.; Codrescu, M.V.; McClintock, W.E. New Observations of Large-Scale Waves Coupling With the Ionosphere Made by the GOLD Mission: Quasi-16-Day Wave Signatures in the F-Region OI 135.6-nm Nightglow During Sudden Stratospheric Warmings. J. Geophys. Res. Space Phys. 2020, 125, e27880. [Google Scholar] [CrossRef]
- Gu, S.Y.; Li, T.; Dou, X.; Wu, Q.; Mlynczak, M.G.; Russell, J.M. Observations of Quasi-Two-Day wave by TIMED/SABER and TIMED/TIDI. J. Geophys. Res. Atmos. 2013, 118, 1624–1639. [Google Scholar] [CrossRef]
- Liu, G.; England, S.L.; Janches, D. Quasi Two-, Three-, and Six-Day Planetary-Scale Wave Oscillations in the Upper Atmosphere Observed by TIMED/SABER Over 17 Years During 2002-2018. J. Geophys. Res. Space Phys. 2019, 124, 9462–9474. [Google Scholar] [CrossRef]
- Mo, X.; Zhang, D. Quasi-10 d wave modulation of an equatorial ionization anomaly during the Southern Hemisphere stratospheric warming of 2002. Ann. Geophys. 2020, 38, 9–16. [Google Scholar] [CrossRef]
- Vineeth, C.; Pant, T.K.; Sridharan, R. Equatorial counter electrojets and polar stratospheric sudden warmings—A classical example of high latitude-low latitude coupling? Ann. Geophys. 2009, 27, 3147–3153. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Matthias, V.; Miyoshi, Y.; Stolle, C.; Siddiqui, T.; Kervalishvili, G.; Laštovička, J.; Kozubek, M.; Ward, W.; Themens, D.R.; et al. September 2019 Antarctic Sudden Stratospheric Warming: Quasi-6-Day Wave Burst and Ionospheric Effects. Geophys. Res. Lett. 2020, 47, e86577. [Google Scholar] [CrossRef]
- Yue, J.; Wang, W.; Ruan, H.; Chang, L.C.; Lei, J. Impact of the interaction between the quasi-2 day wave and tides on the ionosphere and thermosphere. J. Geophys. Res. Space Phys. 2016, 121, 3555–3563. [Google Scholar] [CrossRef]
- Forbes, J.M.; Maute, A.; Zhang, X.; Hagan, M.E. Oscillation of the Ionosphere at Planetary-Wave Periods. J. Geophys. Res. Space Phys. 2018, 123, 7634–7649. [Google Scholar] [CrossRef]
- Laštovička, J. Forcing of the ionosphere by waves from below. J. Atmos.-Sol.-Terr. Phys. 2006, 68, 479–497. [Google Scholar] [CrossRef]
- Pancheva, D.; Merzlyakov, E.; Mitchell, N.J.; Portnyagin, Y.; Manson, A.H.; Jacobi, C.; Meek, C.E.; Luo, Y.; Clark, R.R.; Hocking, W.K.; et al. Global-scale tidal variability during the PSMOS campaign of June–August 1999: Interaction with planetary waves. J. Atmos.-Sol.-Terr. Phys. 2002, 64, 1865–1896. [Google Scholar] [CrossRef]
- Lieberman, R.S.; Riggin, D.M.; Franke, S.J.; Manson, A.H.; Meek, C.; Nakamura, T.; Tsuda, T.; Vincent, R.A.; Reid, I. The 6.5-day wave in the mesosphere and lower thermosphere: Evidence for baroclinic/barotropic instability. J. Geophys. Res. Atmos. 2003, 108, 4640. [Google Scholar] [CrossRef]
- Liu, H.L.; Talaat, E.R.; Roble, R.G.; Lieberman, R.S.; Riggin, D.M.; Yee, J.H. The 6.5-day wave and its seasonal variability in the middle and upper atmosphere. J. Geophys. Res. Atmos. 2004, 109, D21112. [Google Scholar] [CrossRef]
- Talaat, E.R.; Yee, J.H.; Zhu, X. The 6.5-day wave in the tropical stratosphere and mesosphere. J. Geophys. Res. Atmos. 2002, 107, 4133. [Google Scholar] [CrossRef]
- Wu, D.L.; Hays, P.B.; Skinner, W.R. Observations of the 5-day wave in the mesosphere and lower thermosphere. Geophys. Res. Lett. 1994, 21, 2733–2736. [Google Scholar] [CrossRef]
- Gan, Q.; Oberheide, J.; Pedatella, N.M. Sources, Sinks, and Propagation Characteristics of the Quasi 6-Day Wave and Its Impact on the Residual Mean Circulation. J. Geophys. Res. Atmos. 2018, 123, 9152–9170. [Google Scholar] [CrossRef]
- Gu, S.Y.; Ruan, H.; Yang, C.Y.; Gan, Q.; Dou, X.; Wang, N. The Morphology of the 6-Day Wave in Both the Neutral Atmosphere and F Region Ionosphere Under Solar Minimum Conditions. J. Geophys. Res. Space Phys. 2018, 123, 4232–4240. [Google Scholar] [CrossRef]
- Lin, J.T.; Lin, C.H.; Rajesh, P.K.; Yue, J.; Lin, C.Y.; Matsuo, T. Local-Time and Vertical Characteristics of Quasi-6-Day Oscillation in the Ionosphere During the 2019 Antarctic Sudden Stratospheric Warming. Geophys. Res. Lett. 2020, 47, e90345. [Google Scholar] [CrossRef]
- Qin, Y.; Gu, S.Y.; Dou, X.; Gong, Y.; Chen, G.; Zhang, S.; Wu, Q. Climatology of the Quasi-6-Day Wave in the Mesopause Region and Its Modulations on Total Electron Content During 2003-2017. J. Geophys. Res. Space Phys. 2019, 124, 573–583. [Google Scholar] [CrossRef]
- Yamazaki, Y. Quasi-6-Day Wave Effects on the Equatorial Ionization Anomaly Over a Solar Cycle. J. Geophys. Res. Space Phys. 2018, 123, 9881–9892. [Google Scholar] [CrossRef]
- Chang, L.C.; Yue, J.; Wang, W.; Wu, Q.; Meier, R.R. Quasi two day wave-related variability in the background dynamics and composition of the mesosphere/thermosphere and the ionosphere. J. Geophys. Res. Space Phys. 2014, 119, 4786–4804. [Google Scholar] [CrossRef] [PubMed]
- Kil, H. The Morphology of Equatorial Plasma Bubbles—A review. J. Astron. Space Sci. 2015, 32, 13–19. [Google Scholar] [CrossRef]
- Woodman, R.F.; La Hoz, C. Radar observations of F region equatorial irregularities. J. Geophys. Res. 1976, 81, 5447–5466. [Google Scholar] [CrossRef]
- Hysell, D.L. An overview and synthesis of plasma irregularities in equatorial spread/F. J. Atmos. Sol. Terr. Phys. 2000, 62, 1037–1056. [Google Scholar] [CrossRef]
- Aa, E.; Huang, W.; Liu, S.; Ridley, A.; Zou, S.; Shi, L.; Chen, Y.; Shen, H.; Yuan, T.; Li, J.; et al. Midlatitude Plasma Bubbles Over China and Adjacent Areas During a Magnetic Storm on 8 September 2017. Space Weather 2018, 16, 321–331. [Google Scholar] [CrossRef]
- Aa, E.; Zou, S.; Ridley, A.; Zhang, S.; Coster, A.J.; Erickson, P.J.; Liu, S.; Ren, J. Merging of Storm Time Midlatitude Traveling Ionospheric Disturbances and Equatorial Plasma Bubbles. Space Weather 2019, 17, 285–298. [Google Scholar] [CrossRef]
- Abdu, M.A.; Batista, P.P.; Batista, I.S.; Brum, C.G.M.; Carrasco, A.J.; Reinisch, B.W. Planetary wave oscillations in mesospheric winds, equatorial evening prereversal electric field and spread F. Geophys. Res. Lett. 2006, 33, L07107. [Google Scholar] [CrossRef]
- Huang, C.S.; Hairston, M.R. The postsunset vertical plasma drift and its effects on the generation of equatorial plasma bubbles observed by the C/NOFS satellite. J. Geophys. Res. Space Phys. 2015, 120, 2263–2275. [Google Scholar] [CrossRef]
- Huba, J.D.; Joyce, G. Global modeling of equatorial plasma bubbles. Geophys. Res. Lett. 2010, 37, L17104. [Google Scholar] [CrossRef]
- Karan, D.K.; Eastes, R.W.; Daniell, R.E.; Martinis, C.R.; McClintock, W.E. GOLD Mission’s Observation About the Geomagnetic Storm Effects on the Nighttime Equatorial Ionization Anomaly (EIA) and Equatorial Plasma Bubbles (EPB) During a Solar Minimum Equinox. Space Weather 2023, 21, e2022SW003321. [Google Scholar] [CrossRef]
- Klenzing, J.; Halford, A.J.; Liu, G.; Smith, J.M.; Zhang, Y.; Zawdie, K.; Maruyama, N.; Pfaff, R.; Bishop, R.L. A system science perspective of the drivers of equatorial plasma bubbles. Front. Astron. Space Sci. 2023, 9, 420. [Google Scholar] [CrossRef]
- Li, G.; Ning, B.; Liu, L.; Wan, W.; Liu, J.Y. Effect of magnetic activity on plasma bubbles over equatorial and low-latitude regions in East Asia. Ann. Geophys. 2009, 27, 303–312. [Google Scholar] [CrossRef]
- Makela, J.J.; Vadas, S.L.; Muryanto, R.; Duly, T.; Crowley, G. Periodic spacing between consecutive equatorial plasma bubbles. Geophys. Res. Lett. 2010, 37, L14103. [Google Scholar] [CrossRef]
- Otsuka, Y.; Shiokawa, K.; Ogawa, T.; Wilkinson, P. Geomagnetic conjugate observations of equatorial airglow depletions. Geophys. Res. Lett. 2002, 29, 1753. [Google Scholar] [CrossRef]
- Yokoyama, T.; Shinagawa, H.; Jin, H. Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model. J. Geophys. Res. Space Phys. 2014, 119, 10474–10482. [Google Scholar] [CrossRef]
- Kelley, M.C. Equatorial Plasma Instabilities. In The Earth’s Ionosphere: Plasma Physics and Electrodynamics; Kelley, M.C., Ed.; Academic Press: Cambridge, MA, USA, 1989; pp. 113–185. [Google Scholar] [CrossRef]
- Ott, E. Theory of Rayleigh-Taylor bubbles in the equatorial ionosphere. J. Geophys. Res. 1978, 83, 2066–2070. [Google Scholar] [CrossRef]
- Sultan, P.J. Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. J. Geophys. Res. 1996, 101, 26875–26892. [Google Scholar] [CrossRef]
- Abadi, P.; Otsuka, Y.; Tsugawa, T. Effects of pre-reversal enhancement of E × B drift on the latitudinal extension of plasma bubble in Southeast Asia. Earth Planets Space 2015, 67, 74. [Google Scholar] [CrossRef]
- Fejer, B.G.; Scherliess, L.; de Paula, E.R. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J. Geophys. Res. 1999, 104, 19859–19870. [Google Scholar] [CrossRef]
- Huang, C.S. Effects of the postsunset vertical plasma drift on the generation of equatorial spread F. Prog. Earth Planet. Sci. 2018, 5, 3. [Google Scholar] [CrossRef]
- Aa, E.; Zou, S.; Liu, S. Statistical Analysis of Equatorial Plasma Irregularities Retrieved From Swarm 2013-2019 Observations. J. Geophys. Res. Space Phys. 2020, 125, e27022. [Google Scholar] [CrossRef]
- Burke, W.J.; Gentile, L.C.; Huang, C.Y.; Valladares, C.E.; Su, S.Y. Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1. J. Geophys. Res. Space Phys. 2004, 109, A12301. [Google Scholar] [CrossRef]
- Gentile, L.C.; Burke, W.J.; Rich, F.J. A global climatology for equatorial plasma bubbles in the topside ionosphere. Ann. Geophys. 2006, 24, 163–172. [Google Scholar] [CrossRef]
- Smith, J.; Heelis, R.A. Equatorial plasma bubbles: Variations of occurrence and spatial scale in local time, longitude, season, and solar activity. J. Geophys. Res. Space Phys. 2017, 122, 5743–5755. [Google Scholar] [CrossRef]
- Su, S.Y.; Chao, C.K.; Liu, C.H. On monthly/seasonal/longitudinal variations of equatorial irregularity occurrences and their relationship with the postsunset vertical drift velocities. J. Geophys. Res. Space Phys. 2008, 113, A05307. [Google Scholar] [CrossRef]
- Wan, X.; Xiong, C.; Rodriguez-Zuluaga, J.; Kervalishvili, G.N.; Stolle, C.; Wang, H. Climatology of the Occurrence Rate and Amplitudes of Local Time Distinguished Equatorial Plasma Depletions Observed by Swarm Satellite. J. Geophys. Res. Space Phys. 2018, 123, 3014–3026. [Google Scholar] [CrossRef]
- Abdu, M.A. Day-to-day and short-term variabilities in the equatorial plasma bubble/spread F irregularity seeding and development. Prog. Earth Planet. Sci. 2019, 6, 11. [Google Scholar] [CrossRef]
- Retterer, J.M.; Roddy, P. Faith in a seed: On the origins of equatorial plasma bubbles. Ann. Geophys. 2014, 32, 485–498. [Google Scholar] [CrossRef]
- Tsunoda, R.T. On the enigma of day-to-day variability in equatorial spread F. Geophys. Res. Lett. 2005, 32, L08103. [Google Scholar] [CrossRef]
- Tsunoda, R.T. Day-to-day variability in equatorial spread F: Is there some physics missing? Geophys. Res. Lett. 2006, 33, L16106. [Google Scholar] [CrossRef]
- de Paula, E.R.; Jonah, O.F.; Moraes, A.O.; Kherani, E.A.; Fejer, B.G.; Abdu, M.A.; Muella, M.T.A.H.; Batista, I.S.; Dutra, S.L.G.; Paes, R.R. Low-latitude scintillation weakening during sudden stratospheric warming events. J. Geophys. Res. Space Phys. 2015, 120, 2212–2221. [Google Scholar] [CrossRef]
- Yu, T.; Ye, H.; Liu, H.; Xia, C.; Zuo, X.; Yan, X.; Yang, N.; Sun, Y.; Zhao, B. Ionospheric F Layer Scintillation Weakening as Observed by COSMIC/FORMOSAT-3 During the Major Sudden Stratospheric Warming in January 2013. J. Geophys. Res. Space Phys. 2020, 125, e27721. [Google Scholar] [CrossRef]
- Ye, H.; Xue, X.; Yu, T.; Sun, Y.Y.; Yi, W.; Long, C.; Zhang, W.; Dou, X. Ionospheric F-Layer Scintillation Variabilities Over the American Sector During Sudden Stratospheric Warming Events. Space Weather 2021, 19, e2020SW002703. [Google Scholar] [CrossRef]
- Jose, L.; Vineeth, C.; Pant, T.K. Impact of Stratospheric Sudden Warming on the Occurrence of the Equatorial Spread-F. J. Geophys. Res. Space Phys. 2017, 122, 12544–12555. [Google Scholar] [CrossRef]
- Abdu, M.A.; Brum, C.G.; Batista, P.P.; Gurubaran, S.; Pancheva, D.; Bageston, J.V.; Batista, I.S.; Takahashi, H. Fast and ultrafast Kelvin wave modulations of the equatorial evening F region vertical drift and spread F development. Earth Planets Space 2015, 67, 1. [Google Scholar] [CrossRef]
- Ghosh, P.; Otsuka, Y.; Mani, S.; Shinagawa, H. Day-to-day variation of pre-reversal enhancement in the equatorial ionosphere based on GAIA model simulations. Earth Planets Space 2020, 72, 93. [Google Scholar] [CrossRef]
- Liu, H.L. Day-to-Day Variability of Prereversal Enhancement in the Vertical Ion Drift in Response to Large-Scale Forcing From the Lower Atmosphere. Space Weather 2020, 18, e02334. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Aa, E.; Maute, A. Quasi 6-Day Planetary Wave Oscillations in Equatorial Plasma Irregularities. J. Geophys. Res. Space Phys. 2024, 129, e2023JA032312. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Diéval, C. Modeling of Planetary Wave Influences on the Pre reversal Enhancement of the Equatorial F Region Vertical Plasma Drift. Space Weather 2021, 19, e02685. [Google Scholar] [CrossRef]
- Aa, E.; Zhang, S.R.; Liu, G.; Eastes, R.W.; Wang, W.; Karan, D.K.; Qian, L.; Coster, A.J.; Erickson, P.J.; Derghazarian, S. Statistical Analysis of Equatorial Plasma Bubbles Climatology and Multi-Day Periodicity Using GOLD Observations. Geophys. Res. Lett. 2023, 50, e2023GL103510. [Google Scholar] [CrossRef]
- Eastes, R.W.; McClintock, W.E.; Burns, A.G.; Anderson, D.N.; Andersson, L.; Codrescu, M.; Correira, J.T.; Daniell, R.E.; England, S.L.; Evans, J.S.; et al. The Global-Scale Observations of the Limb and Disk (GOLD) Mission. Space Sci. Rev. 2017, 212, 383–408. [Google Scholar] [CrossRef]
- Eastes, R.W.; Solomon, S.C.; Daniell, R.E.; Anderson, D.N.; Burns, A.G.; England, S.L.; Martinis, C.R.; McClintock, W.E. Global-Scale Observations of the Equatorial Ionization Anomaly. Geophys. Res. Lett. 2019, 46, 9318–9326. [Google Scholar] [CrossRef]
- Aa, E.; Zou, S.; Eastes, R.; Karan, D.K.; Zhang, S.R.; Erickson, P.J.; Coster, A.J. Coordinated Ground-Based and Space-Based Observations of Equatorial Plasma Bubbles. J. Geophys. Res. Space Phys. 2020, 125, e27569. [Google Scholar] [CrossRef]
- Aa, E.; Zhang, S.R.; Erickson, P.J.; Wang, W.; Qian, L.; Cai, X.; Coster, A.J.; Goncharenko, L.P. Significant Mid- and Low-Latitude Ionospheric Disturbances Characterized by Dynamic EIA, EPBs, and SED Variations During the 13–14 March 2022 Geomagnetic Storm. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031375. [Google Scholar] [CrossRef]
- Eastes, R.W.; McClintock, W.E.; Burns, A.G.; Anderson, D.N.; Andersson, L.; Aryal, S.; Budzien, S.A.; Cai, X.; Codrescu, M.V.; Correira, J.T.; et al. Initial Observations by the GOLD Mission. J. Geophys. Res. Space Phys. 2020, 125, e27823. [Google Scholar] [CrossRef]
- Martinis, C.; Daniell, R.; Eastes, R.; Norrell, J.; Smith, J.; Klenzing, J.; Solomon, S.; Burns, A. Longitudinal Variation of Postsunset Plasma Depletions From the Global Scale Observations of the Limb and Disk (GOLD) Mission. J. Geophys. Res. Space Phys. 2021, 126, e28510. [Google Scholar] [CrossRef]
- Immel, T.J.; England, S.L.; Mende, S.B.; Heelis, R.A.; Englert, C.R.; Edelstein, J.; Frey, H.U.; Korpela, E.J.; Taylor, E.R.; Craig, W.W.; et al. The Ionospheric Connection Explorer Mission: Mission Goals and Design. Space Sci. Rev. 2018, 214, 13. [Google Scholar] [CrossRef] [PubMed]
- Harding, B.J.; Makela, J.J.; Englert, C.R.; Marr, K.D.; Harlander, J.M.; England, S.L.; Immel, T.J. The MIGHTI Wind Retrieval Algorithm: Description and Verification. Space Sci. Rev. 2017, 212, 585–600. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; England, S.L.; Lin, C.S.; Pedatella, N.M.; Klenzing, J.H.; Englert, C.R.; Harding, B.J.; Immel, T.J.; Rowland, D.E. Evaluation of Atmospheric 3-Day Waves as a Source of Day-to-Day Variation of the Ionospheric Longitudinal Structure. Geophys. Res. Lett. 2021, 48, e94877. [Google Scholar] [CrossRef]
- Liu, H.L.; Bardeen, C.G.; Foster, B.T.; Lauritzen, P.; Liu, J.; Lu, G.; Marsh, D.R.; Maute, A.; McInerney, J.M.; Pedatella, N.M.; et al. Development and Validation of the Whole Atmosphere Community Climate Model with Thermosphere and Ionosphere Extension (WACCM-X 2.0). J. Adv. Model. Earth Syst. 2018, 10, 381–402. [Google Scholar] [CrossRef]
- Pedatella, N.M. Ionospheric Variability during the 2020-2021 SSW: COSMIC-2 Observations and WACCM-X Simulations. Atmosphere 2022, 13, 368. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Heelis, R.A.; Lowell, J.K.; Spiro, R.W. A model of the high-latitude ionospheric convection pattern. J. Geophys. Res. 1982, 87, 6339–6345. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, D.; Sun, S.; Hao, Y.; Xiao, Z. Ionospheric Semidiurnal Lunitidal Perturbations During the 2021 Sudden Stratospheric Warming Event: Latitudinal and Inter-Hemispheric Variations in the American, Asian-Australian, and African-European Sectors. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030313. [Google Scholar] [CrossRef]
- Nayak, C.; Yiǧit, E. Variation of Small-Scale Gravity Wave Activity in the Ionosphere During the Major Sudden Stratospheric Warming Event of 2009. J. Geophys. Res. Space Phys. 2019, 124, 470–488. [Google Scholar] [CrossRef]
- Thurairajah, B.; Bailey, S.M.; Cullens, C.Y.; Hervig, M.E.; Russell, J.M. Gravity wave activity during recent stratospheric sudden warming events from SOFIE temperature measurements. J. Geophys. Res. Atmos. 2014, 119, 8091–8103. [Google Scholar] [CrossRef]
- Yamashita, C.; Liu, H.L.; Chu, X. Gravity wave variations during the 2009 stratospheric sudden warming as revealed by ECMWF-T799 and observations. Geophys. Res. Lett. 2010, 37, L22806. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Liu, H.L. The influence of atmospheric tide and planetary wave variability during sudden stratosphere warmings on the low latitude ionosphere. J. Geophys. Res. Space Phys. 2013, 118, 5333–5347. [Google Scholar] [CrossRef]
- Maruyama, T. A diagnostic model for equatorial spread F. 1. Model description and application to electric field and neutral wind effects. J. Geophys. Res. 1988, 93, 14611–14622. [Google Scholar] [CrossRef]
- Aa, E.; Zhang, S.R.; Coster, A.J.; Erickson, P.J.; Rideout, W. Multi-instrumental analysis of the day-to-day variability of equatorial plasma bubbles. Front. Astron. Space Sci. 2023, 10, 1167245. [Google Scholar] [CrossRef]
- Das, S.K.; Patra, A.K.; Niranjan, K. On the Assessment of Day To Day Occurrence of Equatorial Plasma Bubble. J. Geophys. Res. Space Phys. 2021, 126, e29129. [Google Scholar] [CrossRef]
- Otsuka, Y. Review of the generation mechanisms of post-midnight irregularities in the equatorial and low-latitude ionosphere. Prog. Earth Planet. Sci. 2018, 5, 57. [Google Scholar] [CrossRef]
- Huba, J.D.; Bernhardt, P.A.; Ossakow, S.L.; Zalesak, S.T. The Rayleigh-Taylor instability is not damped by recombination in the F region. J. Geophys. Res. 1996, 101, 24553–24556. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. 2002, 107, 1468. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aa, E.; Pedatella, N.M.; Liu, G. Impacts of the Sudden Stratospheric Warming on Equatorial Plasma Bubbles: Suppression of EPBs and Quasi-6-Day Oscillations. Remote Sens. 2024, 16, 1469. https://doi.org/10.3390/rs16081469
Aa E, Pedatella NM, Liu G. Impacts of the Sudden Stratospheric Warming on Equatorial Plasma Bubbles: Suppression of EPBs and Quasi-6-Day Oscillations. Remote Sensing. 2024; 16(8):1469. https://doi.org/10.3390/rs16081469
Chicago/Turabian StyleAa, Ercha, Nicholas M. Pedatella, and Guiping Liu. 2024. "Impacts of the Sudden Stratospheric Warming on Equatorial Plasma Bubbles: Suppression of EPBs and Quasi-6-Day Oscillations" Remote Sensing 16, no. 8: 1469. https://doi.org/10.3390/rs16081469
APA StyleAa, E., Pedatella, N. M., & Liu, G. (2024). Impacts of the Sudden Stratospheric Warming on Equatorial Plasma Bubbles: Suppression of EPBs and Quasi-6-Day Oscillations. Remote Sensing, 16(8), 1469. https://doi.org/10.3390/rs16081469