Influences of Sudden Stratospheric Warming Events on Tropopause Based on GNSS Radio Occultation Data
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Determination of SSW Onset Date
2.3. Analysis Methodology
3. Responses of Global Tropopause to SSW
3.1. Temperature Variations over Latitudinal Bands
3.2. Temporal Series of Tropopause Height and Temperature Anomalies
3.3. Tropopause Variations during Different Stages of SSW
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McInturff, R.M. Stratospheric Warmings: Synoptic, Dynamic and General-Circulation Aspects; NASA-RP-1017; NASA Reference Publication: Washington, DC, USA, 1978; Volume 174, pp. 1–175. [Google Scholar]
- Butler, A.H.; Seidel, D.J.; Hardiman, S.C.; Butchart, N.; Birner, T.; Match, A. Defining sudden stratospheric warmings. Bull. Am. Meteorol. Soc. 2015, 96, 1913–1928. [Google Scholar] [CrossRef]
- Charlton, A.J.; Polvani, L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Clim. 2007, 20, 449–469. [Google Scholar] [CrossRef]
- Hitchcock, P.; Simpson, I.R. The downward influence of stratospheric sudden warmings. J. Atmos. Sci. 2014, 71, 3856–3876. [Google Scholar] [CrossRef]
- Eguchi, N.; Kodera, K.; Nasuno, T. A global non-hydrostatic model study of a downward coupling through the tropical tropopause layers during a stratospheric sudden warming. Atmos. Chem. Phys. 2015, 15, 297–304. [Google Scholar] [CrossRef]
- Vignon, E.; Mitchell, D.M. The stratopause evolution during types of sudden stratospheric warming event. Clim. Dyn. 2015, 44, 3323–3337. [Google Scholar] [CrossRef]
- Holt, L.A.; Randall, C.E.; Peck, E.D.; Marsh, D.R.; Smith, A.K.; Harvey, V.L. The influence of major sudden stratospheric warming and elevated stratopause events on the effects of energetic particle precipitation in WACCM. J. Geophys. Res.—Atmos. 2013, 118, 11636–11646. [Google Scholar] [CrossRef]
- Flury, T.; Hocke, K.; Haefele, A.; Kämpfer, N.; Lehmann, R. Ozone depletion, water vapor increase, and PSC generation at midlatitudes by the 2008 major stratospheric warming. J. Geophys. Res. 2009, 114, D18302. [Google Scholar] [CrossRef]
- Kakoti, G.; Kalita, B.R.; Bhuyan, P.K.; Baruah, S.; Wang, K. Longitudinal and interhemispheric ionospheric response to 2009 and 2013 SSW events in the African-European and Indian-East Asian sectors. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028570. [Google Scholar] [CrossRef]
- Liu, G.; Huang, W.; Shen, H.; Aa, E.; Li, M.; Liu, S.; Luo, B. Ionospheric response to the 2018 sudden stratospheric warming event at middle- and low-latitude stations over China sector. Space Weather. 2019, 17, 1230–1240. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Nikulin, G. A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010. Atmos. Chem. Phys. 2012, 12, 8115–8129. [Google Scholar] [CrossRef]
- Andrews, D.G.; Holton, J.G.; Leovy, C.B. Middle Atmospheres Dynamics; Academic Press: San Diego, CA, USA, 1987. [Google Scholar]
- Schoeberl, M.R. Stratospheric warmings: Observations and theory. Rev. Geophys. 1978, 16, 521–538. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Dunkerton, T.J. Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res. 1999, 4, 30937–30946. [Google Scholar] [CrossRef]
- Ambaum, M.H.P.; Hoskins, B.J. The NAO troposphere stratosphere connection. J. Clim. 2002, 15, 1969–1978. [Google Scholar] [CrossRef]
- Cai, M.; Ren, R.-C. Meridional and downward propagation of atmospheric circulation anomalies. Part I: Northern Hemisphere cold season variability. J. Atmos. Sci. 2007, 64, 1880–1901. [Google Scholar] [CrossRef]
- Scott, R.K.; Polvani, L.M. Stratospheric control of upward wave flux near the tropopause. Geophys. Res. Lett. 2004, 31, 685. [Google Scholar] [CrossRef]
- Scott, R.K.; Polvani, L.M. Internal Variability of the Winter Stratosphere. Part I: Time-Independent Forcing. J. Atmos. Sci. 2006, 63, 2758–2776. [Google Scholar] [CrossRef]
- Matthewman, N.J.; Esler, J.G. Stratospheric Sudden Warmings as Self-Tuning Resonances. Part I: Vortex Splitting Events. J. Atmos. Sci 2011, 68, 2481–2504. [Google Scholar] [CrossRef]
- Lindgren, E.A.; Sheshadri, A. The role of wave–wave interactions in sudden stratospheric warming formation. Weather. Clim. Dyn. 2020, 1, 93–109. [Google Scholar] [CrossRef]
- Lindgren, E.A.; Sheshadri, A.; Plumb, R.A. Sudden Stratospheric Warming Formation in an Idealized General Circulation Model Using Three Types of Tropospheric Forcing. J. Geophys. Res.—Atmos. 2018, 123, 10125–10139. [Google Scholar] [CrossRef]
- Birner, T.; Thompson, D.W.J.; Shepherd, T.G. Up-gradient eddy fluxes of potential vorticity near the subtropical jet. Geophys. Res. Lett. 2013, 40, 5988–5993. [Google Scholar] [CrossRef]
- Dunn-Sigouin, E.; Shaw, T. Dynamics of anomalous stratospheric eddy heat flux events in an idealized model. J. Atmos. Sci. 2020, 77, 6. [Google Scholar] [CrossRef]
- Rao, J.; Garfinkel, C.; Chen, H.; White, I. The 2019 new year stratospheric sudden warming and its real-time predictions in multiple S2S models. J. Geophys. Res.—Atmos. 2019, 124, 11155–11174. [Google Scholar] [CrossRef]
- Rao, J.; Ren, R.; Chen, H.; Liu, X.; Yu, Y.; Hu, J.; Zhou, Y. Predictability of stratospheric sudden warmings in the Beijing Climate Center forecast system with statistical error corrections. J. Geophys. Res.—Atmos. 2019, 124, 5385–8400. [Google Scholar] [CrossRef]
- White, I.; Garfinkel, C.I.; Gerber, E.P.; Jucker, M.; Aquila, V.; Oman, L.D. The downward influence of sudden stratospheric warmings: Association with tropospheric precursors. J. Clim. 2019, 32, 85–108. [Google Scholar] [CrossRef] [PubMed]
- Black, R.X.; McDaniel, B.A. Diagnostic case studies of the Northern Annular Mode. J. Clim. 2004, 17, 3990–4004. [Google Scholar] [CrossRef]
- Boljka, L.; Birner, T. Tropopause-level planetary wave source and its role in two-way troposphere-stratosphere coupling. Weather. Clim. Dyn. 2020, 1, 555–575. [Google Scholar] [CrossRef]
- Plumb, A.; Eluszkiewic, J. The Brewer–Dobson circulation: Dynamics of the tropical upwelling. J. Atmos. Sci. 1999, 56, 868–890. [Google Scholar] [CrossRef]
- Hartley, D.E.; Villarin, J.T.; Black, R.X.; Davis, C.A. A new perspective on the dynamical link between the stratosphere and troposphere. Nature 1998, 391, 471–474. [Google Scholar] [CrossRef]
- Black, R.X. Stratospheric forcing of surface climate in the Arctic Oscillation. J. Clim. 2002, 15, 268–277. [Google Scholar] [CrossRef]
- Holton, J.R.; Tan, H.-C. The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci. 1980, 37, 2200–2208. [Google Scholar] [CrossRef]
- Haynes, P.H.; Marks, C.J.; McIntyre, M.E.; Shepherd, T.G.; Shine, K.P. On the ‘‘downward control’’ of extratropical diabetic circulations by eddy-induced mean zonal forces. J. Atmos. Sci. 1991, 48, 651–678. [Google Scholar] [CrossRef]
- Song, Y.; Robinson, W.A. Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci. 2004, 61, 1711–1725. [Google Scholar] [CrossRef]
- Simpson, I.R.; Blackburn, M.; Haigh, J.D. The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci. 2009, 66, 1347–1365. [Google Scholar] [CrossRef]
- Tomassini, L.; Gerber, E.P.; Baldwin, M.P.; Bunzel, F.; Giorgetta, M. The role of stratosphere-troposphere coupling in the occurrence of extreme winter cold spells over northern Europe. J. Adv. Model. Earth Syst. 2012, 4, M00A03. [Google Scholar] [CrossRef]
- Resmi, E.A.; Mohanakumar, K.; Appu, K.S. Effect of polar sudden stratospheric warming on the tropical stratosphere and troposphere and its surface signatures over the Indian region. J. Atmos. Sol. Terr. Phys. 2013, 105, 15–29. [Google Scholar] [CrossRef]
- Kursinski, E.R.; Hajj, G.A.; Schofield, J.T.; Linfield, R.P.; Hardy, K.R. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Hajj, G.A.; Kursinski, E.R.; Romans, L.J.; Bertiger, W.I.; Leroy, S.S. A technical description of atmospheric sounding by GPS occultation. J. Atmos. Sol. Terr. Phys. 2002, 64, 451–469. [Google Scholar] [CrossRef]
- Healy, S.B.; Eyre, J.R. Retrieving temperature, water vapour and surface pressure information from refractive-index profiles derived by radio occultation: A simulation study. Q. J. R. Meteorol. Soc. 2000, 126, 1661–1683. [Google Scholar] [CrossRef]
- Steiner, A.K.; Lackner, B.C.; Ladstädter, F.; Scherllin-Pirscher, B.; Foelsche, U.; Kirchengast, G. GPS radio occultation for climate monitoring and change detection. Radio Sci. 2011, 46, RS0D24. [Google Scholar] [CrossRef]
- Schmidt, T.; Wickert, J.; Haser, A. Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures. Adv. Space Res. 2010, 46, 150–161. [Google Scholar] [CrossRef]
- Ho, S.-P.; Hunt, D.; Steiner, A.K.; Mannucci, A.J.; Kirchengast, G.; Gleisner, H.; Heise, S.; von Engeln, A.; Marquardt, C.; Sokolovskiy, S.; et al. Reproducibility of GPS radio occultation data for climate monitoring: Profile-to-profile inter-comparison of CHAMP climate records 2002 to 2008 from six data centers. J. Geophys. Res. 2012, 117, D18111. [Google Scholar] [CrossRef]
- ROM-SAF. Algorithm Theoretical Baseline Document: Level 2A Refractivity Profiles Version 1.6. 2018. Available online: http://www.romsaf.org/product_documents.php (accessed on 15 August 2023).
- ROM-SAF. Algorithm Theoretical Baseline Document: Level 2B and 2C 1DVar Products Version 3.1. 2018. Available online: http://www.romsaf.org/product_documents.php (accessed on 15 August 2023).
- ROM-SAF. Algorithm Theoretical Baseline Document Version 2.3. 2021. Available online: http://www.romsaf.org/product_documents.php (accessed on 15 August 2023).
- Hu, J.; Ren, R.; Xu, H. Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. J. Atmos. Sci. 2015, 71, 2319–2334. [Google Scholar] [CrossRef]
- Mitchell, D.M.; Gray, L.J.; Anstey, J.; Baldwin, M.P.; Charlton-Perez, A.J. The influence of stratospheric vortex displacements and splits on surface climate. J. Clim. 2013, 26, 2668–2682. [Google Scholar] [CrossRef]
- Li, Y.; Kirchengast, G.; Schwaerz, M.; Ladstädter, F.; Yuan, Y.-B. Monitoring Sudden Stratospheric Warmings using radio occultation: A new approach demonstrated based on the 2009 event. Atmos. Meas. Tech. 2021, 14, 2327–2343. [Google Scholar] [CrossRef]
- Manney, G.L.; Lawrence, Z.D.; Santee, M.L.; Read, W.G.; Livesey, N.J.; Lambert, A.; Froidevaux, L.; Pumphrey, H.C.; Schwartz, M.J. A minor sudden stratospheric warming with a major impact: Transport and polar processing in the 2014/2015 Arctic winter. Geophys. Res. Lett. 2015, 42, 7808–7816. [Google Scholar] [CrossRef]
- Kodera, K. Influence of stratospheric sudden warming on the equatorial troposphere. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Yoshida, K.; Yamazaki, K. Tropical cooling in the case of stratospheric sudden warming in January 2009: Focus on the tropical tropopause layer. Atmos. Chem. Phys. 2011, 11, 6325–6336. [Google Scholar] [CrossRef]
- Ueyama, R.; Gerber, E.P.; Wallace, J.M.; Frierson, D.M.W. The role of high-latitude waves in the intraseasonal to seasonal variability of tropical upwelling in the Brewer–Dobson circulation. J. Atmos. Sci. 2013, 70, 1631–1648. [Google Scholar] [CrossRef]
- Gómez-Escolar, M.; Calvo, N.; Barriopedro, D.; Fueglistaler, S. Tropical response to stratospheric sudden warmings and its modulation by the QBO. J. Geophys. Res. Atmos. 2014, 119, 7382–7395. [Google Scholar] [CrossRef]
- Taguchi, M. Latitudinal extension of cooling and upwelling signals associated with stratospheric sudden warmings. J. Meteorol. Soc. Jpn. 2011, 89, 571–580. [Google Scholar] [CrossRef]
SSW Onset Date (Wind Reversal) | Type (Wind Reversal) | Onset Date (Temperature Increase) |
---|---|---|
23 February 2007 | Displacement | 5 February 2007 |
24 February 2007 | ||
22 February 2008 | Displacement | 25 January 2008 |
7 February 2008 | ||
23 February 2008 | ||
24 January 2009 | Split | 23 January 2009 |
26 January 2010 | Split | 30 January 2010 |
7 January 2013 | Split | 7 January 2013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, Y.; Wang, G.; Yuan, Y.; Geng, H. Influences of Sudden Stratospheric Warming Events on Tropopause Based on GNSS Radio Occultation Data. Atmosphere 2023, 14, 1553. https://doi.org/10.3390/atmos14101553
Wang Y, Li Y, Wang G, Yuan Y, Geng H. Influences of Sudden Stratospheric Warming Events on Tropopause Based on GNSS Radio Occultation Data. Atmosphere. 2023; 14(10):1553. https://doi.org/10.3390/atmos14101553
Chicago/Turabian StyleWang, Yifan, Ying Li, Guofang Wang, Yunbin Yuan, and Hao Geng. 2023. "Influences of Sudden Stratospheric Warming Events on Tropopause Based on GNSS Radio Occultation Data" Atmosphere 14, no. 10: 1553. https://doi.org/10.3390/atmos14101553
APA StyleWang, Y., Li, Y., Wang, G., Yuan, Y., & Geng, H. (2023). Influences of Sudden Stratospheric Warming Events on Tropopause Based on GNSS Radio Occultation Data. Atmosphere, 14(10), 1553. https://doi.org/10.3390/atmos14101553