The Impact of Polar Vortex Strength on the Longitudinal Structure of the Noontime Mid-Latitude Ionosphere and Thermosphere
Abstract
:1. Introduction
- To consider longitudinal variations in noontime mid-latitude foF2 at ionosonde stations with close dipole magnetic and geographic latitudes located in ‘near-pole’ and ‘far-from-pole’ longitudinal sectors under ‘strong’ and ‘weak’ polar vortex strengths.
- To analyze longitudinal variations in neutral density observed with CHAMP/STAR and GOCE satellites at fixed magnetic and geographic latitudes under ‘strong’ and ‘weak’ polar vortex strengths at middle latitudes during daytime hours.
- To retrieve thermospheric parameters using ionosonde and satellite neutral density observations for periods of ‘strong’ and ‘weak’ polar vortex strength to conclude whether polar vortex strength impacts the thermospheric state.
- To discuss the possible mechanisms of the impact of polar vortex on the thermosphere and ionospheric F2-region.
2. Observations and the Method of Analysis
3. Results
4. Discussion
5. Conclusions
- Stations located at close dipole geomagnetic latitudes ≈ 38° show statistically insignificant longitudinal variations in NmF2 under both ‘strong’ and ‘weak’ vortex strengths. The absence of significant longitudinal variations in NmF2 is the manifestation of the well-known geomagnetic control in the F2-region. The impact from below during SSW (‘weak’ polar vortex) working in the same direction as the geomagnetic control further decreases the longitudinal difference in NmF2.
- Stations with close geographic latitudes ≈ 40°N show well-pronounced and statistically significant longitudinal variation under the ‘strong’ polar vortex when no SSW effects are expected. However, this effect is related to different magnetic latitudes of the stations and has nothing to do with the polar vortex strength. The impact of SSW under the ‘weak’ polar vortex overlaps with that of the geomagnetic field and strongly dampens it, resulting in insignificant longitudinal differences between stations.
- The satellite-observed longitudinal variations in neutral density do not show any visible reaction to the polar vortex strength, but mainly reflect dependence on the standard geophysical parameters used in empirical thermospheric models like MSISE00. However, the dependence on polar vortex can be seen under the SSW (‘weak’ polar vortex) event, where there are no pronounced longitudinal variations in the satellite-observed ρ values at either Φ = 38° or φ = 40°N. This coincidence of neutral density at magnetic and geographic latitudes tells us that the impact of SSW on the upper atmosphere is strong enough to change the normal pattern of ρ’s longitudinal distribution. The impact of SSW shows a global occurrence and ‘works’ within 3–5 days in geographic coordinates in the vicinity of the SSW peak.
- The thermospheric parameters retrieved under ‘strong’ and ‘weak’ polar vortex strengths at stations separated in longitude confirm the results obtained on the longitudinal variations in NmF2 and neutral density.
- The final result of our analysis is as follows: no visible effects related to ‘strong’ or ‘weak’ polar vortex strengths have been revealed for longitudinal variations in either NmF2 or satellite-observed neutral density confirmed by the retrieved thermospheric parameters. Alternatively, such effects may be very small, and thus cannot be confirmed experimentally. However, the impact on longitudinal variations in thermospheric (neutral density and atomic oxygen) and ionospheric NmF2 is clearly shown during SSW (‘weak’ polar vortex) events. However, this SSW impact has nothing to do with the polar vortex strength. It is related, as shown earlier, to a decrease in the atomic oxygen abundance in the thermosphere during SSW events.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hedin, A.E.; Reber, C.A. Longitudinal variations of thermospheric composition indicating magnetic control of polar heat input. J. Geophys. Res. 1972, 77, 2871–2878. [Google Scholar] [CrossRef]
- Reber, C.A.; Hedin, A.E. Heating of the high-latitude thermosphere during magnetically quiet periods. J. Geophys. Res. 1974, 79, 2457–2461. [Google Scholar] [CrossRef]
- Laux, U.; von Zahn, U. Longitudinal Variations in Thermospheric Composition under Geomagnetically Quiet Conditions. J. Geophys. Res. 1979, 84, 1942–1946. [Google Scholar] [CrossRef]
- Millward, G.H.; Rishbeth, H.; Fuller-Rowell, T.J.; Aylward, A.D.; Quegan, S.; Moffett, R.J. Ionospheric F2 layer seasonal and semiannual variations. J. Geophys. Res. 1996, 101, 5149–5156. [Google Scholar] [CrossRef]
- Rishbeth, H.; Müller-Wodarg, I.C.F.; Zou, L.; Fuller-Rowell, T.J.; Millward, G.H.; Moffett, R.J.; Idenden, D.W.; Aylward, A.D. Annual and semianual variations in the ionospheric F2-layer: II. Physical discussion. Ann. Geophys. 2000, 18, 945–956. [Google Scholar] [CrossRef]
- Mikhailov, A.V.; Perrone, L. Longitudinal variations in thermospheric parameters under summer noontime conditions inferred from ionospheric observations: A comparison with empirical models. Sci. Rep. 2019, 9, 12763. [Google Scholar] [CrossRef] [PubMed]
- Regi, M.; Perrone, L.; Del Corpo, A.; Spogli, L.; Sabbagh, D.; Cesaroni, C.; Alfonsi, L.; Bagiacchi, P.; Cafarella, L.; Carnevale, G.; et al. Space Weather Effects Observed in the Northern Hemisphere during November 2021 Geomagnetic Storm: The Impacts on Plasmasphere, Ionosphere and Thermosphere Systems. Remote Sens. 2022, 14, 5765. [Google Scholar] [CrossRef]
- Goncharenko, L.; Harvey, V.L.; Liu, H.; Pedatella, N. Sudden stratospheric warming impacts on the ionosphere-thermosphere system—A review of recent progress. In Space Physics and Aeronomy: Advances in Ionospheric Research: Current Understanding and Challenges; Huang, C., Lu, G., Eds.; Wiley: Hoboken, NJ, USA, 2021; Volume 3. [Google Scholar]
- Pedatella, N.M.; Fuller-Rowell, T.; Wang, H.; Jin, H.; Miyoshi, Y.; Fujiwara, H.; Shinagawa, H.; Liu, H.-L.; Sassi, F.; Schmidt, H.; et al. The neutral dynamics during the 2009 sudden stratosphere warming simulated by different whole atmosphere models. J. Geophys. Res. 2014, 119, 1306–1324. [Google Scholar] [CrossRef]
- Mikhailov, A.V.; Perrone, L.; Nusinov, A.A. Mid-Latitude Daytime F2-Layer Disturbance Mechanism under Extremely Low Solar and Geomagnetic Activity in 2008–2009. Remote Sens. 2021, 13, 1514. [Google Scholar] [CrossRef]
- Mikhailov, A.V.; Perrone, L. Whether sudden stratospheric warming effects are seen in the midlatitude thermosphere of the opposite hemisphere? J. Geophys. Res. Space Phys. 2023, 128, e2023JA031285. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Harvey, V.L. Impact of strong and weak stratospheric polar vortices on the mesosphere and lower thermosphere. Geophys. Res. Lett. 2022, 49, e2022GL098877. [Google Scholar] [CrossRef]
- Greer, K.R.; Goncharenko, L.P.; Harvey, V.L.; Pedatella, N. Polar vortex strength impacts on the longitudinal structure of thermospheric composition and ionospheric electron density. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031797. [Google Scholar] [CrossRef]
- Rishbeth, H.; Müller-Wodarg, I.C.F. Why is there more ionosphere in January than in July? The annual asymmetry in the F2-layer. Ann. Geophys. 2006, 24, 3293–3311. [Google Scholar] [CrossRef]
- Woods, T.N.; Eparvier, F.G.; Harder, J.; Snow, M. Decoupling Solar Variability and Instrument Trends Using the Multiple Same-Irradiance-Level (MuSIL) Analysis Technique. Sol. Phys. 2018, 293, 76. [Google Scholar] [CrossRef] [PubMed]
- Nusinov, A.A.; Kazachevskaya, T.V.; Katyushina, V.V. Solar Extreme and Far Ultraviolet Radiation Modeling for Aeronomic Calculations. Remote Sens. 2021, 13, 1454. [Google Scholar] [CrossRef]
- Bilitza, D. International Reference Ionosphere 2000. Radio Sci. 2001, 36, 261–275. [Google Scholar] [CrossRef]
- Hedin, A.E.; Biondi, M.A.; Burnside, R.G.; Hernandez, G.; Johnson, R.M.; Killeen, T.L.; Mazaudier, C.; Meriwether, J.W.; Salah, J.E.; Sica, R.J.; et al. Revised global model of thermosphere winds using satellite and ground-based observations. J. Geophys. Res. 1991, 96, 7657–7688. [Google Scholar] [CrossRef]
- Hedin, A.E.; Fleming, E.L.; Manson, A.H.; Schmidlin, F.J.; Avery, S.K.; Clark, R.R.; Franke, S.J.; Fraser, G.J.; Tsuda, T.; Vial, F.; et al. Empirical wind model for the upper, middle and lower atmosphere. J. Atmos. Solar-Terr. Phys. 1996, 58, 1421–1447. [Google Scholar] [CrossRef]
- Pancheva, D.; Mukhtarov, P. Stratospheric warmings: The atmosphere-ionosphere coupling paradigm. J. Atmos. Solar-Terr. Phys. 2011, 73, 1697–1702. [Google Scholar] [CrossRef]
- Korenkov, Y.N.; Klimenko, V.V.; Klimenko, M.V.; Bessarab, F.S.; Korenkova, N.A.; Ratovsky, K.G.; Chernigovskaya, M.A.; Shcherbakov, A.A.; Sahaiet, Y.; Fagundes, P.R.; et al. The global thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming event. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Richmond, A.D.; Maute, A.; Liu, H.-L. Impact of semidiurnal tidal variability during SSWs on the mean state of the ionosphere and thermosphere. J. Geophys. Res. Space Phys. 2016, 121, 8077–8088. [Google Scholar] [CrossRef]
- Oberheide, J. Day-to-day variability of the semidiurnal tide in the F-region ionosphere during the January 2021 SSW from COSMIC-2 and ICON. Geophys. Res. Lett. 2022, 49, e2022GL100369. [Google Scholar] [CrossRef] [PubMed]
- Ivanov-Kholodny, G.S.; Mikhailov, A.V. The Prediction of Ionospheric Conditions; D. Reidel Pub. Com; Springer: Dordrecht, The Netherlands, 1986; p. 168. [Google Scholar]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparison and scientific issues. J. Geophys. Res. 2002, 107, 1468. [Google Scholar] [CrossRef]
- Shepherd, M.G.; Shepherd, G.G. Stratospheric warming effects on thermospheric O(1S) dayglow dynamics. J. Geophys. Res. 2011, 116, A11327. [Google Scholar] [CrossRef]
- Emmert, J.T.; Drob, D.P.; Picone, J.M.; Siskind, D.E.; Jones, M., Jr.; Mlynczak, M.G.; Bernath, P.F.; Chu, X.; Doornbos, E.; Funke, B.; et al. NRLMSIS 2.0: A whole-atmosphere empirical model of temperature and neutral species densities. Earth Space Sci. 2020, 7, e2020EA001321. [Google Scholar] [CrossRef]
- Bruinsma, S.; Tamagnan, D.; Biancale, R. Atmospheric density derived from CHAMP/STAR accelerometer observations. Planet. Space Sci. 2004, 52, 297–312. [Google Scholar] [CrossRef]
- Perrone, L.; Mikhailov, A.V. A New Method to Retrieve Thermospheric Parameters From Daytime Bottom-Side Ne(h) Observations. J. Geophys. Res. Space Phys. 2018, 123, 10200–10212. [Google Scholar] [CrossRef]
- Reinisch, B.W.; Galkin, I.A.; Khmyrov, G.; Kozlov, A.; Kitrosser, D.F. Automated collection and dissemination of ionospheric data from the digisonde network. Adv. Radio Sci. 2004, 2, 241–247. [Google Scholar] [CrossRef]
- Mikhailov, A.V.; Perrone, L. Poststorm thermospheric NO overcooling? J. Geophys. Res. Space Phys. 2020, 125, e2019JA027122. [Google Scholar] [CrossRef]
- Perrone, L.; Mikhailov, A.V.; Sabbagh, D. Thermospheric Parameters during Ionospheric G-Conditions. Remote Sens. 2021, 13, 3440. [Google Scholar] [CrossRef]
- Pedatella, N.M. Influence of stratosphere polar vortex variability on the mesosphere, thermosphere, and ionosphere. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031495. [Google Scholar] [CrossRef]
Vortex Strength | Strong | Weak |
---|---|---|
Eglin/Wakkanai | t = 0.96 Insign. | t = 0.97 Insign. |
Eglin/Athens | t = 1.49 Insign. | t = 0.47 Insign. |
Boulder/Kokubunji | t = 2.28 Sign. at 97% level | t = 1.12 Insign. |
Boulder/Rome | t = 2.11 Sign. at 96% level | t = 1.27 Insign. |
‘Strong’ Polar Vortex (30 January 2008) | |||||
Station | ρred × 10−15, g cm−3 | hsat, km | Tex, K | [O]300×108 cm−3 | [N2]300 × 107 cm−3 |
Boulder | 1.80 | 338.6 | 713 | 1.69 | 2.02 |
Rome | 2.66 | 339.1 | 788 | 2.02 | 3.52 |
Eglin | 1.99 | 337.0 | 724 | 1.94 | 2.09 |
Athens | 2.05 | 338.3 | 717 | 1.76 | 1.93 |
‘Weak’ Polar Vortex (29 January 2009) | |||||
Boulder | 3.01 | 322.0 | 733 | 1.67 | 2.13 |
Rome | 3.07 | 322.1 | 693 | 1.82 | 1.55 |
Eglin | 3.36 | 320.6 | 738 | 1.78 | 2.28 |
Athens | 3.03 | 321.4 | 709 | 1.80 | 1.71 |
SSW ‘Weak’ Polar Vortex (24 January 2009) | |||||
Boulder | 2.22 | 322.1 | 721 | 1.54 | 1.82 |
Rome | 2.37 | 322.2 | 709 | 1.49 | 1.69 |
Eglin | 2.34 | 320.8 | --- | --- | --- |
Athens | 2.62 | 321.9 | 696 | 1.74 | 1.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrone, L.; Mikhailov, A. The Impact of Polar Vortex Strength on the Longitudinal Structure of the Noontime Mid-Latitude Ionosphere and Thermosphere. Remote Sens. 2024, 16, 2652. https://doi.org/10.3390/rs16142652
Perrone L, Mikhailov A. The Impact of Polar Vortex Strength on the Longitudinal Structure of the Noontime Mid-Latitude Ionosphere and Thermosphere. Remote Sensing. 2024; 16(14):2652. https://doi.org/10.3390/rs16142652
Chicago/Turabian StylePerrone, Loredana, and Andrey Mikhailov. 2024. "The Impact of Polar Vortex Strength on the Longitudinal Structure of the Noontime Mid-Latitude Ionosphere and Thermosphere" Remote Sensing 16, no. 14: 2652. https://doi.org/10.3390/rs16142652
APA StylePerrone, L., & Mikhailov, A. (2024). The Impact of Polar Vortex Strength on the Longitudinal Structure of the Noontime Mid-Latitude Ionosphere and Thermosphere. Remote Sensing, 16(14), 2652. https://doi.org/10.3390/rs16142652