Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (339)

Search Parameters:
Keywords = straining G tolerance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2146 KiB  
Article
Isolation and Characterization of a Cold-Adapted Bacteriophage for Biocontrol of Vibrio parahaemolyticus in Seafood
by Zhixiang Nie, Xiangyu Cheng, Shengshi Jiang, Zhibin Zhang, Diwei Zhang, Hanfang Chen, Na Ling and Yingwang Ye
Foods 2025, 14(15), 2660; https://doi.org/10.3390/foods14152660 - 29 Jul 2025
Viewed by 189
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a preeminent seafood-borne pathogen, imposing significant economic burdens on global aquaculture. The escalating prevalence of multidrug-resistant strains has accentuated the critical urgency for developing sustainable biocontrol strategies. In this study, a bacteriophage designated vB_VPAP_XY75 (XY75) was [...] Read more.
Vibrio parahaemolyticus (V. parahaemolyticus) is a preeminent seafood-borne pathogen, imposing significant economic burdens on global aquaculture. The escalating prevalence of multidrug-resistant strains has accentuated the critical urgency for developing sustainable biocontrol strategies. In this study, a bacteriophage designated vB_VPAP_XY75 (XY75) was isolated and biologically characterized to establish an effective control against V. parahaemolyticus. XY75 exhibited remarkable specificity toward V. parahaemolyticus, effectively lysing 46.2% of the target strains while showing no lytic activity against non-target bacterial species. Morphological characterization confirmed its taxonomic assignment to the Myoviridae family, featuring an icosahedral head (40 ± 2 nm) and contractile tail (60 ± 2 nm). XY75 demonstrated strong environmental tolerance, remaining stable at pH 4–11 and temperatures as high as 50 °C. At an optimal multiplicity of infection (MOI = 0.01), XY75 achieved a peak titer of 8.1 × 1010 PFU/mL, a 5 min latent period, and burst size of 118 PFU/cell. Critically, XY75 reduced V. parahaemolyticus in salmon by more than 5.98 log CFU/g (99.9%) within 6 h at 4 °C, demonstrating exceptional cold tolerance and lytic activity. Genomic analysis confirmed that no virulence or antibiotic resistance genes were present. These results establish XY75 as a safe and efficacious biocontrol candidate for seafood preservation, with particular utility under refrigerated storage conditions. Full article
Show Figures

Figure 1

12 pages, 4263 KiB  
Article
Characterization of a Novel Lentzea Species Isolated from the Kumtagh Desert and Genomic Insights into the Secondary Metabolite Potential of the Genus
by Ying Wen, Jiahui Li, Fujun Qiao, Wanyin Luo, Tuo Chen, Guangxiu Liu and Wei Zhang
Microorganisms 2025, 13(7), 1628; https://doi.org/10.3390/microorganisms13071628 - 10 Jul 2025
Viewed by 271
Abstract
A novel actinobacterial strain, designated E54T, was isolated from a hyper-arid desert soil sample collected from the Kumtagh Desert in Dunhuang, Gansu Province, China. Phylogenetic analysis based on 16S rRNA gene sequences placed strain E54T within the genus Lentzea, [...] Read more.
A novel actinobacterial strain, designated E54T, was isolated from a hyper-arid desert soil sample collected from the Kumtagh Desert in Dunhuang, Gansu Province, China. Phylogenetic analysis based on 16S rRNA gene sequences placed strain E54T within the genus Lentzea, showing highest similarity to Lentzea waywayandensis DSM 44232T (98.9%) and Lentzea flava NBRC 15743T (98.5%). However, whole-genome comparisons revealed that the average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between E54T and these related strains were below the thresholds for species delineation. Strain E54T exhibited typical morphological characteristics of the genus Lentzea, forming a branched substrate. It grew optimally at 28–30 °C, pH 7.0–9.0, and tolerated up to 10% NaCl. The cell wall contained meso-diaminopimelic acid, the predominant menaquinone was MK-9(H4), and major fatty acids included iso-C16:0. The polar lipid profile comprised diphosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl inositol, hydroxyphosphatidyl ethanolamine, and an unidentified lipid. The characteristic amino acid type of the cell wall was meso-DAP. Whole-cell hydrolysis experiments revealed the characteristic cell wall sugar fractions: ribose and galactose. The genome of strain E54T is approximately 8.0 Mb with a DNA G+C content of 69.38 mol%. Genome mining revealed 39 biosynthetic gene clusters (BGCs), including non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKS), terpenes, and siderophores. Comparative antiSMASH-based genome analysis across 38 Lentzea strains further demonstrated the genus’ remarkable biosynthetic diversity. NRPS and type I PKS (T1PKS) were the most prevalent BGC types, indicating a capacity to synthesize structurally complex and pharmacologically relevant metabolites. Together, these findings underscore the untapped biosynthetic potential of the genus Lentzea and support the proposal of strain E54T as a novel species. The strain E54T (=JCM 34936T = GDMCC 4.216T) should represent a novel species, for which the name Lentzea xerophila sp. nov. is proposed. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

18 pages, 1746 KiB  
Article
Genomic Insights and Plant Growth-Promoting Characterization of Priestia megaterium Strain 53B2, Isolated from Maize-Associated Soil in the Yaqui Valley, Mexico
by Alina Escalante-Beltrán, Pamela Helué Morales-Sandoval, Claudia Berenice González-Astorga, Amelia C. Montoya-Martínez, Edgar A. Cubedo-Ruiz, Gustavo Santoyo, Fannie Isela Parra-Cota and Sergio de los Santos-Villalobos
Plants 2025, 14(13), 2081; https://doi.org/10.3390/plants14132081 - 7 Jul 2025
Viewed by 602
Abstract
Strain 53B2 was isolated from a commercial maize (Zea mays L.) field located in the Yaqui Valley, Mexico. Its draft genome comprises 5,844,085 bp, with a G + C content of 37.5%, an N50 of 602,122 bp, an L50 of 4, and [...] Read more.
Strain 53B2 was isolated from a commercial maize (Zea mays L.) field located in the Yaqui Valley, Mexico. Its draft genome comprises 5,844,085 bp, with a G + C content of 37.5%, an N50 of 602,122 bp, an L50 of 4, and a total of 129 contigs. Genome-based taxonomic affiliation showed this strain belonged to Priestia megaterium. Genome annotation revealed 6394 coding DNA sequences (CDSs), organized into 332 subsystems. Among these, several CDSs were associated with traits relevant to plant growth promotion, including categories such as iron acquisition and metabolism (40 CDSs) and secondary metabolism (6 CDSs), among others. In vitro metabolic assays supported genomic predictions, confirming the strain’s ability to produce IAA, solubilize phosphate, and tolerate abiotic stress. Additionally, greenhouse trials demonstrated that inoculation with Priestia megaterium 53B2 significantly enhanced plant growth parameters (p ≤ 0.05) versus uninoculated control: stem height increased by 22.8%, root length by 35.7%, stem and root fresh weights by 39.6% and 66.1%, and stem and root dry weights by 33.7% and 44.7%, respectively. This first report on the beneficial potential of Priestia megaterium 53B2 highlights its potential as a sustainable bioinoculant for maize cultivation. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

18 pages, 2026 KiB  
Article
Cooperative Interplay Between PGPR and Trichoderma longibrachiatum Reprograms the Rhizosphere Microecology for Improved Saline Alkaline Stress Resilience in Rice Seedlings
by Junjie Song, Xueting Guan, Lili Chen, Zhouqing Han, Haojun Cui and Shurong Ma
Microorganisms 2025, 13(7), 1562; https://doi.org/10.3390/microorganisms13071562 - 2 Jul 2025
Viewed by 390
Abstract
Soil salinization has become a major obstacle to global agricultural sustainability. While microbial inoculants show promise for remediation, the functional coordination between Trichoderma and PGPR in saline alkali rhizospheres requires systematic investigation. Pot studies demonstrated that while individual inoculations of Trichoderma longibrachiatum (M) [...] Read more.
Soil salinization has become a major obstacle to global agricultural sustainability. While microbial inoculants show promise for remediation, the functional coordination between Trichoderma and PGPR in saline alkali rhizospheres requires systematic investigation. Pot studies demonstrated that while individual inoculations of Trichoderma longibrachiatum (M) or Bacillus aryabhattai (A2) moderately improved rice growth and soil properties, their co-inoculation (A2 + M) synergistically enhanced stress tolerance and nutrient availability—increasing available nitrogen (AN +28.02%), phosphorus (AP +11.55%), and potassium (AK +8.26%) more than either strain alone, while more effectively mitigating salinity (EC −5.54%) and alkalinity (pH −0.13 units). High-throughput sequencing further revealed that the A2 + M treatment reshaped the rhizosphere microbiome, uniquely enriching beneficial taxa (e.g., Actinomycetota [+9.68%], Ascomycota [+50.58%], Chytridiomycota [+152.43%]), and plant-growth-promoting genera (e.g., Sphingomonas, Trichoderma), while drastically reducing saline-alkali-adapted Basidiomycota (−87.96%). Further analysis identified soil organic matter (SOM), AN, and AP as key drivers for the enrichment of Chytridiomycota and Actinomycetota, whereas pH and EC showed positive correlations with Mortierellomycota, Aphelidiomycota, unclassified_k__Fungi, and Basidiomycota. Collectively, the co-inoculation of Trichoderma and PGPR strains enhanced soil microbiome structure and mitigated saline alkali stress in rice seedlings. These findings demonstrate the potential of microbial consortia as an effective bio-strategy for saline alkali soil amelioration. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

14 pages, 1872 KiB  
Article
Insights into the Thriving of Bacillus megaterium and Rhodotorula mucilaginosa in Mining Areas: Their Adaptation and Tolerance Under Extreme Levels of Cu and Mn
by Alfonso Álvarez-Villa, Maribel Plascencia-Jatomea, Kadiya Calderón, Katiushka Arévalo-Niño, Guadalupe López-Avilés and Francisco Javier Almendariz-Tapia
Microbiol. Res. 2025, 16(7), 140; https://doi.org/10.3390/microbiolres16070140 - 1 Jul 2025
Viewed by 298
Abstract
Understanding microbial adaptation and tolerance based on the cellular concentration and biosorption capacity provides critical insights for evaluating microbial performance under heavy metal stress, which is essential for selecting efficient strains or consortia for bioremediation applications. In this study, the adaptation and tolerance [...] Read more.
Understanding microbial adaptation and tolerance based on the cellular concentration and biosorption capacity provides critical insights for evaluating microbial performance under heavy metal stress, which is essential for selecting efficient strains or consortia for bioremediation applications. In this study, the adaptation and tolerance of Bacillus megaterium and Rhodotorula mucilaginosa to elevated concentrations of copper (Cu) and manganese (Mn) were investigated by introducing the maximum adaptation concentration (MAC) alongside the maximum tolerable concentration (MTC) and the minimum inhibitory concentration (MIC). A Gaussian model was fitted to the relative growth responses to estimate the MACs, MTCs, and MICs. B. megaterium exhibited MACs of 4.6 ppm Cu and 393.9 ppm Mn, while R. mucilaginosa showed MACs of 59.6 ppm Cu and 64.4 ppm Mn, corresponding to concentrations that stimulated their maximum cell density. A biosorption analysis revealed average capacities of 6.3 ± 5.3 mg Cu/g biomass and 28.6 ± 17.2 mg Mn/g biomass, positively correlated with the MTCs, indicating enhanced metal uptake under sublethal stress. The co-culture assays demonstrated dynamic microbial interactions shaped by the type and concentration of metal, including coexistence, competitive substitution, and dominance by tolerance. These findings support the use of MACs as indicators of growth stimulation and MTCs as thresholds for enhanced metal uptake, providing a dual-parameter framework for selecting metallotolerant microorganisms for metal recovery strategies. Full article
Show Figures

Figure 1

21 pages, 2873 KiB  
Article
Adaptive Evolution of Sporosarcina pasteurii Enhances Saline–Alkali Resistance for High-Performance Concrete Crack Repair via MICP
by Jieyu Liu, Huaihua Xu, Min Dong, Zilin Cheng, Chenkai Mi, Shuai Sun, Ruiying Zhu and Peipei Han
Microorganisms 2025, 13(7), 1526; https://doi.org/10.3390/microorganisms13071526 - 30 Jun 2025
Viewed by 415
Abstract
Microbially induced calcium carbonate precipitation (MICP) has emerged as a research focus in concrete crack remediation due to its environmental compatibility and efficient mineralization capacity. The hypersaline conditions of seawater (average 35 g/L NaCl) and alkaline environments (pH 12) within concrete cracks pose [...] Read more.
Microbially induced calcium carbonate precipitation (MICP) has emerged as a research focus in concrete crack remediation due to its environmental compatibility and efficient mineralization capacity. The hypersaline conditions of seawater (average 35 g/L NaCl) and alkaline environments (pH 12) within concrete cracks pose significant challenges to the survival of mineralization-capable microorganisms. To enhance microbial tolerance under these extreme conditions, this study employed a laboratory adaptive evolution strategy to successfully develop a Sporosarcina pasteurii strain demonstrating tolerance to 35 g/L NaCl and pH 12. Comparative analysis of growth characteristics (OD600), pH variation, urease activity, and specific urease activity revealed that the evolved strain maintained growth kinetics under harsh conditions comparable to the parental strain under normal conditions. Subsequent evaluations demonstrated the evolved strain’s superior salt–alkali tolerance through enhanced enzymatic activity, precipitation yield, particle size distribution, crystal morphology, and microstructure characterization under various saline–alkaline conditions. Whole-genome sequencing identified five non-synonymous mutated genes associated with ribosomal stability, transmembrane transport, and osmoprotectant synthesis. Transcriptomic profiling revealed 1082 deferentially expressed genes (543 upregulated, 539 downregulated), predominantly involved in ribosomal biogenesis, porphyrin metabolism, oxidative phosphorylation, tricarboxylic acid (TCA) cycle, and amino acid metabolism. In concrete remediation experiments, the evolved strain achieved superior performance with 89.3% compressive strength recovery and 48% reduction in water absorption rate. This study elucidates the molecular mechanisms underlying S. pasteurii’s salt–alkali tolerance and validates its potential application in the remediation of marine engineering. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

13 pages, 886 KiB  
Article
Production of Indole-3-Acetic Acid and Degradation of 2,4-D by Yeasts Isolated from Pollinating Insects
by Camila G. de Oliveira, Angela Alves dos Santos, Eduardo J. P. Pritsch, Stéfany K. Bressan, Anderson Giehl, Odinei Fogolari, Altemir J. Mossi, Helen Treichel and Sérgio L. Alves
Microorganisms 2025, 13(7), 1492; https://doi.org/10.3390/microorganisms13071492 - 26 Jun 2025
Viewed by 369
Abstract
Synthetic herbicides such as glyphosate and 2,4-D are widely used in agriculture but can negatively impact non-target organisms, including microorganisms essential for ecological balance. Yeasts associated with pollinating insects play crucial roles in plant–insect interactions, yet their responses to herbicides remain understudied. This [...] Read more.
Synthetic herbicides such as glyphosate and 2,4-D are widely used in agriculture but can negatively impact non-target organisms, including microorganisms essential for ecological balance. Yeasts associated with pollinating insects play crucial roles in plant–insect interactions, yet their responses to herbicides remain understudied. This study aimed to evaluate the capacity of yeasts isolated from bees and beetles to produce indole-3-acetic acid (IAA), a plant-growth-promoting hormone, as well as their ability to tolerate or degrade glyphosate (in the commercial herbicide Zapp QI 620®) and 2,4-D (in the commercial Aminol 806®). Seven yeast strains were isolated from insects, identified via ITS sequencing, and assessed for IAA production in YPD medium. Growth assays were conducted under varying herbicide concentrations, and 2,4-D degradation was analyzed using high-performance liquid chromatography. All strains produced IAA, with Papiliotrema siamensis CHAP-239 exhibiting the highest yield (4.17 mg/L). Glyphosate completely inhibited growth in all strains, while 2,4-D showed dose-dependent effects, with four strains tolerating lower concentrations. Notably, Meyerozyma caribbica CHAP-248 degraded up to 46% of 2,4-D at 6.045 g/L. These findings highlight the ecological risks herbicides pose to beneficial yeasts and suggest the potential of certain strains for bioremediation in herbicide-contaminated environments. Overall, the study underscores the importance of preserving microbial biodiversity in the context of sustainable agriculture. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

16 pages, 1835 KiB  
Article
Stress Tolerance and Contribution to Aroma Profile of Pichia kudriavzevii GAAS-JG-1 Isolated from Apricot Fermentation in Co-Fermentation of Sea Buckthorn Wine
by Yuwen Mu, Yu’an Wang and Chaozhen Zeng
Microorganisms 2025, 13(7), 1491; https://doi.org/10.3390/microorganisms13071491 - 26 Jun 2025
Viewed by 316
Abstract
High-acidity fruit wines, such as sea buckthorn wine, are valued for their nutritional benefits but often suffer from excessive tartness and limited aroma complexity, which restrict their consumer acceptance. The application of non-Saccharomyces yeasts with acid tolerance and flavor-enhancing potential offers a promising [...] Read more.
High-acidity fruit wines, such as sea buckthorn wine, are valued for their nutritional benefits but often suffer from excessive tartness and limited aroma complexity, which restrict their consumer acceptance. The application of non-Saccharomyces yeasts with acid tolerance and flavor-enhancing potential offers a promising strategy to address these challenges. In this study, a highly acid-tolerant yeast strain, Pichia kudriavzevii GAAS-JG-1, was isolated from a naturally fermented apricot system and systematically characterized in terms of its taxonomy, physiological properties, and fermentation potential. The experimental results demonstrated that Pichia kudriavzevii GAAS-JG-1 maintained robust growth activity (OD600 = 1.18 ± 0.09) even under extremely acidic conditions (pH 2.0). Furthermore, the strain exhibited a strong tolerance to high ethanol concentrations (16%), elevated sugar levels (350 g/L), and substantial sulfur dioxide exposure (500 mg/L). Optimal growth was observed at 35 °C (OD600 = 2.21 ± 0.02). When co-fermented with Saccharomyces cerevisiae in sea buckthorn wine, the ethyl acetate content increased significantly from 303.71 μg/L to 4453.12 μg/L, while the ethyl propionate levels rose from 5.18 μg/L to 87.75 μg/L. Notably, Pichia kudriavzevii GAAS-JG-1 also produced novel flavor compounds such as methyl acetate and ethyl 3-methylthiopropionate, which were absent in the single-strain fermentation. These findings highlight the potential of Pichia kudriavzevii GAAS-JG-1 as a valuable non-Saccharomyces yeast resource with promising applications in the fermentation of high-acidity specialty fruit wines. Full article
(This article belongs to the Special Issue Beneficial Microbes: Food, Mood and Beyond—Third Edition)
Show Figures

Figure 1

16 pages, 1363 KiB  
Article
Staphylococcus epidermidis in Acute Myeloid Leukemia: A Comparative Genomic Study Against Non-AML Isolates
by Stephanie McMahon, Samantha Franklin, Maliha Batool, Nitya Sadasivan, Safa Fatima and Jessica Galloway-Peña
Pathogens 2025, 14(7), 627; https://doi.org/10.3390/pathogens14070627 - 24 Jun 2025
Viewed by 419
Abstract
Bloodstream infections (BSIs) are a major cause of morbidity and mortality in acute myeloid leukemia (AML) patients undergoing induction chemotherapy. Staphylococcus epidermidis, typically a skin commensal, is increasingly recognized as a pathogen in these vulnerable individuals. This study investigated whether genomic differences [...] Read more.
Bloodstream infections (BSIs) are a major cause of morbidity and mortality in acute myeloid leukemia (AML) patients undergoing induction chemotherapy. Staphylococcus epidermidis, typically a skin commensal, is increasingly recognized as a pathogen in these vulnerable individuals. This study investigated whether genomic differences exist between infectious and gastrointestinal colonizing S. epidermidis isolates from AML patients and how these compare to colonizing and infectious isolates from other patient groups and biogeographic sites. We analyzed 114 isolates—44 from AML patients (23 infections, 21 GI colonizers) and 70 from public datasets (34 infections, 36 colonizers). Stool samples underwent 16S rRNA sequencing and culture to identify colonization, while bloodstream isolates were sequenced and compared. Genomic profiling using Roary, Scoary, Phyre2, and InterProScan revealed that infectious and GI-colonizing AML isolates were phylogenetically close but genomically distinct. Infectious isolates from AML patients were significantly enriched for resistance genes (e.g., mecA, mecR1, mecI, ANT(4′)-Ib) and the biofilm-associated gene icaA. AML infectious isolates harbored more resistance genes and mobile elements than non-AML strains but lacked widespread classical virulence factors. These results suggest that S. epidermidis pathogenicity in immunocompromised hosts is driven by genomic adaptability and antibiotic tolerance rather than traditional virulence mechanisms. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

16 pages, 311 KiB  
Article
The Application Potential of the Raw Goat Milk-Derived Strain Lactococcus lactis MK 1/3 for the Dairy Industry
by Andrea Lauková, Martin Tomáška, Maroš Drončovský, Rastislav Mucha, Emília Dvorožňáková, Miroslav Kološta and Monika Pogány Simonová
Appl. Sci. 2025, 15(12), 6781; https://doi.org/10.3390/app15126781 - 17 Jun 2025
Viewed by 359
Abstract
Raw goat milk-derived Lactococcus lactis MK1/3 (CCM 9209) was studied to show its potential for use in the dairy industry. Finding an innovative strain indicates having a new safe, original additive for functional food. The strain has been shown to be safe using [...] Read more.
Raw goat milk-derived Lactococcus lactis MK1/3 (CCM 9209) was studied to show its potential for use in the dairy industry. Finding an innovative strain indicates having a new safe, original additive for functional food. The strain has been shown to be safe using a model experiment with Balb/c mice, when no mortality was noted. Its counts were increased continually during 120 days, with the highest value on day 90 (4.38 ± 1.24 colony-forming unit per gram (CFU/g, log 10). In vivo (in the experimental mice), anti-staphylococcal effect was noted with difference 1.82 log cycles. The safety of the strain MK1/3 has been also indicated by the fact that it did not produce damaging enzymes, it has been susceptible to antibiotics, and it has shown low-grade biofilm-forming ability (0.126 ± 0.35). This strain has tolerated bile, and low pH sufficiently. It produced a postbiotic active substance with inhibitory activity against cheese and milk contaminants (Enterococci), reaching antimicrobial activity up to 3200 AU/mL. The count of the strain MK1/3 was higher in yogurts from ewe goat milk (4.66 ± 0.30 CFU/g, log 10), in comparison with its count in yogurts from ewe milk (4.10 ± 0.10 CFU/g, log 10), with no influencing yogurt pH. Its use in 100% starter culture to process fresh cheese based on goat milk was revealed in the standard cheese quality with sufficient amount of lactic acid microbiota. To support the benefit of the strain MK1/3, additional human trials have been reinforced. Full article
(This article belongs to the Section Applied Microbiology)
18 pages, 2527 KiB  
Article
Targeting Azole-Resistant Candida albicans: Tetrapeptide Tuftsin-Modified Liposomal Vaccine Induces Superior Immune Protection
by Masood A. Khan, Arif Khan, Abdullah M. Alnuqaydan, Aqel Albutti, Basmah F. Alharbi and Mohammad Owais
Vaccines 2025, 13(6), 630; https://doi.org/10.3390/vaccines13060630 - 11 Jun 2025
Viewed by 977
Abstract
Background/objectives: Candida albicans is a major fungal pathogen that poses a serious threat to immunocompromised individuals. The increasing prevalence of fluconazole-resistant strains presents a critical clinical challenge, emphasizing the urgent need for novel therapeutic strategies. This study aimed to evaluate the prophylactic potential [...] Read more.
Background/objectives: Candida albicans is a major fungal pathogen that poses a serious threat to immunocompromised individuals. The increasing prevalence of fluconazole-resistant strains presents a critical clinical challenge, emphasizing the urgent need for novel therapeutic strategies. This study aimed to evaluate the prophylactic potential of a new liposomal vaccine formulation, Tuft-lip-WCAgs, comprising Tuftsin and C. albicans whole cell antigens, in providing immune protection against systemic candidiasis. Methods: The vaccine formulation was tested in a murine model of systemic C. albicans infection. The efficacy of the Tuft-lip-WCAg vaccine was evaluated through a survival analysis, fungal burden assessments, and immunological profiling. Immune responses were assessed by measuring serum antibody titers and isotypes, T cell proliferation, and cytokine secretion (IFN-γ and IL-4) from splenocytes. Results: FLZ treatment showed weak antifungal activity, high MIC values, and limited biofilm disruption and failed to ensure long-term survival, resulting in 100% mortality by day 40. In contrast, Tuft-lip-WCAg vaccination was well tolerated and conferred complete protection, with no detectable fungal burden by day 40. Vaccinated mice exhibited significantly elevated total antibody titers (166,667 ± 14,434), increased IgG2a levels, and enhanced T cell proliferation (stimulation index: 3.9 ± 0.84). Splenocytes from immunized mice secreted markedly higher levels of IFN-γ (634 ± 128 pg/mL) and IL-4 (582 ± 82 pg/mL), indicating a balanced Th1/Th2 immune response. Tuft-lip-WCAg vaccination also achieved 100% survival and the lowest kidney fungal burden (556 ± 197 CFUs/g). Conclusions: Tuft-lip-WCAg formulation is a safe, immunogenic, and highly effective vaccine candidate that offers complete protection against drug-resistant C. albicans in a murine model. These findings support its promise as a novel immunoprophylactic strategy, particularly for immunocompromised populations at high risk of invasive candidiasis. Full article
(This article belongs to the Special Issue Peptide-Based Vaccines)
Show Figures

Figure 1

18 pages, 3579 KiB  
Article
Screening and Characterization of Marine Bacillus atrophaeus G4 Protease and Its Application in the Enzymatic Hydrolysis of Sheep (Ovis aries) Placenta for the Preparation of Antioxidant Peptides
by Wei Wang, Guoqing Peng, Jingjing Sun, Chengcheng Jiang, Jianhua Hao and Xiu Zhang
Molecules 2025, 30(10), 2217; https://doi.org/10.3390/molecules30102217 - 20 May 2025
Viewed by 389
Abstract
Proteolytic enzymes, which play a crucial role in peptide bond cleavage, are widely applied in various industries. In this study, protease-producing bacteria were isolated and characterized from marine sediments collected from the Yellow Sea, China. Comprehensive screening and 16S rDNA sequencing identified a [...] Read more.
Proteolytic enzymes, which play a crucial role in peptide bond cleavage, are widely applied in various industries. In this study, protease-producing bacteria were isolated and characterized from marine sediments collected from the Yellow Sea, China. Comprehensive screening and 16S rDNA sequencing identified a promising G4 strain as Bacillus atrophaeus. Following meticulous optimization of fermentation conditions and medium composition via response surface methodology, protease production using strain G4 was significantly enhanced by 64%, achieving a yield of 3258 U/mL. The G4 protease exhibited optimal activity at 50 °C and pH 7.5, demonstrating moderate thermal stability with 52% residual activity after 30-min incubation at 50 °C—characteristics typical of an alkaline protease. Notably, the enzyme retained over 79% activity across a broad pH range (6–11) and exhibited excellent salt tolerance, maintaining over 50% activity in a saturated NaCl solution. Inhibition by phenylmethylsulfonyl fluoride, a serine protease inhibitor, confirmed its classification as a serine protease. The enzyme’s potential in generating bioactive peptides was further demonstrated through hydrolysis of sheep (Ovis aries) placenta, resulting in a hydrolysate with notable antioxidant properties. The hydrolysate exhibited a 64% superoxide anion scavenging activity, surpassing that of reduced glutathione. These findings expand the current understanding of Bacillus atrophaeus G4 proteases and provide a foundation for innovative sheep placenta utilization with potential industrial applications. Full article
Show Figures

Figure 1

14 pages, 1061 KiB  
Article
The Probiotic Potential, Safety, and Immunomodulatory Properties of Levilactobacillus brevis ZG2488: A Novel Strain Isolated from Healthy Human Feces
by Zhijie Cao, Mengshan Chen, Yulu Chen and Hui Sun
Fermentation 2025, 11(5), 287; https://doi.org/10.3390/fermentation11050287 - 15 May 2025
Viewed by 717
Abstract
Probiotics exert beneficial effects on health improvement, infection prevention, and disease management. This study investigated the probiotic characteristics and safety parameters of Levilactobacillus brevis ZG2488, a novel strain isolated from healthy human feces. The strain exhibited robust tolerance to simulated gastrointestinal conditions, maintaining [...] Read more.
Probiotics exert beneficial effects on health improvement, infection prevention, and disease management. This study investigated the probiotic characteristics and safety parameters of Levilactobacillus brevis ZG2488, a novel strain isolated from healthy human feces. The strain exhibited robust tolerance to simulated gastrointestinal conditions, maintaining survival rates of 87.20% in artificial gastric juice (pH 3.0; 3 h) and 95.32% in 0.3% bile salt (24 h). Notably, L. brevis ZG2488 displayed superior microbial adhesion properties with high cell surface hydrophobicity (87.32%), auto-aggregation (81.15% at 24 h), and co-aggregation capacities with Escherichia coli ATCC 43895 (63.90%) and Salmonella typhimurium SL1344 (59.28%). Its adhesion to HT-29 cells (7.15%) surpassed that of the reference strain Lactobacillus rhamnosus GG (1.26%). Antimicrobial testing revealed broad-spectrum inhibitory effects against multidrug-resistant Klebsiella pneumoniae NK04152 and other pathogens. Comprehensive safety assessments confirmed the absence of hemolytic or DNase activity, along with appropriate antibiotic susceptibility to most antibiotics, except kanamycin, streptomycin, vancomycin, and penicillin G. Furthermore, L. brevis ZG2488 significantly enhanced nitric oxide production and upregulated the gene expression of nitric oxide synthase (iNOS) and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in RAW264.7 macrophages. These findings underscore L. brevis ZG2488 as a promising probiotic candidate with functionality in pathogen inhibition and immune modulation. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

13 pages, 759 KiB  
Article
Use of Enriched Mine Water to Grow the Cyanobacterium Arthrospira platensis in Photobioreactors
by Massimo Milia, Valeria Andreotti, Angelica Giglioli, Viviana Pasquini, Pierantonio Addis and Alberto Angioni
Foods 2025, 14(10), 1665; https://doi.org/10.3390/foods14101665 - 8 May 2025
Viewed by 499
Abstract
The demand for sustainable and high-nutritional food sources is forcing the industrial sector to find alternatives to animal proteins. Microalgae and macroalgae showed remarkable protein and bioactive compound content, offering a promising solution for the food industry. However, the high production cost represents [...] Read more.
The demand for sustainable and high-nutritional food sources is forcing the industrial sector to find alternatives to animal proteins. Microalgae and macroalgae showed remarkable protein and bioactive compound content, offering a promising solution for the food industry. However, the high production cost represents the main concern related to microalgae development. Thus, strategies that can reduce production costs, preserve the environment, and improve the nutritional characteristics of microalgae are required. Exploiting water from dismissed mines could lead to energy savings in production by opening new industrial opportunities to produce microalgae. Arthrospira platensis (Spirulina) can be grown in open ponds and photobioreactors; the composition of the growth medium and the light radiation could affect its biochemical composition. This work investigated the influence of mine water with the addition of Zarrouk growth medium on the biochemical composition of the final dried Spirulina. The trials were performed in vertical tubular photobioreactors (PBRs) exposed to the same light radiance. Samples were compared with standard growing conditions using distilled water with the addition of Zarrouk medium. Spirulina strains showed good tolerance to medium/high concentrations of Cl, SO42− and nitrogen in mine water. The experiment lasted 12 days, showing significant differences in protein, lipids, and carbohydrates between trials. Spirulina grown in mine water showed higher protein levels, 52.64 ± 2.51 g·100 g−1 dry weight. On the other hand, Spirulina grown in distilled water had higher lipids and carbohydrate levels, accounting for 9.22 ± 1.01 and 31.72 ± 1.57 g·100 g−1 dry weight. At the end of the experiment, both trials showed similar growth and pigment concentration. The availability of a high amount of mine water at no cost and at the ideal temperature for Spirulina cultivation increases environmental sustainability and reduces production costs. The results in terms of biomass were comparable to those of standard cultivation, whereas proteins showed higher values. Moreover, coupling renewable energy sources can further reduce production costs, with promising industrial and market developments. Full article
(This article belongs to the Special Issue Microalgae in Food Systems: From Cultivation to Application)
Show Figures

Figure 1

15 pages, 3167 KiB  
Article
Assessment of Antimicrobial Activity and Safety of Pediococcus pentosaceus Isolated from Ginseng as a Functional Cosmetic Ingredient
by Xiangji Jin, Qiwen Zheng, Trang Thi Minh Nguyen, Gyeong-Seon Yi, Su-Jin Yang and Tae-Hoo Yi
Microorganisms 2025, 13(5), 1093; https://doi.org/10.3390/microorganisms13051093 - 8 May 2025
Viewed by 635
Abstract
Lactic acid bacteria (LAB) are gaining increasing attention as functional ingredients in the cosmetic industry, particularly those derived from natural plant sources. Although various LAB strains have been widely applied in cosmetic formulations, studies investigating the effects of naturally derived LAB on the [...] Read more.
Lactic acid bacteria (LAB) are gaining increasing attention as functional ingredients in the cosmetic industry, particularly those derived from natural plant sources. Although various LAB strains have been widely applied in cosmetic formulations, studies investigating the effects of naturally derived LAB on the skin remain limited. In this study, we isolated an LAB strain from ginseng and evaluated its potential as a functional cosmetic ingredient. The antimicrobial activity of the strain was assessed against skin-associated pathogens Staphylococcus aureus and Staphylococcus epidermidis, while cytotoxicity was evaluated using HaCaT and Caco-2 cells. Considering the limitations of vertebrate animal testing, infection and survival assays were conducted using Galleria mellonella larvae as an alternative in vivo model. The ginseng-derived strain exhibited 99.93% similarity to Pediococcus pentosaceus and was designated P. pentosaceus THG-219. It exhibited an MIC of 0.625 mg/mL and 1.25 mg/mL against S. aureus KCTC 3881 and S. epidermidis KCTC 1917, respectively. Its antimicrobial activity was further enhanced following ethyl acetate fractionation. P. pentosaceus THG-219 showed no toxicity in G. mellonella larvae and exerted antibacterial effects in this model. No cytotoxicity was observed in HaCaT and Caco-2 cells. Furthermore, P. pentosaceus THG-219 promoted host cell adhesion while inhibiting pathogen adhesion. It also exhibited excellent acid, bile, and heat tolerance, suggesting strong survivability under harsh conditions. Collectively, these results indicate that P. pentosaceus THG-219, isolated from ginseng, is a promising, safe, and stable candidate for development as a functional cosmetic ingredient. Full article
(This article belongs to the Special Issue Microorganisms in Functional Foods)
Show Figures

Figure 1

Back to TopTop