Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,714)

Search Parameters:
Keywords = straightforward

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2128 KiB  
Article
Correlation Measures in Metagenomic Data: The Blessing of Dimensionality
by Alessandro Fuschi, Alessandra Merlotti, Thi Dong Binh Tran, Hoan Nguyen, George M. Weinstock and Daniel Remondini
Appl. Sci. 2025, 15(15), 8602; https://doi.org/10.3390/app15158602 (registering DOI) - 2 Aug 2025
Abstract
Microbiome analysis has revolutionized our understanding of various biological processes, spanning human health and epidemiology (including antimicrobial resistance and horizontal gene transfer), as well as environmental and agricultural studies. At the heart of microbiome analysis lies the characterization of microbial communities through the [...] Read more.
Microbiome analysis has revolutionized our understanding of various biological processes, spanning human health and epidemiology (including antimicrobial resistance and horizontal gene transfer), as well as environmental and agricultural studies. At the heart of microbiome analysis lies the characterization of microbial communities through the quantification of microbial taxa and their dynamics. In the study of bacterial abundances, it is becoming more relevant to consider their relationship, to embed these data in the framework of network theory, allowing characterization of features like node relevance, pathways, and community structure. In this study, we address the primary biases encountered in reconstructing networks through correlation measures, particularly in light of the compositional nature of the data, within-sample diversity, and the presence of a high number of unobserved species. These factors can lead to inaccurate correlation estimates. To tackle these challenges, we employ simulated data to demonstrate how many of these issues can be mitigated by applying typical transformations designed for compositional data. These transformations enable the use of straightforward measures like Pearson’s correlation to correctly identify positive and negative relationships among relative abundances, especially in high-dimensional data, without having any need for further corrections. However, some challenges persist, such as addressing data sparsity, as neglecting this aspect can result in an underestimation of negative correlations. Full article
(This article belongs to the Special Issue Recent Advances in Biomedical Data Analysis)
Show Figures

Figure 1

17 pages, 17758 KiB  
Article
Piezo1 Channel Activators Yoda1 and Yoda2 in the Context of Red Blood Cells
by Min Qiao, Reetta Penttinen, Ariel Coli, Nicoletta Murciano, Felix M. Maurer, Christian Wagner, Maria Giustina Rotordam and Lars Kaestner
Biomolecules 2025, 15(8), 1110; https://doi.org/10.3390/biom15081110 (registering DOI) - 1 Aug 2025
Abstract
Piezo1 is a mechanosensitive non-selective cation channel. Genetic alterations of the channel result in a hematologic phenotype named Hereditary Xerocytosis. With Yoda1 and, more recently, Yoda2, compounds to increase the activity of Piezo1 have become available. However, their concrete effect depends on the [...] Read more.
Piezo1 is a mechanosensitive non-selective cation channel. Genetic alterations of the channel result in a hematologic phenotype named Hereditary Xerocytosis. With Yoda1 and, more recently, Yoda2, compounds to increase the activity of Piezo1 have become available. However, their concrete effect depends on the nano environment of the channel and hence on the cell type. Here we compare the potency of Yoda1 and Yoda2 in red blood cells (RBCs). We investigate the effect of the compounds on direct channel activity using automated patch clamp, as well as the secondary effects of channel activation on signalling molecules and cellular response. In terms of signalling, we investigate the temporal response of the second messenger Ca2+, and in terms of cellular response, the activity of the Gárdos channel. The opening of the Gárdos channel leads to a hyperpolarisation of the RBCs, which is measured by the Macey–Bennekou–Egée (MBE) method. Although the interpretation of the data is not straightforward, we discuss the results in a physiological context and provide recommendations for the use of Yoda1 and Yoda2 to investigate RBCs. Full article
(This article belongs to the Special Issue Mechanosensitivity and Ion Channels)
Show Figures

Figure 1

16 pages, 2155 KiB  
Article
Emulsifying Properties of Oat Protein/Casein Complex Prepared Using Atmospheric Cold Plasma with pH Shifting
by Yang Teng, Mingjuan Ou, Jihuan Wu, Ting Jiang, Kaige Zheng, Yuxing Guo, Daodong Pan, Tao Zhang and Zhen Wu
Foods 2025, 14(15), 2702; https://doi.org/10.3390/foods14152702 (registering DOI) - 31 Jul 2025
Abstract
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food [...] Read more.
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food industry. pH-shifting processing is a straightforward method to partially unfold protein structures. This study modified a mixture of an oat protein isolate (OPI) and casein by combining a pH adjustment (adjusting the pH of two solutions to 12, mixing them at a 3:7 ratio, and maintaining the pH at 12 for 2 h) with an atmospheric cold plasma (ACP) treatment to improve the emulsifying properties. The results demonstrated that the ACP treatment significantly enhanced the solubility of the OPI/casein mixtures, with a maximum solubility of 82.63 ± 0.33%, while the ζ-potential values were approximately −40 mV, indicating that all the samples were fairly stable. The plasma-induced increase in surface hydrophobicity supported greater protein adsorption and redistribution at the oil/water interface. After 3 min of treatment, the interfacial pressure peaked at 8.32 mN/m. Emulsions stabilized with the modified OPI/casein mixtures also exhibited a significant droplet size reduction upon extending the ACP treatment to 3 min, decreasing from 5.364 ± 0.034 μm to 3.075 ± 0.016 μm. The resulting enhanced uniformity in droplet size distribution signified the formation of a robust interfacial film. Moreover, the ACP treatment effectively enhanced the emulsifying activity of the OPI/casein mixtures, reaching (179.65 ± 1.96 m2/g). These findings highlight the potential application value of OPI/casein mixtures in liquid dairy products. In addition, dairy products based on oat protein are more conducive to sustainable development than traditional dairy products. Full article
(This article belongs to the Special Issue Food Proteins: Innovations for Food Technologies)
Show Figures

Figure 1

23 pages, 1830 KiB  
Article
Fuzzy Multi-Objective Optimization Model for Resilient Supply Chain Financing Based on Blockchain and IoT
by Hamed Nozari, Shereen Nassar and Agnieszka Szmelter-Jarosz
Digital 2025, 5(3), 32; https://doi.org/10.3390/digital5030032 (registering DOI) - 31 Jul 2025
Viewed by 16
Abstract
Managing finances in a supply chain today is not as straightforward as it once was. The world is constantly shifting—markets fluctuate, risks emerge unexpectedly—and companies are continually trying to stay one step ahead. In all this, financial resilience has become more than just [...] Read more.
Managing finances in a supply chain today is not as straightforward as it once was. The world is constantly shifting—markets fluctuate, risks emerge unexpectedly—and companies are continually trying to stay one step ahead. In all this, financial resilience has become more than just a strategy. It is a survival skill. In our research, we examined how newer technologies (such as blockchain and the Internet of Things) can make a difference. The idea was not to reinvent the wheel but to see if these tools could actually make financing more transparent, reduce some of the friction, and maybe even help companies breathe a little easier when it comes to liquidity. We employed two optimization methods (Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective Particle Swarm Optimization (MOPSO)) to achieve a balanced outcome. The goal was lower financing costs, better liquidity, and stronger resilience. Blockchain did not just record transactions—it seemed to build trust. Meanwhile, the Internet of Things (IoT) provided companies with a clearer picture of what is happening in real-time, making financial outcomes a bit less of a guessing game. However, it gives financial managers a better chance at planning and not getting caught off guard when the economy takes a turn. Full article
(This article belongs to the Topic Sustainable Supply Chain Practices in A Digital Age)
Show Figures

Figure 1

19 pages, 6083 KiB  
Article
Microwave-Assisted Biodiesel Production Using Activated Oat Hull-Derived Biochar as Catalyst
by Jaime Ñanculeo, Benjamín Nahuelcura, Mara Cea, Norberto Abreu, Karla Garrido-Miranda, Sebastián Meier, Juan Miguel Romero-García and María Eugenia González
Catalysts 2025, 15(8), 729; https://doi.org/10.3390/catal15080729 (registering DOI) - 31 Jul 2025
Viewed by 27
Abstract
This study investigated the effect of KOH activation on biochar, with a focus on how porosity and potassium content influence microwave-assisted catalytic biodiesel production, using experimental design approaches. Activated biochar was synthesized from oat hull waste through KOH activation, followed by pyrolysis under [...] Read more.
This study investigated the effect of KOH activation on biochar, with a focus on how porosity and potassium content influence microwave-assisted catalytic biodiesel production, using experimental design approaches. Activated biochar was synthesized from oat hull waste through KOH activation, followed by pyrolysis under controlled conditions. The biochar was characterized through chemical, morphological, and physical analyses, and its catalytic performance in converting used waste cooking oil (WCO) into biodiesel was evaluated using methanol as the acyl acceptor and microwave irradiation to optimize the reaction via experimental design. Results revealed that increasing the KOH/biomass ratio significantly enhanced the specific surface area (SSA) of the catalyst, achieving a maximum SSA of 637.28 m2/g under optimal pyrolysis conditions: 600 °C for 3 h with a KOH/biomass ratio of 2. A maximum fatty acid methyl ester (FAME) yield of 100% was achieved within 1 min of microwave-assisted reaction using an optimized catalyst dosage of 2.5%, a WCO/MeOH molar ratio of 1/12, and a reaction temperature of 150 °C, with the catalyst being successfully recycled across three cycles. An economic and energy evaluation estimated a catalyst production cost of USD 176.97/kg and a biodiesel production cost of USD 8.9/kg of FAMEs. This research provides a straightforward and cost-effective approach for biofuel production. Full article
(This article belongs to the Special Issue Biochar Development in Catalytic Applications)
Show Figures

Graphical abstract

17 pages, 3206 KiB  
Article
Inverse Punicines: Isomers of Punicine and Their Application in LiAlO2, Melilite and CaSiO3 Separation
by Maximilian H. Fischer, Ali Zgheib, Iliass El Hraoui, Alena Schnickmann, Thomas Schirmer, Gunnar Jeschke and Andreas Schmidt
Separations 2025, 12(8), 202; https://doi.org/10.3390/separations12080202 - 30 Jul 2025
Viewed by 86
Abstract
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. [...] Read more.
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. These amphoteric molecules were synthesized via a straightforward four-step route and structurally tuned for hydrophobization by alkylation. Their performance as collectors was evaluated in microflotation experiments of lithium aluminate (LiAlO2) and silicate matrix minerals such as melilite and calcium silicate. Characterization techniques including ultraviolet-visible (UV-Vis), nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy as well as contact angle, zeta potential (ζ potential) and microflotation experiments revealed strong pH- and structure-dependent interactions with mineral surfaces. Notably, N-alkylated inverse Punicine derivatives showed high flotation yields for LiAlO2 at pH of 11, with a derivative possessing a dodecyl group attached to the nitrogen as collector achieving up to 86% recovery (collector conc. 0.06 mmol/L). Preliminary separation tests showed Li upgrading from 5.27% to 6.95%. Radical formation and light-response behavior were confirmed by ESR and flotation tests under different illumination conditions. These results demonstrate the potential of inverse Punicines as tunable, sustainable flotation reagents for advanced lithium recycling from complex slag systems. Full article
(This article belongs to the Special Issue Application of Green Flotation Technology in Mineral Processing)
Show Figures

Graphical abstract

11 pages, 2661 KiB  
Communication
Fluorinated Ethers of Cannabinol (CBN)
by Urvashi, Melvin Druelinger, John Hatfield and Kenneth J. Olejar
Chemistry 2025, 7(4), 125; https://doi.org/10.3390/chemistry7040125 - 30 Jul 2025
Viewed by 144
Abstract
The difluoromethoxy (OCF2H) and trifluoromethoxy (OCF3) fluorinated structural motifs are frequently seen as privileged functional groups in the field of medicinal chemistry and are regularly taken into account during the design and development processes of successful drugs. This paper [...] Read more.
The difluoromethoxy (OCF2H) and trifluoromethoxy (OCF3) fluorinated structural motifs are frequently seen as privileged functional groups in the field of medicinal chemistry and are regularly taken into account during the design and development processes of successful drugs. This paper presents the synthesis of four new fluorinated etheric derivatives of cannabinol (CBN) using fluorine chemistry. These reactions are straightforward in terms of operation and make use of easily obtainable reagents, making them suitable for the synthesis of various fluorinated CBN ethers with yields ranging from moderate to excellent. We successfully isolated all the products and characterized them in detail using spectroscopic methods. It is anticipated that they will increase the efficacy of drug candidates due to their ability to alter biological activities such as cellular membrane permeability and metabolic stability and improve their pharmacokinetic properties. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

18 pages, 3967 KiB  
Article
A Thorough Investigation of the Mechanism of theAntagonistic Effect Between Phosphorus and Basic Oxide-Forming Minerals as Flame Retardants of PolymericComposite Coatings
by Evangelia Mitropoulou, Georgios N. Mathioudakis, Amaia Soto Beobide, Athanasios Porfyris, Vassilios Dracopoulos, Kerim Kılınç, Theodosios Chatzinikolaou, Deniz Savci, Cem Gunesoglu, Joannis Kallitsis and George A. Voyiatzis
Coatings 2025, 15(8), 886; https://doi.org/10.3390/coatings15080886 - 30 Jul 2025
Viewed by 153
Abstract
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising [...] Read more.
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising alternatives. Despite this, their combined use is neither straightforward nor guaranteed to be effective. This study scrutinizes the interactions between these two classes of flame retardants (FR) through a systematic analysis aimed at elucidating the antagonistic pathways that arise from their coexistence. Specifically, this study focuses on two inorganic fillers, mineral huntite and chemically precipitated magnesium hydroxide, both of which produce basic oxides upon thermal decomposition. These fillers were incorporated into a poly(butylene terephthalate) (PBT) matrix to be utilized as advanced-mattress FR coating fabric and were subjected to a series of flammability tests. The pyrolysis products of the prepared polymeric composite compounds were isolated and thoroughly characterized using a combination of analytical techniques. Thermogravimetric analysis (TGA) and differential thermogravimetric analysis (dTGA) were employed to monitor decomposition behavior, while the char residues collected at different pyrolysis stages were examined spectroscopically, using FTIR-ATR and Raman spectroscopy, to identify their structure and the chemical reactions that led to their formation. X-ray diffraction (XRD) experiments were also conducted to complement the spectroscopic findings in the chemical composition of the resulting char residues and to pinpoint the different species that constitute them. The morphological changes of the char’s structure were monitored by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). Finally, the Limited Oxygen Index (LOI) and UL94 (vertical sample mode) methods were used to assess the relative flammability of the samples, revealing a significant drop in flame retardancy when both types of flame retardants are present. This reduction is attributed to the neutralization of acidic phosphorus species by the basic oxides generated during the decomposition of the basic inorganic fillers, as confirmed by the characterization techniques employed. These findings underscore the challenge of combining organophosphorus with popular flame-retardant classes such as mineral or basic metal flame retardants, offering insight into a key difficulty in formulating next-generation halogen-free flame-retardant composite coatings. Full article
(This article belongs to the Special Issue Innovative Flame-Retardant Coatings for High-Performance Materials)
Show Figures

Figure 1

17 pages, 2736 KiB  
Article
Controlled Formation of α- and β-Bi2O3 with Tunable Morphologies for Visible-Light-Driven Photocatalysis
by Thomas Cadenbach, María Isabel Loyola-Plúa, Freddy Quijano Carrasco, Maria J. Benitez, Alexis Debut and Karla Vizuete
Molecules 2025, 30(15), 3190; https://doi.org/10.3390/molecules30153190 - 30 Jul 2025
Viewed by 146
Abstract
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3 [...] Read more.
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3) there is still a limited understanding of how structural and morphological features influence photocatalytic performance. In this work, a straightforward hydrothermal synthesis method followed by controlled calcination was developed to produce phase-pure α- and β-Bi2O3 with tunable morphologies. By varying the hydrothermal temperature and reaction time, distinct structures were successfully obtained, including flower-like, broccoli-like, and fused morphologies. XRD analyses showed that the final crystal phase depends solely on the calcination temperature, with β-Bi2O3 forming at 350 °C and α-Bi2O3 at 500 °C. SEM and BET analyses confirmed that morphology and surface area are strongly influenced by the hydrothermal conditions, with the flower-like β-Bi2O3 exhibiting the highest surface area. UV–Vis spectroscopy revealed that β-Bi2O3 also has a lower bandgap than its α counterpart, making it more responsive to visible light. Photocatalytic tests using Rhodamine B showed that the flower-like β-Bi2O3 achieved the highest degradation efficiency (81% in 4 h). Kinetic analysis followed pseudo-first-order behavior, and radical scavenging experiments identified hydroxyl radicals, superoxide radicals, and holes as key active species. The catalyst also demonstrated excellent stability and reusability. Additionally, Methyl Orange (MO), a more stable and persistent azo dye, was selected as a second model pollutant. The flower-like β-Bi2O3 catalyst achieved 73% degradation of MO at pH = 7 and complete removal under acidic conditions (pH = 2) in less than 3 h. These findings underscore the importance of both phase and morphology in designing high-performance Bi2O3 photocatalysts for environmental remediation. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

21 pages, 2028 KiB  
Article
Graphene Oxide-Supported QuEChERS Extraction Coupled with LC-MS/MS for Trace-Level Analysis of Wastewater Pharmaceuticals
by Weronika Rogowska and Piotr Kaczyński
Appl. Sci. 2025, 15(15), 8441; https://doi.org/10.3390/app15158441 - 30 Jul 2025
Viewed by 204
Abstract
Detecting pharmaceuticals in environmental matrices, particularly in wastewater, is crucial due to their potential environmental occurrence and unpredictable ecological and health-related consequences. These substances, often present in trace amounts, require highly sensitive and selective analytical methods for effective monitoring. A modified version of [...] Read more.
Detecting pharmaceuticals in environmental matrices, particularly in wastewater, is crucial due to their potential environmental occurrence and unpredictable ecological and health-related consequences. These substances, often present in trace amounts, require highly sensitive and selective analytical methods for effective monitoring. A modified version of the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method was evaluated to evaluate 18 pharmaceuticals and 2 metabolites in wastewater samples using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The method’s performance was assessed using linearity, recovery, precision, limits of quantification (LOQ) and detection (LOD), and the matrix effect (ME). The final method was based on acetonitrile, Na2EDTA, citrate buffer, and graphene oxide (GO). Finally, the calibration curves prepared in acetonitrile and the matrix extract showed a correlation coefficient of 0.99. Most of the compounds had LOQ values lower than 0.5 μg⋅mL−1. Recoveries were achieved in the 70–98% range, with RSD lower than 13%. GO allowed the elimination of the ME, which occurred in the range of −11% to 15%. The results indicate that a low-cost and straightforward method is suitable for routinely monitoring pharmaceuticals in wastewater, which is crucial for minimizing the impact of pollutants on aquatic ecosystems. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

28 pages, 4007 KiB  
Article
Voting-Based Classification Approach for Date Palm Health Detection Using UAV Camera Images: Vision and Learning
by Abdallah Guettaf Temam, Mohamed Nadour, Lakhmissi Cherroun, Ahmed Hafaifa, Giovanni Angiulli and Fabio La Foresta
Drones 2025, 9(8), 534; https://doi.org/10.3390/drones9080534 - 29 Jul 2025
Viewed by 194
Abstract
In this study, we introduce the application of deep learning (DL) models, specifically convolutional neural networks (CNNs), for detecting the health status of date palm leaves using images captured by an unmanned aerial vehicle (UAV). The images are modeled using the Newton–Euler method [...] Read more.
In this study, we introduce the application of deep learning (DL) models, specifically convolutional neural networks (CNNs), for detecting the health status of date palm leaves using images captured by an unmanned aerial vehicle (UAV). The images are modeled using the Newton–Euler method to ensure stability and accurate image acquisition. These deep learning models are implemented by a voting-based classification (VBC) system that combines multiple CNN architectures, including MobileNet, a handcrafted CNN, VGG16, and VGG19, to enhance classification accuracy and robustness. The classifiers independently generate predictions, and a voting mechanism determines the final classification. This hybridization of image-based visual servoing (IBVS) and classifiers makes immediate adaptations to changing conditions, providing straightforward and smooth flying as well as vision classification. The dataset used in this study was collected using a dual-camera UAV, which captures high-resolution images to detect pests in date palm leaves. After applying the proposed classification strategy, the implemented voting method achieved an impressive accuracy of 99.16% on the test set for detecting health conditions in date palm leaves, surpassing individual classifiers. The obtained results are discussed and compared to show the effectiveness of this classification technique. Full article
Show Figures

Figure 1

17 pages, 4942 KiB  
Article
Detection of XPO1E571K Gene Mutation from Cell-Free DNA in Blood Circulation of Lymphoma Patients by FAST-COLD PCR
by Suwit Duangmano, Natsima Viriyaadhammaa, Pinyaphat Khamphikham, Nutjeera Intasai, Adisak Tantiworawit, Teerada Daroontum, Sawitree Chiampanichayakul and Songyot Anuchapreeda
Int. J. Mol. Sci. 2025, 26(15), 7324; https://doi.org/10.3390/ijms26157324 - 29 Jul 2025
Viewed by 187
Abstract
The XPO1 (exportin 1) gene encodes exportin 1 protein responsible for transporting proteins and RNA from the nucleus to the cytoplasm. It has been used as a biomarker for lymphoma detection. XPO1E571K mutation has been frequently observed and identified as [...] Read more.
The XPO1 (exportin 1) gene encodes exportin 1 protein responsible for transporting proteins and RNA from the nucleus to the cytoplasm. It has been used as a biomarker for lymphoma detection. XPO1E571K mutation has been frequently observed and identified as a good prognostic indicator for lymphoma patients. The detection of a target molecule released by lymphoma cells into blood circulation (cell-free circulating tumor DNA, cfDNA) is a better method than tissue biopsy. However, cfDNA concentration in blood circulation is very low in cancer patients. Therefore, a precise and sensitive method is needed. In this study, cfDNA was extracted, and then the XPO1 gene was detected and amplified using conventional PCR. Sanger sequencing was employed to verify the DNA sequences. FAST-COLD-PCR was developed to detect XPO1E571K gene mutation using a CFX96 Touch Real-Time PCR System. The optimal critical temperature (Tc) was 73.3 °C, allowing selective amplification of XPO1E571K mutant DNA while wild-type XPO1 could not be amplified. XPO1E571K gene mutation can be detected by this method with high specificity and sensitivity in lymphoma patients. This approach facilitates rapid and straightforward detection in a timely manner after the diagnosis. Accordingly, the optimized FAST-COLD-PCR conditions can be used as a prototype for XPO1E571K mutant detection in lymphoma patients. Full article
(This article belongs to the Special Issue Molecular Research in Hematologic Malignancies)
Show Figures

Figure 1

13 pages, 1041 KiB  
Article
Synthesis and FT-IR/Raman Characterization of a Graphene Oxide–Methacrylamide Monomer for Dental Applications
by Gennaro Ruggiero, Davide Di Rosa, Francesco Caso, Roberto Sorrentino, Fernando Zarone and Giuseppe Caso
Materials 2025, 18(15), 3550; https://doi.org/10.3390/ma18153550 - 29 Jul 2025
Viewed by 316
Abstract
Background: Graphene oxide (GO) is widely explored as a functional additive in polymer composites; however, its simple physical dispersion in dental resins often leads to poor interfacial stability and limited long-term performance. Covalent functionalization may overcome these limitations by enabling chemical integration into [...] Read more.
Background: Graphene oxide (GO) is widely explored as a functional additive in polymer composites; however, its simple physical dispersion in dental resins often leads to poor interfacial stability and limited long-term performance. Covalent functionalization may overcome these limitations by enabling chemical integration into the polymer matrix. This study presents the synthesis and FT-IR/Raman characterization of GRAPHYMERE®, a novel graphene oxide-based monomer obtained through exfoliation, amine functionalization with 1,6-hexanediamine, and transamidation with methyl methacrylate. Methods: A novel GO-based monomer, GRAPHYMERE®, was synthesized through a three-step process involving GO exfoliation, amine functionalization with 1,6-hexanediamine, and transamidation with methyl methacrylate to introduce polymerizable acrylic groups. The resulting product was characterized using FT-IR and Raman spectroscopy. Results: Spectroscopic analyses confirmed the presence of aliphatic chains and amine functionalities on the GO surface. Although some expected signals were overlapped, the data suggest successful surface modification and partial insertion of methacrylamide groups. The process is straightforward, uses low-toxicity reagents, and avoids complex reaction steps. Conclusions: GRAPHYMERE® represents a chemically modified GO monomer potentially suitable for copolymerization within dental resin matrices. While its structural features support compatibility with radical polymerization systems, further studies are required to assess its mechanical performance and functional properties in dental resin applications. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Medical Applications (2nd Edition))
Show Figures

Graphical abstract

28 pages, 8135 KiB  
Article
Drastically Accelerating Fatigue Life Assessment: A Dual-End Multi-Station Spindle Approach for High-Throughput Precision Testing
by Abdurrahman Doğan, Kürşad Göv and İbrahim Göv
Machines 2025, 13(8), 665; https://doi.org/10.3390/machines13080665 - 29 Jul 2025
Viewed by 225
Abstract
This study introduces a time-efficient rotating bending fatigue testing system featuring 11 dual-end spindles, enabling simultaneous testing of 22 specimens. Designed for high-throughput fatigue life (S–N curve) assessment, the system theoretically allows over 93% reduction in total test duration, with 87.5% savings demonstrated [...] Read more.
This study introduces a time-efficient rotating bending fatigue testing system featuring 11 dual-end spindles, enabling simultaneous testing of 22 specimens. Designed for high-throughput fatigue life (S–N curve) assessment, the system theoretically allows over 93% reduction in total test duration, with 87.5% savings demonstrated in validation experiments using AISI 304 stainless steel. The PLC-based architecture provides autonomous operation, real-time failure detection, and automatic cycle logging. ER16 collet holders are easily replaceable within one minute, and all the components are selected from widely available industrial-grade parts to ensure ease of maintenance. The modular design facilitates straightforward adaptation to different station counts. The validation results confirmed an endurance limit of 421 MPa, which is consistent with the established literature and within ±5% deviation. Fractographic analysis revealed distinct crack initiation and propagation zones, supporting the observed fatigue behavior. This high-throughput methodology significantly improves testing efficiency and statistical reliability, offering a practical solution for accelerated fatigue life evaluation in structural, automotive, and aerospace applications. Full article
Show Figures

Figure 1

24 pages, 1026 KiB  
Article
Straightforward Access to the Dispirocyclic Framework via Regioselective Intramolecular Michael Addition
by Weilun Cao, Junmin Dong, Xuan Pan and Zhanzhu Liu
Molecules 2025, 30(15), 3164; https://doi.org/10.3390/molecules30153164 - 29 Jul 2025
Viewed by 108
Abstract
In this article, an efficient and straightforward protocol for the construction of complex dispirocyclic skeletons via regioselective intramolecular Michael addition is presented. Diverse dispirocyclic compounds were synthesized under mild and transition-metal-free conditions with good to excellent yields. Most stereoisomers were conveniently separated by [...] Read more.
In this article, an efficient and straightforward protocol for the construction of complex dispirocyclic skeletons via regioselective intramolecular Michael addition is presented. Diverse dispirocyclic compounds were synthesized under mild and transition-metal-free conditions with good to excellent yields. Most stereoisomers were conveniently separated by column chromatography, and their relative configurations were identified by single-crystal X-Ray diffraction of representative compounds. A scale-up experiment validated the practicality of this method. In an in vitro assay, some dispirocyclic compounds exhibited potent cytotoxicity with an IC50 value of 10−6 mol/L. Full article
Show Figures

Figure 1

Back to TopTop