Synthesis and FT-IR/Raman Characterization of a Graphene Oxide–Methacrylamide Monomer for Dental Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis
2.1.1. Exfoliation
2.1.2. Functionalization with 1,6-Hexanediamine
2.1.3. Transamidation with Methyl Methacrylate
2.2. Characterization
3. Results
4. Discussion
4.1. IR and Raman Spectra Interpretation
4.2. Co-Polymerization of Suitable Molecules
4.3. Comparison with Similar Materials
4.4. Relevance and Potential of GRAPHYMERE® in Dental Applications
4.5. Limitations
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GO | Graphene Oxide |
ED | 1,6-hexanediamine |
MMA | methyl methacrylate |
FT-IR | Fourier Transformed Infrared |
References
- Grodzinski, J. Biomedical application of functional polymers. React. Funct. Polym. 1999, 39, 99–138. [Google Scholar] [CrossRef]
- Patil, A.; Patel, A.; Purohit, R. An overview of polymeric materials for automotive applications. Mater. Today Proc. 2017, 4, 3807–3815. [Google Scholar] [CrossRef]
- Bashir, M.; Rajendran, P. A review on electroactive polymers development for aerospace applications. J. Intell. Mater. Syst. Struct. 2018, 29, 3681–3695. [Google Scholar] [CrossRef]
- Kumar, A.; Srivastava, A.; Galaev, I.Y.; Mattiasson, B. Smart polymers: Physical forms and bioengineering applications. Prog. Polym. Sci. 2007, 32, 1205–1237. [Google Scholar] [CrossRef]
- Das, T.K.; Prusty, S. Review on conducting polymers and their applications. Polym. Plast. Technol. Eng. 2012, 51, 1487–1500. [Google Scholar] [CrossRef]
- Epure, E.L.; Cojocaru, F.D.; Aradoaei, M.; Ciobanu, R.C.; Dodi, G. Exploring the surface potential of recycled polyethylene terephthalate composite supports on the collagen contamination level. Polymers 2023, 15, 776. [Google Scholar] [CrossRef]
- Fu, D.; Yang, F.; Zhang, J.; Xiang, Z.; Wang, Y. Near-infrared rechargeable persistent luminescence nanoparticles for biomedical implants in vivo non-invasive bioimaging. ACS Appl. Mater. Interfaces 2023, 15, 53310–53317. [Google Scholar] [CrossRef]
- Soldano, C.; Mahmood, A.; Dujardin, E. Production, properties and potential of graphene. Carbon 2010, 48, 2127–2150. [Google Scholar] [CrossRef]
- Ahmad, H.; Fan, M.; Hui, D. Graphene oxide incorporated functional materials: A review. Compos. Part B Eng. 2018, 145, 270–280. [Google Scholar] [CrossRef]
- Suk, J.W.; Piner, R.D.; An, J.; Ruoff, R.S. Mechanical properties of monolayer graphene oxide. ACS Nano 2010, 4, 6557–6564. [Google Scholar] [CrossRef] [PubMed]
- Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-based polymer nanocomposites. Polymer 2011, 52, 5–25. [Google Scholar] [CrossRef]
- Najafi, F.; Wang, G.; Cui, T.; Anand, A.; Mukherjee, S.; Filleter, T.; Sain, M.; Singh, C.V. Fatigue resistance of atomically thin graphene oxide. Carbon 2021, 183, 780–788. [Google Scholar] [CrossRef]
- Zhang, T.; Li, X.; Gao, H. Fracture of graphene: A review. Int. J. Fract. 2015, 196, 1–31. [Google Scholar] [CrossRef]
- Zhou, J.; Yao, Z.; Chen, Y.; Wei, D.; Wu, Y.; Xu, T. Mechanical and thermal properties of graphene oxide/phenolic resin composite. Polym. Compos. 2013, 34, 1245–1249. [Google Scholar] [CrossRef]
- Cui, Y.; Kundalwal, S.I.; Kumar, S. Gas barrier performance of graphene/polymer nanocomposites. Carbon 2016, 98, 313–333. [Google Scholar] [CrossRef]
- Naghdi, S.; Mišković-Stanković, V. A review of the corrosion behaviour of graphene coatings on metal surfaces obtained by chemical vapour deposition. J. Electrochem. Soc. 2022, 169, 021505. [Google Scholar] [CrossRef]
- Park, S.; An, J.; Jung, I.; Piner, R.D.; An, S.J.; Li, X.; Velamakanni, A.; Ruoff, R.S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593–1597. [Google Scholar] [CrossRef]
- Chen, J.; Peng, H.; Wang, X.; Shao, F.; Yuan, Z.; Han, H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 2014, 6, 1879–1889. [Google Scholar] [CrossRef]
- Bhaisare, M.L.; Wu, B.S.; Wu, M.C.; Khan, M.S.; Tseng, M.H.; Wu, H.F. MALDI MS analysis, disk diffusion and optical density measurements for the antimicrobial effect of zinc oxide nanorods integrated in graphene oxide nanostructures. Biomater. Sci. 2016, 4, 183–194. [Google Scholar] [CrossRef]
- Pourmoslemi, S.; Shokouhi, S.; Mahjub, R. Investigation of antibacterial activity of polyvinyl alcohol packaging films composed of silver oxide nanoparticles, graphene oxide and tragacanth gum using Box–Behnken design. Packag. Technol. Sci. 2021, 34, 613–622. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731–5736. [Google Scholar] [CrossRef] [PubMed]
- Nichols, F.; Chen, S. Graphene oxide quantum dot-based functional nanomaterials for effective antimicrobial applications. Chem. Rec. 2020, 20, 1505–1515. [Google Scholar] [CrossRef]
- Perreault, F.; Faria, A.F.; Nejati, S.; Elimelech, M. Antimicrobial properties of graphene oxide nanosheets: Why size matters. ACS Nano 2015, 9, 7226–7236. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980. [Google Scholar] [CrossRef]
- Kumar, P.; Huo, P.; Zhang, R.; Liu, B. Antibacterial properties of graphene-based nanomaterials. Nanomaterials 2019, 9, 737. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Yang, K.; Yao, K.; Zhang, S.; Tao, H.; Lee, S.T.; Liu, Z.; Peng, R. Functionalized graphene oxide in enzyme engineering: A selective modulator for enzyme activity and thermostability. ACS Nano 2012, 6, 4864–4875. [Google Scholar] [CrossRef]
- Sindi, A.M. Applications of graphene oxide and reduced graphene oxide in advanced dental materials and therapies. J. Taibah Univ. Med. Sci. 2024, 19, 403–421. [Google Scholar] [CrossRef]
- da Luz, F.S.; Garcia Filho, F.D.; Del-Rio, M.T.; Nascimento, L.F.; Pinheiro, W.A.; Monteiro, S.N. Graphene-incorporated natural fiber polymer composites: A first overview. Polymers 2020, 12, 1601. [Google Scholar] [CrossRef]
- Gurunathan, S.; Han, J.S.; Dayem, A.A.; Eppakayala, V.; Kim, J. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 2012, 7, 5901–5914. [Google Scholar] [CrossRef]
- Salavagione, H.J.; Martínez, G.; Ellis, G. Recent advances in the covalent modification of graphene with polymers. Macromol. Rapid Commun. 2011, 32, 1771–1789. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Z.; Du, X.; Logan, B.E. Nanocomposites and macroscopic materials: Assembly of chemically modified graphene sheets. Chem. Soc. Rev. 2012, 41, 217–227. [Google Scholar] [CrossRef]
- Yang, Y.; Asiri, A.M.; Sun, X. Covalent functionalization of graphene with polysaccharides. Ind. Eng. Chem. Res. 2011, 50, 3820–3826. [Google Scholar] [CrossRef]
- Thomas, A.; Ressler, J.; Stöckelhuber, K.W.; Heinrich, G. One-step grafting of polymers to graphene oxide. Polym. Chem. 2015, 6, 1719–1729. [Google Scholar] [CrossRef]
- Lin, Y.; Watson, K.A.; Kim, J.-W.; Baggett, D.W.; Wesolowski, D.J.; Stokes, K.K. Preparation and characterisation of covalent polymer functionalized graphene oxide. J. Mater. Chem. 2011, 21, 10458–10467. [Google Scholar] [CrossRef]
- Tang, L.; Wan, Y.; Li, Y.; Wu, H.; Wang, Y. Grafting of polyester onto graphene for electrically and thermally conductive composites. Macromolecules 2012, 45, 2400–2409. [Google Scholar] [CrossRef]
- Bao, J.; Zhang, Y.; Wang, X.; Guo, Y.; Yu, J. Functionalized graphene oxide for fire safety applications of polymers: A combination of condensed phase flame retardant strategies. J. Mater. Chem. 2012, 22, 19330–19338. [Google Scholar] [CrossRef]
- Martel, L.; Peralta, J.E.; Emrick, T. Graphene episulfide: Covalent sulfur addition to graphene surfaces. arXiv 2023. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.; He, Y.; Wang, C. An effective non-covalent grafting approach to functionalize individually dispersed reduced graphene oxide sheets with high grafting density, solubility and electrical conductivity. Nanoscale 2015, 7, 2290–2299. [Google Scholar] [CrossRef]
- Yang, S.; Chen, Z.; Liu, H.; Zhang, Y.; Guo, X. Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives. J. Phys. Chem. C 2010, 114, 10967–10975. [Google Scholar] [CrossRef]
- Gupta, A.; Raza, M.A.; Zhao, J.; Prakash, S.; Lu, C. Molecular-pillar-supported functionalized reduced graphene-oxide for energy efficient lubrication. Adv. Mater. Interfaces 2016, 3, 1600161. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, S.; Li, Y.; Wang, M.; Shi, P.; Huang, X. Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. ACS Appl. Mater. Interfaces 2014, 6, 17268–17276. [Google Scholar] [CrossRef]
- Konios, D.; Stylianakis, M.M.; Stratakis, E.; Kymakis, E. Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 2014, 430, 108–112. [Google Scholar] [CrossRef]
- Yan, J.L.; Qi, G.Q.; Cao, J.; Luo, Y.; Yang, W.; Xie, B.H.; Yang, M.B. Study on amino-functionalized graphene oxide/poly(methyl methacrylate) nanocomposites. Chem. Lett. 2012, 41, 683–685. [Google Scholar] [CrossRef]
- Surekha, G.; Krishnaiah, K.V.; Ravi, N.; Padma Suvarna, R. FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. J. Phys. Conf. Ser. 2020, 1495, 012012. [Google Scholar] [CrossRef]
- Thompson, J.M. The Analysis of Infrared Spectra. In Infrared Spectroscopy, 1st ed.; Pan Stanford Publishing: Singapore, 2018; pp. 38–64. [Google Scholar] [CrossRef]
- March, J.; Smith, M.B. Addition to Carbon–Hetero Multiple Bonds. In March’s Advanced Organic Chemistry, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 1434–1437. [Google Scholar] [CrossRef]
- Tillet, G.; Boutevin, B.; Ameduri, B. Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog. Polym. Sci. 2011, 32, 191–217. [Google Scholar] [CrossRef]
- Koltzenburg, S.; Maskos, M.; Nuyken, O. Polymer Materials. In Polymer Chemistry, 1st ed.; Springer: Berlin, Germany, 2017; pp. 154–159. ISBN 978-3662492796. [Google Scholar]
- Aminoroaya, A.; Neisiany, R.E.; Khorasani, S.N.; Panahi, P.; Das, O.; Madry, H.; Cucchiarini, M.; Ramakrishna, S. A review of dental composites: Challenges, chemistry aspects, filler influences, and future insights. Compos. Part B Eng. 2021, 216, 108825. [Google Scholar] [CrossRef]
- Nielsen, L.E. Cross-linking—Effect on physical properties of polymers. J. Macromol. Sci. 1969, 3, 69–103. [Google Scholar] [CrossRef]
- Mane, S.T.; Ponrathnam, N.; Chavan, N. Effect of chemical cross-linking on properties of polymer microbeads: A review. Can. Chem. Trans. 2015, 3, 473–485. [Google Scholar] [CrossRef]
- Ha, H.; Choudhury, A.; Kamal, T.; Kim, D.; Park, S. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites. ACS Appl. Mater. Interfaces 2012, 4, 4623–4630. [Google Scholar] [CrossRef]
- Park, S.; Kim, D. Preparation and physical properties of an epoxy nanocomposite with amine-functionalized graphenes. Polym. Eng. Sci. 2014, 54, 985–991. [Google Scholar] [CrossRef]
- Shagor, R.; Abedin, F.; Asmatulu, R. Mechanical and thermal properties of carbon fiber reinforced composite with silanized graphene as nano-inclusions. J. Compos. Mater. 2020, 55, 597–608. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, X.; Yan, C.; Li, H.; Zhu, Y.; Li, X.; Yu, L. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl. Mater. Interfaces 2012, 4, 1543–1552. [Google Scholar] [CrossRef]
- Omelchenko, O.; Gribkova, O.; Tameev, A.; Novikov, S.; Vannikov, A. Thin nanocomposite layers based on a complex of polyaniline and graphene. Prot. Met. Phys. Chem. Surfaces 2014, 50, 613–619. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Brito, F.S.; Franceschi, W.; Simonetti, E.A.; Cividanes, L.S.; Chipara, M.; Lozano, K. Functionalized graphene oxide as reinforcement in epoxy-based nanocomposites. Surfaces Interfaces 2018, 10, 100–109. [Google Scholar] [CrossRef]
- Chee, W.K.; Lim, H.N.; Huang, N.M.; Harrison, I. Nanocomposites of graphene/polymers: A review. RSC Adv. 2015, 5, 68014–68051. [Google Scholar] [CrossRef]
- Thickett, S.C.; Zetterlund, P.B. Functionalization of graphene oxide for the production of novel graphene-based polymeric and colloidal materials. Curr. Org. Chem. 2013, 17, 956–974. [Google Scholar] [CrossRef]
- Liao, K.; Zhang, Y.; Liu, D.; Sun, J. Covalent functionalization of graphene oxide reduces its cytotoxic effects and enhances biocompatibility. Adv. Mater. 2011, 23, 1942–1947. [Google Scholar] [CrossRef]
Article | Synthesis Method | Polymer Compatibility | Applications | Advantages | Limitations |
---|---|---|---|---|---|
GO-ED-PMMA (Yan et al., 2012) [43] | Amine functionalization + in situ PMMA polymerization | PMMA | Optical/electronic materials | Improved adhesion | Limited polymer scope |
GO-epoxy (Ferreira et al., 2018) [57] | GO functionalized with epoxy-reactive agents | Epoxy resins | Structural/engineering materials | Enhanced mechanical and thermal properties | Poor compatibility with flexible or biocompatible systems |
GO/polymer review (Chee et al., 2015) [58] | Dispersion, grafting, and in situ polymerization | Broad | General-purpose nanocomposites | Comprehensive overview of methods | Scalability and reproducibility issues |
GO-acrylic (Thickett & Zetterlund, 2013) [59] | Covalent functionalization on –OH/–COOH/epoxide groups | Acrylics, colloids, and hydrogels | Sensors, coatings, and advanced nanomaterials | High reactivity and tunability | Complex reagents or harsh conditions |
GRAPHYMERE® (this work) | Exfoliation, amination, and acryl functionalization | Acrylics, vinyls, and BIS-GMA | Dental and biomedical | Uniform dispersion + low-toxicity solvents | Functional properties are still under investigation |
Polyimide/GO (Ha et al., 2012) [52] | Carbodiimide activation + polyimide polymerization | Polyimides | High-temperature electronics and aerospace | High-performance (mechanical/electrical/thermal) | Uses less benign reagents |
PANI/GO films (Omelchenko et al., 2014) [56] | In situ aniline polymerization | Polyaniline | Conductive coatings and sensors | Improved conductivity and thermal stability | Requires strong acids/oxidizers |
Epoxy/amineGO (Park & Kim, 2014) [53] | Amine-functionalized GO + epoxy curing | Epoxy resins | Structural composites and coatings | Uniform dispersion and impact resistance | Requires organic solvents and coupling agents |
CF w/silanized GO (Shagor et al., 2020) [54] | Silanization of GO + carbon fiber composite fabrication | Carbon fiber/epoxy | Aerospace and automotive composites | Enhanced mechanical and thermal stability | Moderate cost and irritant silanes |
CF/GO interphase (Zhang et al., 2012) [55] | GO coating on carbon fiber + epoxy impregnation | Carbon fiber/epoxy | High-strength composites | Fracture-resistant interphase | Relies on conventional epoxy resins |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggiero, G.; Di Rosa, D.; Caso, F.; Sorrentino, R.; Zarone, F.; Caso, G. Synthesis and FT-IR/Raman Characterization of a Graphene Oxide–Methacrylamide Monomer for Dental Applications. Materials 2025, 18, 3550. https://doi.org/10.3390/ma18153550
Ruggiero G, Di Rosa D, Caso F, Sorrentino R, Zarone F, Caso G. Synthesis and FT-IR/Raman Characterization of a Graphene Oxide–Methacrylamide Monomer for Dental Applications. Materials. 2025; 18(15):3550. https://doi.org/10.3390/ma18153550
Chicago/Turabian StyleRuggiero, Gennaro, Davide Di Rosa, Francesco Caso, Roberto Sorrentino, Fernando Zarone, and Giuseppe Caso. 2025. "Synthesis and FT-IR/Raman Characterization of a Graphene Oxide–Methacrylamide Monomer for Dental Applications" Materials 18, no. 15: 3550. https://doi.org/10.3390/ma18153550
APA StyleRuggiero, G., Di Rosa, D., Caso, F., Sorrentino, R., Zarone, F., & Caso, G. (2025). Synthesis and FT-IR/Raman Characterization of a Graphene Oxide–Methacrylamide Monomer for Dental Applications. Materials, 18(15), 3550. https://doi.org/10.3390/ma18153550