Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,158)

Search Parameters:
Keywords = storms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4836 KiB  
Article
Time-Variant Instantaneous Unit Hydrograph Based on Machine Learning Pretraining and Rainfall Spatiotemporal Patterns
by Wenyuan Dong, Guoli Wang, Guohua Liang and Bin He
Water 2025, 17(15), 2216; https://doi.org/10.3390/w17152216 - 24 Jul 2025
Abstract
The hydrological response of a watershed is strongly influenced by the spatiotemporal dynamics of rainfall. Rainfall events of similar magnitude can produce markedly different flood processes due to variations in the spatiotemporal patterns of rainfall, posing significant challenges for flood forecasting under complex [...] Read more.
The hydrological response of a watershed is strongly influenced by the spatiotemporal dynamics of rainfall. Rainfall events of similar magnitude can produce markedly different flood processes due to variations in the spatiotemporal patterns of rainfall, posing significant challenges for flood forecasting under complex rainfall scenarios. Traditional methods typically rely on high-resolution or synthetic rainfall data to characterize the scale, direction and velocity of rainstorms, in order to analyze their impact on the flood process. These studies have shown that storms traveling along the main river channel tend to exert the greatest impact on flood processes. Therefore, tracking the movement of the rainfall center along the flow direction, especially when only rain gauge data are available, can reduce model complexity while maintaining forecast accuracy and improving model applicability. This study proposes a machine learning-based time-variable instantaneous unit hydrograph that integrates rainfall spatiotemporal dynamics using quantitative spatial indicators. To overcome limitations of traditional variable unit hydrograph methods, a pre-training and fine-tuning strategy is employed to link the unit hydrograph S-curve with rainfall spatial distribution. First, synthetic pre-training data were used to enable the machine learning model to learn the shape of the S-curve and its general pattern of variation with rainfall spatial distribution. Then, real flood data were employed to learn the actual runoff routing characteristics of the study area. The improved model allows the unit hydrograph to adapt dynamically to rainfall evolution during the flood event, effectively capturing hydrological responses under varying spatiotemporal patterns. The case study shows that the improved model exhibits superior performance across all runoff routing metrics under spatiotemporal rainfall variability. The improved model increased the simulation qualified rate for historical flood events, with significant rainfall center movement during the event from 63% to 90%. This study deepens the understanding of how rainfall dynamics influence watershed response and enhances hourly-scale flood forecasting, providing support for disaster early warning with strong theoretical and practical significance. Full article
Show Figures

Figure 1

25 pages, 4610 KiB  
Article
A Directional Wave Spectrum Inversion Algorithm with HF Surface Wave Radar Network
by Fuqi Mo, Xiongbin Wu, Xiaoyan Li, Liang Yu and Heng Zhou
Remote Sens. 2025, 17(15), 2573; https://doi.org/10.3390/rs17152573 - 24 Jul 2025
Abstract
In high-frequency surface wave radar (HFSWR) systems, the retrieval of the directional wave spectrum has remained challenging, especially in the case of echoes from long ranges with a low signal-to-noise ratio (SNR). Therefore, a quadratic programming algorithm based on the regularization technique is [...] Read more.
In high-frequency surface wave radar (HFSWR) systems, the retrieval of the directional wave spectrum has remained challenging, especially in the case of echoes from long ranges with a low signal-to-noise ratio (SNR). Therefore, a quadratic programming algorithm based on the regularization technique is proposed with an empirical criterion for estimating the optimal regularization parameter, which minimizes the effect of noise to obtain more accurate inversion results. The reliability of the inversion method is preliminarily verified using simulated Doppler spectra under different wind speeds, wind directions, and SNRs. The directional wave spectra inverted from a radar network with two multiple-input multiple-output (MIMO) systems are basically consistent with those from the ERA5 data, while there is a limitation for the very concentrated directional distribution due to the truncated second order in the Fourier series. Further, in the field experiment during a storm that lasted three days, the wave parameters are calculated from the inverted directional spectra and compared with the ERA5 data. The results are shown to be in reasonable agreement at four typical locations in the core detection area. In addition, reasonable performance is also obtained under the condition of low SNRs, which further verifies the effectiveness of the proposed inversion algorithm. Full article
(This article belongs to the Special Issue Innovative Applications of HF Radar (Second Edition))
Show Figures

Figure 1

8 pages, 2843 KiB  
Proceeding Paper
Coastal Erosion in Tsunami and Storm Surges-Exposed Areas in Licantén, Maule, Chile: Case Study Using Remote Sensing and In-Situ Data
by Joaquín Valenzuela-Jara, Idania Briceño de Urbaneja, Waldo Pérez-Martínez and Isidora Díaz-Quijada
Eng. Proc. 2025, 94(1), 10; https://doi.org/10.3390/engproc2025094010 - 24 Jul 2025
Abstract
This study examines urban expansion, coastal erosion, and extreme wave events in Licantén, Maule Region, following the 2010 earthquake and tsunami. Using multi-source data—Landsat and Sentinel-2 imagery, ERA5 reanalysis, high-resolution Maxar images, UAV surveys, and the CoastSat algorithm—we detected significant urban growth in [...] Read more.
This study examines urban expansion, coastal erosion, and extreme wave events in Licantén, Maule Region, following the 2010 earthquake and tsunami. Using multi-source data—Landsat and Sentinel-2 imagery, ERA5 reanalysis, high-resolution Maxar images, UAV surveys, and the CoastSat algorithm—we detected significant urban growth in tsunami-prone areas: Iloca (36.88%), La Pesca (33.34%), and Pichibudi (20.78%). A 39-year shoreline reconstruction (1985–2024) revealed notable changes in erosion rates and shoreline dynamics using DSAS v6.0, influenced by tides, storm surges, and wave action modeled in R to quantify storm surge events over time. Results underscore the lack of urban planning in hazard-exposed areas and the urgent need for resilient coastal management under climate change. Full article
Show Figures

Figure 1

18 pages, 5315 KiB  
Article
Quantifying Improvements in Derived Storm Events from Version 07 of GPM IMERG Early, Late, and Final Data Products over North Carolina
by Elizabeth Bartuska, R. Edward Beighley, Kelsey J. Pieper and C. Nathan Jones
Remote Sens. 2025, 17(15), 2567; https://doi.org/10.3390/rs17152567 - 24 Jul 2025
Abstract
In North Carolina (NC), roughly 1 in 4 residents rely on private wells for drinking water. Given the potential for flooding to impact well water quality, which poses serious health hazards to well users, accurate near real-time precipitation estimates are vital for guiding [...] Read more.
In North Carolina (NC), roughly 1 in 4 residents rely on private wells for drinking water. Given the potential for flooding to impact well water quality, which poses serious health hazards to well users, accurate near real-time precipitation estimates are vital for guiding outreach and mitigation efforts. GPM IMERG precipitation data provides a solution for this need. Previous studies have shown that IMERG version 06 performs well throughout NC for capturing event totals. This study investigates changes in precipitation performance from IMERG version 06 to version 07 in NC and surrounding regions. There was significant improvement pertaining to errors quantifying the magnitude of precipitation events; the mean error in event precipitation decreased 75–85%, bias decreased 65–80%, and the root mean square error decreased 15–30% for Early, Late, and Final products as compared to event totals from in situ precipitation gauges. V07 shows improved performance during events in colder conditions, in mountainous regions, and with higher, prolonged intensities. During Hurricane Florence (September 2018), v07 improved precipitation estimates in regions with higher rainfall totals. These findings demonstrate the potential of the IMERG v07 Early and Late data products for the creation of accurate and timely flood models in emergency response applications. Full article
Show Figures

Figure 1

19 pages, 967 KiB  
Review
Hematologic and Immunologic Overlap Between COVID-19 and Idiopathic Pulmonary Fibrosis
by Gabriela Mara, Gheorghe Nini, Stefan Marian Frenț and Coralia Cotoraci
J. Clin. Med. 2025, 14(15), 5229; https://doi.org/10.3390/jcm14155229 - 24 Jul 2025
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease characterized by chronic inflammation, vascular remodeling, and immune dysregulation. COVID-19, caused by SARS-CoV-2, shares several systemic immunohematologic disturbances with IPF, including cytokine storms, endothelial injury, and prothrombotic states. Unlike general comparisons of viral [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease characterized by chronic inflammation, vascular remodeling, and immune dysregulation. COVID-19, caused by SARS-CoV-2, shares several systemic immunohematologic disturbances with IPF, including cytokine storms, endothelial injury, and prothrombotic states. Unlike general comparisons of viral infections and chronic lung disease, this review offers a focused analysis of the shared hematologic and immunologic mechanisms between COVID-19 and IPF. Our aim is to better understand how SARS-CoV-2 infection may worsen disease progression in IPF and identify converging pathophysiological pathways that may inform clinical management. We conducted a narrative synthesis of the peer-reviewed literature from PubMed, Scopus, and Web of Science, focusing on clinical, experimental, and pathological studies addressing immune and coagulation abnormalities in both COVID-19 and IPF. Both diseases exhibit significant overlap in inflammatory and fibrotic signaling, particularly via the TGF-β, IL-6, and TNF-α pathways. COVID-19 amplifies coagulation disturbances and endothelial dysfunction already present in IPF, promoting microvascular thrombosis and acute exacerbations. Myeloid cell overactivation, impaired lymphocyte responses, and fibroblast proliferation are central to this shared pathophysiology. These synergistic mechanisms may accelerate fibrosis and increase mortality risk in IPF patients infected with SARS-CoV-2. This review proposes an integrative framework for understanding the hematologic and immunologic convergence of COVID-19 and IPF. Such insights are essential for refining therapeutic targets, improving prognostic stratification, and guiding early interventions in this high-risk population. Full article
(This article belongs to the Special Issue Chronic Lung Conditions: Integrative Approaches to Long-Term Care)
Show Figures

Figure 1

11 pages, 479 KiB  
Article
Association of TMEM173/STING1 Gene Variants with Severe COVID-19 Among Fully Vaccinated vs. Non-Vaccinated Individuals
by Daniel Vázquez-Coto, Marta García-Clemente, Guillermo M. Albaiceta, Laura Amado, Lorena M. Vega-Prado, Claudia García-Lago, Rebeca Lorca, Juan Gómez and Eliecer Coto
Life 2025, 15(8), 1171; https://doi.org/10.3390/life15081171 - 23 Jul 2025
Abstract
Background. The STING protein is activated by the second messenger cGAMP to promote the innate immune response against infections. Beyond this role, a chronically overactive STING signaling has been described in several disorders. Patients with severe COVID-19 exhibit a hyper-inflammatory response (the cytokine [...] Read more.
Background. The STING protein is activated by the second messenger cGAMP to promote the innate immune response against infections. Beyond this role, a chronically overactive STING signaling has been described in several disorders. Patients with severe COVID-19 exhibit a hyper-inflammatory response (the cytokine storm) that is in part mediated by the cGAS-STING pathway. Several STING inhibitors may protect from severe COVID-19 by down-regulating several inflammatory cytokines. This pathway has been implicated in the establishment of an optimal antiviral vaccine response. STING agonists as adjuvants improved the IgG titers against the SARS-CoV-2 Spike protein vaccines. Methods. We investigated the association between two common functional STING1/TMEM173 polymorphisms (rs78233829 C>G/p.Gly230Ala and rs1131769C>T/p.His232Arg) and severe COVID-19 requiring hospitalization. A total of 801 non-vaccinated and 105 fully vaccinated (mRNA vaccine) patients, as well as 300 population controls, were genotyped. Frequencies between the groups were statistically compared. Results. There were no differences for the STING1 variant frequencies between non-vaccinated patients and controls. Vaccinated patients showed a significantly higher frequency of rs78233829 C (230Gly) compared to non-vaccinated patients (CC vs. CG + GG; p = 0.003; OR = 2.13; 1.29–3.50). The two STING1 variants were in strong linkage disequilibrium, with the rs78233829 C haplotypes being significantly more common in the vaccinated (p = 0.02; OR = 1.66; 95%CI = 1.01–2.55). We also studied the LTZFL1 rs67959919 G/A polymorphism that was significantly associated with severe COVID-19 (p < 0.001; OR = 1.83; 95%CI = 1.28–2.63). However, there were no differences between the non-vaccinated and vaccinated patients for this polymorphism. Conclusions. We report a significant association between common functional STING1 polymorphisms and the risk of developing severe COVID-19 among fully vaccinated patients. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

25 pages, 1299 KiB  
Article
Quantifying Automotive Lidar System Uncertainty in Adverse Weather: Mathematical Models and Validation
by Behrus Alavi, Thomas Illing, Felician Campean, Paul Spencer and Amr Abdullatif
Appl. Sci. 2025, 15(15), 8191; https://doi.org/10.3390/app15158191 - 23 Jul 2025
Abstract
Lidar technology is a key sensor for autonomous driving due to its precise environmental perception. However, adverse weather and atmospheric conditions involving fog, rain, snow, dust, and smog can impair lidar performance, leading to potential safety risks. This paper introduces a comprehensive methodology [...] Read more.
Lidar technology is a key sensor for autonomous driving due to its precise environmental perception. However, adverse weather and atmospheric conditions involving fog, rain, snow, dust, and smog can impair lidar performance, leading to potential safety risks. This paper introduces a comprehensive methodology to simulate lidar systems under such conditions and validate the results against real-world experiments. Existing empirical models for the extinction and backscattering of laser beams are analyzed, and new models are proposed for dust storms and smog, derived using Mie theory. These models are implemented in the CARLA simulator and evaluated using Robot Operating System 2 (ROS 2). The simulation methodology introduced allowed the authors to set up test experiments replicating real-world conditions, to validate the models against real-world data available in the literature, and to predict the performance of the lidar system in all weather conditions. This approach enables the development of virtual test scenarios for corner cases representing rare weather conditions to improve robustness and safety in autonomous systems. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

22 pages, 6643 KiB  
Article
IonoBench: Evaluating Spatiotemporal Models for Ionospheric Forecasting Under Solar-Balanced and Storm-Aware Conditions
by Mert Can Turkmen, Yee Hui Lee and Eng Leong Tan
Remote Sens. 2025, 17(15), 2557; https://doi.org/10.3390/rs17152557 - 23 Jul 2025
Abstract
Accurate modeling of ionospheric variability is critical for space weather forecasting and GNSS applications. While machine learning approaches have shown promise, progress is hindered by the absence of standardized benchmarking practices and narrow test periods. In this paper, we take the first step [...] Read more.
Accurate modeling of ionospheric variability is critical for space weather forecasting and GNSS applications. While machine learning approaches have shown promise, progress is hindered by the absence of standardized benchmarking practices and narrow test periods. In this paper, we take the first step toward fostering rigorous and reproducible evaluation of AI models for ionospheric forecasting by introducing IonoBench—a benchmarking framework that employs a stratified data split, balancing solar intensity across subsets while preserving 16 high-impact geomagnetic storms (Dst ≤ 100 nT) for targeted stress testing. Using this framework, we benchmark a field-specific model (DCNN) against state-of-the-art spatiotemporal architectures (SwinLSTM and SimVPv2) using the climatological IRI 2020 model as a baseline reference. DCNN, though effective under quiet conditions, exhibits significant degradation during elevated solar and storm activity. SimVPv2 consistently provides the best performance, with superior evaluation metrics and stable error distributions. Compared to the C1PG baseline (the CODE 1-day forecast product), SimVPv2 achieves a notable RMSE reduction up to 32.1% across various subsets under diverse solar conditions. The reported results highlight the value of cross-domain architectural transfer and comprehensive evaluation frameworks in ionospheric modeling. With IonoBench, we aim to provide an open-source foundation for reproducible comparisons, supporting more meticulous model evaluation and helping to bridge the gap between ionospheric research and modern spatiotemporal deep learning. Full article
25 pages, 2512 KiB  
Review
Drenched Pages: A Primer on Wet Books
by Islam El Jaddaoui, Kayo Denda, Hassan Ghazal and Joan W. Bennett
Biology 2025, 14(8), 911; https://doi.org/10.3390/biology14080911 - 22 Jul 2025
Abstract
Molds readily grow on wet books, documents, and other library materials where they ruin them chemically, mechanically, and aesthetically. Poor maintenance of libraries, failures of Heating, Ventilation, and Air Conditioning (HVAC) systems, roof leaks, and storm damage leading to flooding can all result [...] Read more.
Molds readily grow on wet books, documents, and other library materials where they ruin them chemically, mechanically, and aesthetically. Poor maintenance of libraries, failures of Heating, Ventilation, and Air Conditioning (HVAC) systems, roof leaks, and storm damage leading to flooding can all result in accelerated fungal growth. Moreover, when fungal spores are present at high concentrations in the air, they can be linked to severe respiratory conditions and possibly to other adverse health effects in humans. Climate change and the accompanying storms and floods are making the dual potential of fungi to biodegrade library holdings and harm human health more common. This essay is intended for microbiologists without much background in mycology who are called in to help librarians who are dealing with mold outbreaks in libraries. Our goal is to demystify aspects of fungal taxonomy, morphology, and nomenclature while also recommending guidelines for minimizing mold contamination in library collections. Full article
20 pages, 25345 KiB  
Article
Mangrove Damage and Early-Stage Canopy Recovery Following Hurricane Roslyn in Marismas Nacionales, Mexico
by Samuel Velázquez-Salazar, Luis Valderrama-Landeros, Edgar Villeda-Chávez, Cecilia G. Cervantes-Rodríguez, Carlos Troche-Souza, José A. Alcántara-Maya, Berenice Vázquez-Balderas, María T. Rodríguez-Zúñiga, María I. Cruz-López and Francisco Flores-de-Santiago
Forests 2025, 16(8), 1207; https://doi.org/10.3390/f16081207 - 22 Jul 2025
Abstract
Hurricanes are powerful tropical storms that can severely damage mangrove forests through uprooting trees, sediment erosion, and saltwater intrusion, disrupting their critical role in coastal protection and biodiversity. After a hurricane, evaluating mangrove damage helps prioritize rehabilitation efforts, as these ecosystems play a [...] Read more.
Hurricanes are powerful tropical storms that can severely damage mangrove forests through uprooting trees, sediment erosion, and saltwater intrusion, disrupting their critical role in coastal protection and biodiversity. After a hurricane, evaluating mangrove damage helps prioritize rehabilitation efforts, as these ecosystems play a key ecological role in coastal regions. Thus, we analyzed the defoliation of mangrove forest canopies and their early recovery, approximately 2.5 years after the landfall of Category 3 Hurricane Roslyn in October 2002 in Marismas Nacionales, Mexico. The following mangrove traits were analyzed: (1) the yearly time series of the Combined Mangrove Recognition Index (CMRI) standard deviation from 2020 to 2025, (2) the CMRI rate of change (slope) following the hurricane’s impact, and (3) the canopy height model (CHM) before and after the hurricane using satellite and UAV-LiDAR data. Hurricane Roslyn caused a substantial decrease in canopy cover, resulting in a loss of 47,202 ha, which represents 82.8% of the total area of 57,037 ha. The CMRI standard deviation indicated early signs of canopy recovery in one-third of the mangrove-damaged areas 2.5 years post-impact. The CMRI slope indicated that areas near the undammed rivers had a maximum recovery rate of 0.05 CMRI units per month, indicating a predicted canopy recovery of ~2.5 years. However, most mangrove areas exhibited CMRI rates between 0.01 and 0.03 CMRI units per month, anticipating a recovery time between 40 months (approximately 3.4 years) and 122 months (roughly 10 years). Unfortunately, most of the already degraded Laguncularia racemosa forests displayed a negative CMRI slope, suggesting a lack of canopy recovery so far. Additionally, the CHM showed a median significant difference of 3.3 m in the canopy height of fringe-type Rhizophora mangle and Laguncularia racemosa forests after the hurricane’s landfall. Full article
Show Figures

Figure 1

21 pages, 6329 KiB  
Article
Mesoscale Analysis and Numerical Simulation of an Extreme Precipitation Event on the Northern Slope of the Middle Kunlun Mountains in Xinjiang, China
by Chenxiang Ju, Man Li, Xia Yang, Yisilamu Wulayin, Ailiyaer Aihaiti, Qian Li, Weilin Shao, Junqiang Yao and Zonghui Liu
Remote Sens. 2025, 17(14), 2519; https://doi.org/10.3390/rs17142519 - 19 Jul 2025
Viewed by 199
Abstract
Under accelerating global warming, the northern slope of the Middle Kunlun Mountains in Xinjiang, China, has seen a marked rise in extreme rainfall, posing increasing challenges for flood risk management and water resources. To improve our predictive capabilities and deepen our understanding of [...] Read more.
Under accelerating global warming, the northern slope of the Middle Kunlun Mountains in Xinjiang, China, has seen a marked rise in extreme rainfall, posing increasing challenges for flood risk management and water resources. To improve our predictive capabilities and deepen our understanding of the driving mechanisms, we combine the European Centre for Medium-Range Weather Forecasts Reanalysis-5 (ERA5) reanalysis, regional observations, and high-resolution Weather Research and Forecasting model (WRF) simulations to dissect the 14–17 June 2021, extreme rainfall event. A deep Siberia–Central Asia trough and nascent Central Asian vortex established a coupled upper- and low-level jet configuration that amplified large-scale ascent. Embedded shortwaves funnelled abundant moisture into the orographic basin, where strong low-level moisture convergence and vigorous warm-sector updrafts triggered and sustained deep convection. WRF reasonably replicated observed wind shear and radar echoes, revealing the descent of a mid-level jet into an ultra-low-level jet that provided a mesoscale engine for storm intensification. Momentum–budget diagnostics underscore the role of meridional momentum transport along sloping terrain in reinforcing low-level convergence and shear. Together, these synoptic-to-mesoscale interactions and moisture dynamics led to this landmark extreme-precipitation event. Full article
Show Figures

Figure 1

22 pages, 1954 KiB  
Article
Pre-Evaluation of Wave Energy Converter Deployment in the Baltic Sea Through Site Limitations Using CMEMS Hindcast, Sentinel-1, and Wave Buoy Data
by Nikon Vidjajev, Sander Rikka and Victor Alari
Energies 2025, 18(14), 3843; https://doi.org/10.3390/en18143843 - 19 Jul 2025
Viewed by 477
Abstract
This study assesses the wave energy potential and spectral variability in the Väinameri—a semi-sheltered, island-filtered basin on Estonia’s west coast—by combining six months of high-resolution in situ wave spectra with deep learning-enhanced satellite retrievals. Directional spectra were recorded at Rohuküla Harbor using a [...] Read more.
This study assesses the wave energy potential and spectral variability in the Väinameri—a semi-sheltered, island-filtered basin on Estonia’s west coast—by combining six months of high-resolution in situ wave spectra with deep learning-enhanced satellite retrievals. Directional spectra were recorded at Rohuküla Harbor using a wave-following LainePoiss buoy from June to December 2024. In parallel, one-dimensional wave spectra were reconstructed from Sentinel-1 SAR imagery using a long short-term memory (LSTM) neural network trained on more than 71,000 collocations with NORA3 WAM hindcasts. Spectral pairs matched within a ±1 h window exhibited strong agreement in the dominant 0.2–0.4 Hz frequency band, while systematic underestimation at higher frequencies reflected both the radar resolution limits and the short-period, wind–sea-dominated nature of the Baltic Sea. Our results confirm that LSTM-enhanced SAR retrievals enable robust bulk and spectral wave characterizations in data-sparse nearshore regions, and offer a practical basis for the site evaluation, device tuning, and survivability testing of pilot-scale wave energy converters under both typical and storm-driven forcing conditions. Full article
(This article belongs to the Special Issue New Advances in Wave Energy Conversion)
Show Figures

Figure 1

21 pages, 3532 KiB  
Review
Climate Hazards Management of Historic Urban Centers: The Case of Kaštela Bay in Croatia
by Jure Margeta
Climate 2025, 13(7), 153; https://doi.org/10.3390/cli13070153 - 19 Jul 2025
Viewed by 238
Abstract
The preservation and protection of historic urban centers in climate-sensitive coastal areas contributes to the promotion of culture as a driver and enabler of achieving temporal and spatial sustainability, as it is recognized that urban heritage is an integral part of the urban [...] Read more.
The preservation and protection of historic urban centers in climate-sensitive coastal areas contributes to the promotion of culture as a driver and enabler of achieving temporal and spatial sustainability, as it is recognized that urban heritage is an integral part of the urban landscape, culture, and economy. The aim of this study was to enhance the resilience and protection of cultural heritage and historic urban centers (HUCs) in the coastal area of Kaštela, Croatia, by providing recommendations and action guidelines in response to climate change impacts, including rising temperatures, sea levels, storms, droughts, and flooding. Preserving HUCs is essential to maintain their cultural values, original structures, and appearance. Many ancient coastal Roman HUCs lie partially or entirely below mean sea level, while low-lying medieval castles, urban areas, and modern developments are increasingly at risk. Based on vulnerability assessments, targeted mitigation and adaptation measures were proposed to address HUC vulnerability sources. The Historical Urban Landscape Approach tool was used to transition and manage HUCs, linking past, present, and future hazard contexts to enable rational, comprehensive, and sustainable solutions. The effective protection of HUCs requires a deeper understanding of the evolution of urban development, climate dynamics, and the natural environments, including both tangible and intangible urban heritage elements. The “hazard-specific” vulnerability assessment framework, which incorporates hazard-relevant indicators of sensitivity and adaptive capacity, was a practical tool for risk reduction. This method relies on analyzing the historical performance and physical characteristics of the system, without necessitating additional simulations of transformation processes. Full article
(This article belongs to the Special Issue Coastal Hazards under Climate Change)
Show Figures

Figure 1

12 pages, 1625 KiB  
Article
Rift Valley Fever Outbreak Investigation Associated with a Dairy Farm Abortion Storm, Mbarara District, Western Uganda, 2023
by Luke Nyakarahuka, Shannon Whitmer, Sophia Mulei, Joanita Mutesi, Jimmy Baluku, Jackson Kyondo, Amy Whitesell, Carson Telford, Alex Tumusiime, Calvin Richie Torach, Dianah Namanya, Mariam Nambuya, Dominic Muhereza, Zainah Kabami, Annet Nankya, David Muwanguzi, Francis Mugabi, Nelson Wandera, Rose Muhindo, Joel M. Montgomery, Julius J. Lutwama, Stephen Karabyo Balinandi, John D. Klena and Trevor R. Shoemakeradd Show full author list remove Hide full author list
Viruses 2025, 17(7), 1015; https://doi.org/10.3390/v17071015 - 19 Jul 2025
Viewed by 278
Abstract
In Africa, Rift Valley Fever poses a substantial risk to animal health, and human cases occur after contact with infected animals or their tissues. RVF has re-emerged in Uganda after nearly five decades, with multiple outbreaks recorded since 2016. We investigated a unique [...] Read more.
In Africa, Rift Valley Fever poses a substantial risk to animal health, and human cases occur after contact with infected animals or their tissues. RVF has re-emerged in Uganda after nearly five decades, with multiple outbreaks recorded since 2016. We investigated a unique RVF outbreak associated with an animal abortion storm of 30 events and human cases on a dairy farm in Mbarara District, Western Uganda, in February 2023. Genomic analysis was performed, comparing animal and human RVF viruses (RVFV) circulating in the region. A cluster of thirteen human RVF cases and nine PCR-positive animals could directly be linked with the abortion storm. Overall, during the year 2023, we confirmed 61 human RVFV cases across Uganda, 88.5% of which were reported to have had direct contact with livestock, and a high case fatality rate of 31%. We recommend implementing extensive health education programs in affected communities and using sustainable mosquito control strategies to limit transmission in livestock, coupled with initiating animal vaccination trials in Uganda. Full article
(This article belongs to the Special Issue Emerging Highlights in the Study of Rift Valley Fever Virus)
Show Figures

Figure 1

25 pages, 6114 KiB  
Article
Classification of Precipitation Types and Investigation of Their Physical Characteristics Using Three-Dimensional S-Band Dual-Polarization Radar Data
by Choeng-Lyong Lee, Wonbae Bang, Chia-Lun Tsai and GyuWon Lee
Remote Sens. 2025, 17(14), 2506; https://doi.org/10.3390/rs17142506 - 18 Jul 2025
Viewed by 249
Abstract
A novel classification algorithm for precipitation types (CP) was developed to address frequent misclassification issues between shallow convection and intense stratiform precipitation using existing methods and to enhance an understanding of their physical characteristics. Based on three-dimensional radar data and temperature fields, CP [...] Read more.
A novel classification algorithm for precipitation types (CP) was developed to address frequent misclassification issues between shallow convection and intense stratiform precipitation using existing methods and to enhance an understanding of their physical characteristics. Based on three-dimensional radar data and temperature fields, CP integrates three approaches: Storm Labeling in Three Dimensions (SLTD), a feature parameter-based algorithm (FP), and an advanced subcategorization method. The algorithm classifies precipitation into ten types: four non-precipitating, three stratiform, and three convective categories. CP was evaluated against traditional methods (SHY and FP) through both qualitative and quantitative analyses for mid-latitude warm-season systems. The CP method demonstrated improved performance, with higher skill scores (e.g., POD: 0.567–0.571) compared to SHY (0.349–0.364) and FP (0.455–0.470). Additionally, comparative analyses of vertical mean profiles of radar reflectivity, dynamical, and microphysical variables confirmed the enhanced capability of CP in distinguishing detailed precipitation structures. Full article
Show Figures

Figure 1

Back to TopTop