Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = stick–slip phenomenon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7660 KiB  
Article
Influences of the Stiffness and Damping Parameters on the Torsional Vibrations’ Severity in Petroleum Drilling Systems
by Mohamed Zinelabidine Doghmane
Energies 2025, 18(14), 3701; https://doi.org/10.3390/en18143701 - 14 Jul 2025
Viewed by 301
Abstract
The torsional, lateral, and axial vibrations that occur during drilling operations have negative effects on the drilling equipment. These negative effects can cause huge economic impacts, as the failure of drilling tools results in wasted materials, non-productive time, and substantial expenses for equipment [...] Read more.
The torsional, lateral, and axial vibrations that occur during drilling operations have negative effects on the drilling equipment. These negative effects can cause huge economic impacts, as the failure of drilling tools results in wasted materials, non-productive time, and substantial expenses for equipment repairs. Many researchers have tried to reduce these vibrations and have tested several models in their studies. In most of these models, the drill string used in oil wells behaves like a rotating torsion pendulum (mass spring), represented by different discs. The top drive (with the rotary table) and the BHA (with the drill pipes) have been considered together as a linear spring with constant torsional stiffness and torsional damping coefficients. In this article, three models with different degrees of freedom are considered, with the aim of analyzing the effect of variations in the stiffness and damping coefficients on the severity of torsional vibrations. A comparative study has been conducted between the three models for dynamic responses to parametric variation effects. To ensure the relevance of the considered models, the field data of torsional vibrations while drilling were used to support the modeling assumption and the designed simulation scenarios. The main novelty of this work is its rigorous comparative analysis of how the stiffness and damping coefficients influence the severity of torsional vibrations based on field measurements, which has a direct application in operational energy efficiency and equipment reliability. The results demonstrated that the variation of the damping coefficient does not significantly affect the severity of the torsional vibrations. However, it is highly recommended to consider all existing frictions in the tool string to obtain a reliable torsional vibration model that can reproduce the physical phenomenon of stick–slip. Furthermore, this study contributes to the improvement of operational energy efficiency and equipment reliability in fossil energy extraction processes. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

11 pages, 1079 KiB  
Technical Note
Visuohaptic Feedback in Robotic-Assisted Spine Surgery for Pedicle Screw Placement
by Giuseppe Loggia, Fedan Avrumova and Darren R. Lebl
J. Clin. Med. 2025, 14(11), 3804; https://doi.org/10.3390/jcm14113804 - 29 May 2025
Viewed by 642
Abstract
Introduction: Robotic-assisted (RA) spine surgery enhances pedicle screw placement accuracy through real-time navigation and trajectory guidance. However, the absence of traditional direct haptic feedback by freehand instrumentation remains a concern for some, particularly in minimally invasive (MIS) procedures where direct visual confirmation [...] Read more.
Introduction: Robotic-assisted (RA) spine surgery enhances pedicle screw placement accuracy through real-time navigation and trajectory guidance. However, the absence of traditional direct haptic feedback by freehand instrumentation remains a concern for some, particularly in minimally invasive (MIS) procedures where direct visual confirmation is limited. During RA spine surgery, navigation systems display three-dimensional data, but factors such as registration errors, intraoperative motion, and anatomical variability may compromise accuracy. This technical note describes a visuohaptic intraoperative phenomenon observed during RA spine surgery, its underlying mechanical principles, and its utility. During pedicle screw insertion with a slow-speed automated drill in RA spine procedures, a subtle and rhythmic variation in resistance has been observed both visually on the navigation interface and haptically through the handheld drill. This intraoperative pattern is referred to in this report as a cyclical insertional torque (CIT) pattern and has been noted across multiple cases. The CIT pattern is hypothesized to result from localized stick–slip dynamics, where alternating phases of resistance and release at the bone–screw interface generate periodic torque fluctuations. The pattern is most pronounced at low insertion speeds and diminishes with increasing drill velocity. CIT is a newly described intraoperative observation that may provide visuohaptic feedback during pedicle screw insertion in RA spine surgery. Through slow-speed automated drilling, CIT offers a cue for bone engagement, which could support intraoperative awareness in scenarios where tactile feedback is reduced or visual confirmation is indirect. While CIT may enhance surgeon confidence during screw advancement, its clinical relevance, reproducibility, and impact on placement accuracy have yet to be validated. Full article
(This article belongs to the Special Issue Advances in Spine Surgery: Best Practices and Future Directions)
Show Figures

Figure 1

21 pages, 12595 KiB  
Article
Study on Vibration Characteristics of Multi-Beam Structures with Stick and Slip at Joints
by Xian Zhang, Yingchun Xie, Peng Lyu, Donghong Ning and Zhixiong Li
Appl. Sci. 2025, 15(3), 1141; https://doi.org/10.3390/app15031141 - 23 Jan 2025
Viewed by 972
Abstract
Stick–slip phenomena may manifest at the joints during cyclic vibrations in beam structures connected by some forms of joint. This work incorporates the sticking–slip effect of joint connections into the dynamic analysis framework of multi-beam structures through changes in friction forces. The system [...] Read more.
Stick–slip phenomena may manifest at the joints during cyclic vibrations in beam structures connected by some forms of joint. This work incorporates the sticking–slip effect of joint connections into the dynamic analysis framework of multi-beam structures through changes in friction forces. The system characteristic equation is solved using the incremental harmonic balance method, the vibration characteristics of the connected structure are explored through the dynamic response, and the accuracy of the model established in this paper is verified through experiments. The equivalent stiffness and damping changes of a connecting beam under different connection states are investigated for the first time. The research indicates that the “tracking” phenomenon, induced by abrupt damping and resonance frequency variations due to low contact pressure and a low friction coefficient, leads to a relatively stable vibration response amplitude across an extended frequency range. This results in the gradual attenuation of resonance peaks within the frequency response curve, giving rise to a defined resonance frequency range. As connection stiffness diminishes, the system demonstrates characteristics of internal resonance. In addition, the influence characteristics of external excitation and connection joint position on the vibration response of multi-beam structures are also explored. This model provides an effective method for studying the vibration problems of complex beam frame structures. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

27 pages, 7982 KiB  
Article
Contact Dynamic Behaviors of Magnetic Hydrogel Soft Robots
by Yunian Shen and Yiming Zou
Gels 2025, 11(1), 20; https://doi.org/10.3390/gels11010020 - 31 Dec 2024
Viewed by 951
Abstract
Magnetic hydrogel soft robots have shown great potential in various fields. However, their contact dynamic behaviors are complex, considering stick–slip motion at the contact interface, and lack accurate computational models to analyze them. This paper improves the numerical computational method for hydrogel materials [...] Read more.
Magnetic hydrogel soft robots have shown great potential in various fields. However, their contact dynamic behaviors are complex, considering stick–slip motion at the contact interface, and lack accurate computational models to analyze them. This paper improves the numerical computational method for hydrogel materials with magneto-mechanical coupling effect, analyses the inchworm-like contact motion of the biomimetic bipedal magnetic hydrogel soft robot, and designs and optimizes the robot’s structure. In the constitutive model, a correction factor representing the influence of the direction of magnetic flux density on the domain density has been introduced. The magnetic part of the Helmholtz free energy has been redefined as the magnetic potential energy, which can be used to explain the phenomenon that the material will still deform when the magnetic flux density is parallel to the external magnetic field. The accuracy of the simulation is verified by comparing numerical solutions with experimental results for a magnetic hydrogel cantilever beam. Furthermore, employing the present methods, the locomotion of a magnetic hydrogel soft robot modeled after the inchworm’s gait is simulated, and the influence of the coefficient of friction on its movement is discussed. The numerical results clearly display the control effect of the external magnetic field on the robot’s motion. Full article
Show Figures

Figure 1

15 pages, 7044 KiB  
Article
Fast Detection of the Stick–Slip Phenomenon Associated with Wheel-to-Rail Sliding Using Acceleration Sensors: An Experimental Study
by Gabriel Popa, Mihail Andrei, Emil Tudor, Ionuț Vasile and George Ilie
Technologies 2024, 12(8), 134; https://doi.org/10.3390/technologies12080134 - 13 Aug 2024
Cited by 3 | Viewed by 6051
Abstract
The stick–slip phenomenon, the initial stage when the traction wheel starts sliding on the rail, is a critical operation that needs to be detected quickly to control the traction drive. In this study, we have developed an experimental model that uses acceleration sensors [...] Read more.
The stick–slip phenomenon, the initial stage when the traction wheel starts sliding on the rail, is a critical operation that needs to be detected quickly to control the traction drive. In this study, we have developed an experimental model that uses acceleration sensors mounted on the wheel to evaluate the amplitude of the stick–slip phenomena. These sensors can alert the driver or assist the traction control unit when a stick–slip occurs. We propose a method to reduce the amplitude of the stick–slip phenomenon using special hydraulic dampers and viscous dampers mounted on the tractive axles of the locomotive to prevent slipping during acceleration. This practical solution, validated through numerical simulation, can be readily implemented in railway systems. The paper’s findings can be used to select the necessary sensors and corresponding vibration dampers. By implementing these sliding reducers, a locomotive can significantly improve traction, apply more torque to the wheel, and increase the load of a carrier train, instilling confidence in the efficiency of the proposed solution. Full article
(This article belongs to the Special Issue Advanced Autonomous Systems and Artificial Intelligence Stage)
Show Figures

Figure 1

17 pages, 3204 KiB  
Article
Frictional Behavior of Chestnut (Castanea sativa Mill.) Sawn Timber for Carpentry and Mechanical Joints in Service Class 2
by José Ramón Villar-García, Manuel Moya Ignacio, Pablo Vidal-López and Desirée Rodríguez-Robles
Sustainability 2024, 16(10), 3886; https://doi.org/10.3390/su16103886 - 7 May 2024
Cited by 1 | Viewed by 1213
Abstract
Wood is poised to become a material of choice for future construction. When appropriately managed, it is a renewable material with unique mechanical properties. Thus, there has been a growing demand for hardwoods, including Castanea sativa Mill., the focal point of this investigation, [...] Read more.
Wood is poised to become a material of choice for future construction. When appropriately managed, it is a renewable material with unique mechanical properties. Thus, there has been a growing demand for hardwoods, including Castanea sativa Mill., the focal point of this investigation, for structural applications. Albeit in a limited capacity, Eurocode 5-2 offers friction coefficients for softwoods, but it falls short for hardwoods. These coefficients play a critical role in numerical simulations involving friction, enabling the optimization of joints and, by extension, the overall structural integrity. Test samples were evaluated at 15% and 18% moisture content (Service Class 2) for various orientations of timber-to-timber and timber-to-steel friction. The results provide an experimental database for numerical simulations and highlight the influence of moisture on the stick–slip phenomenon, which was absent for the timber-to-timber tests, as well as on the rising friction values. At 18%, the static and kinetic coefficients were 0.70 and 0.48 for timber-to-timber and 0.5 and 0.50 for timber-to-steel. The increase was around 50% for timber-to-timber friction and over 170% for timber-to-steel pairs. Moreover, the findings proved a relationship between both coefficients and the validity of the linear estimation approach within the 12–18% moisture commonly applied to softwoods. Full article
Show Figures

Figure 1

15 pages, 11625 KiB  
Article
Non-Linear Dynamics of Simple Elastic Systems Undergoing Friction-Ruled Stick–Slip Motions
by Riccardo Barsotti, Stefano Bennati and Giovanni Migliaccio
CivilEng 2024, 5(2), 420-434; https://doi.org/10.3390/civileng5020021 - 3 May 2024
Cited by 3 | Viewed by 2458
Abstract
The stick–slip phenomenon is a jerking motion that can occur while two objects slide over each other with friction. There are several situations in which this phenomenon can be observed: between the slabs of the friction dampers used to mitigate vibrations in buildings, [...] Read more.
The stick–slip phenomenon is a jerking motion that can occur while two objects slide over each other with friction. There are several situations in which this phenomenon can be observed: between the slabs of the friction dampers used to mitigate vibrations in buildings, as well as between the components of the base isolation systems used for seismic protection. The systems of this kind are usually designed to work in a smooth and flawless manner, but under particular conditions undesired jerking motions may develop, yielding complex dynamic behavior even when only a few degrees of freedom are involved. A simplified approach to the problems of this kind leads to the mechanical model of a rigid block connected elastically to a rigid support and at the same time with friction to a second rigid support, both the supports having a prescribed motion. Despite the apparent simplicity of this model, it is very useful for studying important features of the non-linear dynamics of many physical systems. In this work, after a suitable formulation of the problem, the equations of motion are solved analytically in the sticking and sliding phases, and the influence of the main parameters of the system on its dynamics and limit cycles is investigated and discussed. Full article
(This article belongs to the Special Issue "Stability of Structures", in Memory of Prof. Marcello Pignataro)
Show Figures

Figure 1

18 pages, 7199 KiB  
Article
Study on Dynamics of Overrunning Spring Clutches and Suppression Methods for Their Abnormal Noise
by Jie Zhou, Zhehang Qiu, Huijuan Zhang and Jianming Zhan
Actuators 2024, 13(5), 165; https://doi.org/10.3390/act13050165 - 1 May 2024
Cited by 2 | Viewed by 1834
Abstract
Overrunning spring clutches are widely used as essential transmission devices, and the occurrence of abnormal noise can lead to a decline in their performance. This study investigates the dynamic aspects of abnormal noise in engineering applications, including its causes, influencing factors, and suppression [...] Read more.
Overrunning spring clutches are widely used as essential transmission devices, and the occurrence of abnormal noise can lead to a decline in their performance. This study investigates the dynamic aspects of abnormal noise in engineering applications, including its causes, influencing factors, and suppression methods. Audio processing algorithms are employed to analyze the audio associated with abnormal noise, and the Fourier Motion Blur algorithm is applied to process video images of the springs. By combining the motion blur curve with the noise spectrum curve, the source of the abnormal noise is identified as friction-induced vibrations in the spring. Theoretical modeling and calculations are carried out from a dynamic perspective to validate that the phenomenon of abnormal noise in the clutch is a result of self-excited friction vibration caused by the stick–slip phenomenon. Based on theoretical analysis and practical engineering, surface texturing is added to the center shaft of the spring seat, optimizing the system as an overdamped system to suppress self-vibration. Utilizing CFD simulation analysis, the simulation results are used to improve the texturing parameters and further optimize the texturing shape, resulting in an optimal parallelogram surface texture structure. Experimental validation confirms that the improved overrunning spring clutch completely eliminates abnormal noise during overrunning operation. Therefore, this paper contributes to the understanding of the dynamic issues associated with abnormal noise in overrunning spring clutches, confirming that the mechanism for abnormal noise generation is friction-induced self-excitation vibration, and demonstrating that surface texture optimization methods effectively suppress the occurrence of abnormal noise. Full article
(This article belongs to the Special Issue Nonlinear Active Vibration Control)
Show Figures

Figure 1

17 pages, 6549 KiB  
Article
Mapping Acoustic Frictional Properties of Self-Lubricating Epoxy-Coated Bearing Steel with Acoustic Emissions during Friction Test
by Venkatasubramanian Krishnamoorthy, Ashvita Anitha John, Shubrajit Bhaumik and Viorel Paleu
Technologies 2024, 12(3), 30; https://doi.org/10.3390/technologies12030030 - 24 Feb 2024
Cited by 3 | Viewed by 2744
Abstract
This work investigates the stick–slip phenomenon during sliding motion between solid lubricant-impregnated epoxy polymer-coated steel bars and AISI 52,100 steel balls. An acoustic sensor detected the stick–slip phenomenon during the tribo-pair interaction. The wear characteristics of the workpiece coated with different epoxy coatings [...] Read more.
This work investigates the stick–slip phenomenon during sliding motion between solid lubricant-impregnated epoxy polymer-coated steel bars and AISI 52,100 steel balls. An acoustic sensor detected the stick–slip phenomenon during the tribo-pair interaction. The wear characteristics of the workpiece coated with different epoxy coatings were observed and scrutinized. The RMS values of the acoustic sensor were correlated with the frictional coefficient to develop a standard based on the acoustic sensor, leading to the detection of the stick–slip phenomenon. As per the findings, the acoustic waveform remained relatively similar to the friction coefficient observed during the study and can be used effectively in detecting the stick–slip phenomenon between steel and polymer interaction. This work will be highly beneficial in industrial and automotive applications with a significant interaction of polymer and steel surfaces. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

12 pages, 3048 KiB  
Article
Time of Consolidation and Humidity Influence on Properties of Food Powders
by Mateusz Stasiak, Justyna Wajs, Maciej Bańda, Maciej Combrzyński, Ewa Gondek and Joanna Wiącek
Processes 2024, 12(3), 424; https://doi.org/10.3390/pr12030424 - 20 Feb 2024
Viewed by 1392
Abstract
The effect of short-term storage at 75% and 90% ambient humidity on the mechanical properties of selected materials was determined using a new device for measuring the strength of food powders. A series of tests were conducted on wheat flour and potato starch [...] Read more.
The effect of short-term storage at 75% and 90% ambient humidity on the mechanical properties of selected materials was determined using a new device for measuring the strength of food powders. A series of tests were conducted on wheat flour and potato starch subjected to various consolidation loads. The high accuracy and repeatability of the measurements confirmed the suitability of the pull-based tester for assessing the degree of caking in food powders. The pull-based tester allows for the measurement of strength parameters of agglomerates under various consolidation loads while simultaneously wetting the powder, introducing a novel approach to assessing the mechanical properties of powders. The analysis of force oscillation during the withdrawal of the measuring rod from the powder facilitates the identification of the slip-stick effect in these materials and the determination of parameters characterizing that phenomenon. The outcomes of this study may be of interest to farmers, manufacturers, and companies processing raw materials. Full article
Show Figures

Graphical abstract

22 pages, 2227 KiB  
Review
Corrosion Stiction in Automotive Braking Systems
by Michele Motta, Lorenzo Fedrizzi and Francesco Andreatta
Materials 2023, 16(10), 3710; https://doi.org/10.3390/ma16103710 - 13 May 2023
Cited by 16 | Viewed by 3245
Abstract
This review paper targets the corrosion-stiction phenomenon that can occur in automotive braking systems under static conditions in aggressive environments. The corrosion of gray cast iron discs can lead to a strong adhesion of the brake pad at the pad/disc interface that can [...] Read more.
This review paper targets the corrosion-stiction phenomenon that can occur in automotive braking systems under static conditions in aggressive environments. The corrosion of gray cast iron discs can lead to a strong adhesion of the brake pad at the pad/disc interface that can impair the reliability and performance of the braking system. The main constituents of friction materials are initially reviewed in order to highlight the complexity of a brake pad. Corrosion-related phenomena, including stiction and stick-slip, are considered in detail to discuss the complex effect of the chemical and physical properties of friction materials on these phenomena. In addition, testing methods to evaluate the susceptibility to corrosion stiction are reviewed in this work. Electrochemical methods, including potentiodynamic polarization and electrochemical impedance spectroscopy, are useful tools for a better understanding of corrosion stiction. The development of friction materials with low susceptibility to stiction should follow a complementary approach targeting an accurate selection of the constituents, control of local conditions at the pad–disc interface, and the use of specific additives or surface treatments to reduce the corrosion susceptibility of gray cast-iron rotors. Full article
(This article belongs to the Special Issue Advances in the Corrosion and Protection of Metals (Second Volume))
Show Figures

Figure 1

13 pages, 3621 KiB  
Article
Determination of the Strength of Consolidated Powder Materials with a Pull-Based Tester
by Justyna Wajs, Joanna Wiącek, Józef Horabik and Mateusz Stasiak
Materials 2023, 16(9), 3557; https://doi.org/10.3390/ma16093557 - 6 May 2023
Cited by 2 | Viewed by 1691
Abstract
In recent years, there has been increasing interest in the agglomeration of bulk materials. New methods are being sought to improve the measurement of bulkiness in food powders. This study aimed to design a new measuring device to assess the phenomenon of caking [...] Read more.
In recent years, there has been increasing interest in the agglomeration of bulk materials. New methods are being sought to improve the measurement of bulkiness in food powders. This study aimed to design a new measuring device to assess the phenomenon of caking as well as the degree of strength of free-flowing powders. Wheat flour and potato starch have been used in the experiment and loaded into a perforated container. A steel or polypropylene measuring rod has been placed in the middle, and 5 kPa and 10 kPa were loaded, respectively. The new method is based on measuring the force through a sensor when pulling out measuring rods from the powder sample. It was shown that higher strength values have been obtained for powders loaded with 10 kPa and that groove depth has not been significant for wheat flour. Additionally, a significant difference in the evolution of the pulling force with time has been observed for wheat flour and starch, revealing a slip-stick phenomenon in the latter one. The pull-based tester is characterized by fast measurement and easy analysis of the results. The tests performed for potato starch and wheat flour have provided significantly different temporal evolutions of the pulling force. Full article
Show Figures

Figure 1

16 pages, 4111 KiB  
Article
Self-Healing of Recombinant Spider Silk Gel and Coating
by Shin-Da Wu, Wei-Tsung Chuang, Jo-Chen Ho, Hsuan-Chen Wu and Shan-hui Hsu
Polymers 2023, 15(8), 1855; https://doi.org/10.3390/polym15081855 - 12 Apr 2023
Cited by 14 | Viewed by 4880
Abstract
Self-healing properties, originating from the natural healing process, are highly desirable for the fitness-enhancing functionality of biomimetic materials. Herein, we fabricated the biomimetic recombinant spider silk by genetic engineering, in which Escherichia coli (E. coli) was employed as a heterologous expression [...] Read more.
Self-healing properties, originating from the natural healing process, are highly desirable for the fitness-enhancing functionality of biomimetic materials. Herein, we fabricated the biomimetic recombinant spider silk by genetic engineering, in which Escherichia coli (E. coli) was employed as a heterologous expression host. The self-assembled recombinant spider silk hydrogel was obtained through the dialysis process (purity > 85%). The recombinant spider silk hydrogel with a storage modulus of ~250 Pa demonstrated autonomous self-healing and high strain-sensitive properties (critical strain ~50%) at 25 °C. The in situ small-angle X-ray scattering (in situ SAXS) analyses revealed that the self-healing mechanism was associated with the stick-slip behavior of the β-sheet nanocrystals (each of ~2–4 nm) based on the slope variation (i.e., ~−0.4 at 100%/200% strains, and ~−0.9 at 1% strain) of SAXS curves in the high q-range. The self-healing phenomenon may occur through the rupture and reformation of the reversible hydrogen bonding within the β-sheet nanocrystals. Furthermore, the recombinant spider silk as a dry coating material demonstrated self-healing under humidity as well as cell affinity. The electrical conductivity of the dry silk coating was ~0.4 mS/m. Neural stem cells (NSCs) proliferated on the coated surface and showed a 2.3-fold number expansion after 3 days of culture. The biomimetic self-healing recombinant spider silk gel and thinly coated surface may have good potential in biomedical applications. Full article
(This article belongs to the Special Issue Functional and Conductive Polymer Thin Films III)
Show Figures

Graphical abstract

19 pages, 10917 KiB  
Article
Numerical Simulation and Field Test Research on Vibration Reduction of PDC Cutting of Pebbled Sandstone under Composite Impact Load
by Heng Zhang, Hongjian Ni, Henglin Yang, Li Fu, Yuan Wang, Shubin Liu, Bin Huang, Zixin Wang and Gang Chen
Processes 2023, 11(3), 671; https://doi.org/10.3390/pr11030671 - 22 Feb 2023
Cited by 3 | Viewed by 2077
Abstract
Downhole vibrations caused by rock breaking when drilling through pebbled sandstone formations negatively affect the rate of penetration (ROP) and the safety of downhole tools. Therefore, it is of great significance to study the cutting characteristics of pebbled sandstone and find a method [...] Read more.
Downhole vibrations caused by rock breaking when drilling through pebbled sandstone formations negatively affect the rate of penetration (ROP) and the safety of downhole tools. Therefore, it is of great significance to study the cutting characteristics of pebbled sandstone and find a method of reducing the drilling vibrations of pebbled sandstone formations. Based on the DEM (discrete element method), a simulation model of pebbled sandstone considering the random filling of high-strength gravels was established by using the random polygon distribution method. The influence of gravel content on the strength parameters and the breaking state of the pebbled sandstone samples was analyzed. Additionally, a DEM model of PDC cutting rocks loaded by a spring–mass system was established, and the Stribeck effect of contact friction between the PDC cutter and the rock was analyzed. The periodic vibration and the stick–slip phenomenon of the cutting system during the drilling process were presented by this model. The model was employed to simulate and explore the influence of composite impact load on stick–slip vibration during PDC cutting of pebbled sandstone. The simulation results showed that the composite impact load had a more obvious effect on mitigating the vibration of PDC cutting of pebbled sandstone under the condition of a higher horizontal impact amplitude coefficient (qh = 40%). Based on the simulation results, a composite impactor with a large impact angle α = 70° was selected to conduct the field tests in the pebbled sandstone formation of Well T1. The results showed that, compared to conventional drilling, the average WOB (weight on bit) of the section drilled with the composite impactor decreased by 57.13%, the standard deviation of the WOB decreased by 57.29%, and the average ROP increased by 98.31%. The employing of composite impactors in pebbled sandstone formations can significantly reduce drilling vibration, improve ROP, and protect bits and downhole instruments. Full article
(This article belongs to the Special Issue Oil and Gas Well Engineering Measurement and Control)
Show Figures

Figure 1

16 pages, 3716 KiB  
Article
Stick-Slip Phenomena and Acoustic Emission in the Hertzian Linear Contact
by Laura Mariana Babici, Andrei Tudor and Jordi Romeu
Appl. Sci. 2022, 12(19), 9527; https://doi.org/10.3390/app12199527 - 22 Sep 2022
Cited by 12 | Viewed by 3455
Abstract
AE detection and analysis usually requires a specific, costly platform due to its particular burst nature and high-frequency content. This experimental study investigates the relationship between low-demand acoustic emission parameters (AE) and the occurrence of stick–slip (SS) at the Hertzian linear contact. Hence, [...] Read more.
AE detection and analysis usually requires a specific, costly platform due to its particular burst nature and high-frequency content. This experimental study investigates the relationship between low-demand acoustic emission parameters (AE) and the occurrence of stick–slip (SS) at the Hertzian linear contact. Hence, the correlation of basic AE characteristics (amplitude, energy, and evolution in time) with stick–slip characteristics (static and kinetic friction coefficients, amplitude, energy, and evolution in time) is pursued. Tribological tests were conducted on cylinder–plane specimens under dry friction conditions with different loads at different low driving speeds and Hertzian contact pressures at a constant stiffness. The AE, normal, and friction forces were recorded simultaneously on the experimental stand. At the cylinder–plane interface, the jumps specific to the stick–slip phenomenon (friction coefficient—COF) were followed after a few milliseconds by AE jump peaks. The results of the experiments show that the amplitude and energy generated by AE were sensitive to the occurrence of the stick–slip phenomenon, while the AE and COF energies in the stick and slip phases had the same law of variation based on the driving velocities. The results show that the amplitude and energy of the sampled low-frequency AE signals were enough to detect the friction in SS and demonstrate the potential of AE as a tool for detecting and monitoring the tribological behaviour of SS at the linear Hertzian contact. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

Back to TopTop