Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (170)

Search Parameters:
Keywords = stable phase center

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1280 KiB  
Article
Seven-Year Outcomes of Aflibercept in Neovascular Age-Related Macular Degeneration in a Teaching Hospital Setting
by Antoine Barloy, Florent Boulanger, Benjamin Jany and Thi Ha Chau Tran
J. Clin. Transl. Ophthalmol. 2025, 3(3), 14; https://doi.org/10.3390/jcto3030014 - 30 Jul 2025
Viewed by 312
Abstract
Background: In clinical practice, visual outcomes with anti-VEGF therapy may be worse than those observed in clinical trials. In this study, we aim to investigate the long-term outcomes of neovascularization treated with intravitreal aflibercept injections (IAI) in a teaching hospital setting. Methods: This [...] Read more.
Background: In clinical practice, visual outcomes with anti-VEGF therapy may be worse than those observed in clinical trials. In this study, we aim to investigate the long-term outcomes of neovascularization treated with intravitreal aflibercept injections (IAI) in a teaching hospital setting. Methods: This is a retrospective, single-center study including 81 nAMD patients (116 eyes), those both newly diagnosed and switched from ranibizumab. All patients had a follow-up duration of at least seven years. Treatment involved three monthly injections followed by either a pro re nata (PRN) or treat and extend regimen. Follow-up care was primarily conducted by training physicians. The primary endpoint was the change in best-corrected visual acuity (BCVA) over seven years. Secondary endpoints included central retinal thickness changes, qualitative OCT parameters, macular atrophy progression, injection frequency, and treatment adherence. Results: Among the 116 eyes, 52 (44.8%) completed the seven-year follow-up. Visual acuity improved by +2.1 letters in the overall population (+6.3 letters in treatment-naive eyes) after the loading phase but gradually declined, resulting in a loss of −12.3 letters at seven years. BCVA remained stable (a loss of fewer than 15 letters) in 57.7% of eyes. Central retinal thickness (CRT) decreased significantly during follow-up in both naive and switcher eyes. Macular atrophy occurred in 94.2% of eyes, progressing from 1.42 mm2 to 8.55 mm2 over seven years (p < 0.001). The mean number of injections was 4.1 ± 1.8 during the first year and 3.7 per year thereafter. Advanced age at diagnosis was a risk factor for loss to follow-up, with bilaterality being a protective factor against loss to follow-up (p < 0.05). Conclusions: This study highlights the challenges faced by a retina clinic in a teaching hospital. Suboptimal functional and anatomical outcomes in real life may derive from insufficient patient information and inconsistent monitoring, which contributes to undertreatment and affects long-term visual outcomes. It also raises concerns about supervision in a teaching hospital which needs to be improved. Full article
Show Figures

Figure 1

17 pages, 12649 KiB  
Article
Microstructure, Mechanical Properties, and Electrochemical Corrosion Behavior of CoCrFeNiNb and CoCrFeNiV High-Entropy Alloys Prepared via Mechanical Alloying and Spark Plasma Sintering
by Yan Zhu, Yiwen Liu, Zhaocang Meng and Jianke Tian
Metals 2025, 15(7), 814; https://doi.org/10.3390/met15070814 - 21 Jul 2025
Viewed by 271
Abstract
This study investigates the microstructural evolution, mechanical behavior, and electrochemical performance of CoCrFeNiNb and CoCrFeNiV HEAs fabricated via mechanical alloying and spark plasma sintering. Microstructural analyses reveal that the alloys have a face-centered cubic (FCC) matrix with Nb-enriched Laves and V-enriched σ phases. [...] Read more.
This study investigates the microstructural evolution, mechanical behavior, and electrochemical performance of CoCrFeNiNb and CoCrFeNiV HEAs fabricated via mechanical alloying and spark plasma sintering. Microstructural analyses reveal that the alloys have a face-centered cubic (FCC) matrix with Nb-enriched Laves and V-enriched σ phases. The CoCrFeNiNb HEA exhibits superior compressive strength and hardness than CoCrFeNiV due to uniform Laves phases distribution. Fracture surface analysis reveals that at lower sintering temperatures, the fracture is primarily caused by incomplete particle bonding, whereas at higher temperatures, brittle fracture modes dominated via transgranular cracking become predominant. The research results of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that both alloys exhibited superior electrochemical stability in a 3.5 wt.% NaCl solution compared to the CoCrFeNi base alloy. X-ray photoelectron spectroscopy (XPS) analysis confirms the formation of stable oxide layers (Nb2O5 and V2O3) on the precipitated phases, acting as protective barriers against chloride ion penetration. The selective oxidation of Nb and V improves the integrity of the passive film, reducing the corrosion rates and enhancing the long-term durability. These findings highlight the critical role of precipitated phases in enhancing the corrosion resistance of HEAs, and emphasize their potential for use in extreme environments. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Processing and Properties)
Show Figures

Figure 1

13 pages, 2832 KiB  
Article
Multiphase NiCoFe-Based LDH for Electrocatalytic Sulfion Oxidation Reaction Assisting Efficient Hydrogen Production
by Zengren Liang, Yong Nian, Hao Du, Peng Li, Mei Wang and Guanshui Ma
Materials 2025, 18(14), 3377; https://doi.org/10.3390/ma18143377 - 18 Jul 2025
Viewed by 295
Abstract
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based [...] Read more.
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based layered double hydroxide (namely NiCoFe-LDH) has been synthesized via a facile seed-assisted heterogeneous nucleation method. Benefiting from its unique microsized hydrangea-like structure and synergistic active phases, the catalyst delivers substantial catalytic interfaces and reactive centers for SOR. Consequently, NiCoFe-LDH electrode achieves a remarkably low potential of 0.381 V at 10 mA cm−2 in 1 M KOH + 0.1 M Na2S, representing a significant reduction of 0.98 V compared to conventional OER. Notably, under harsh industrial conditions (6 M KOH + 0.1 M Na2S, 80 °C), the electrolysis system based on NiCoFe-LDH||NF pair exhibits a cell potential of only 0.71 V at 100 mA cm−2, which shows a greater decreasing amplitude of 1.05 V compared with that of traditional OER/HER systems. Meanwhile, the NiCoFe-LDH||NF couple could maintain operational stability for 100 h without obvious potential fluctuation, as well as possessing a lower energy consumption of 1.42 kWh m−3 H2. Multiphase eletrocatalysis for SOR could indeed produce hydrogen with low-energy consumption. Full article
(This article belongs to the Special Issue High-Performance Materials for Energy Conversion)
Show Figures

Graphical abstract

17 pages, 4846 KiB  
Article
The Air Stability of Sodium Layered Oxide NaTMO2 (100) Surface Investigated via DFT Calculations
by Hui Li, Qing Xue, Shengyi Li, Xuechun Wang, Yijie Hou, Chang Sun, Cun Wang, Guozheng Sheng, Peng Sheng, Huitao Bai, Li Xu and Yumin Qian
Nanomaterials 2025, 15(14), 1067; https://doi.org/10.3390/nano15141067 - 10 Jul 2025
Viewed by 333
Abstract
Air stability caused by the H2O/CO2 reaction at the layered oxide NaTMO2 surface is one of the main obstacles to commercializing sodium-ion batteries (SIBS). The H2O and CO2 adsorption properties on the (100) surface of sodium [...] Read more.
Air stability caused by the H2O/CO2 reaction at the layered oxide NaTMO2 surface is one of the main obstacles to commercializing sodium-ion batteries (SIBS). The H2O and CO2 adsorption properties on the (100) surface of sodium layered transition metal oxide NaTMO2 (TM = Co, Ni, Mo, Nd) are calculated using the DFT method to study the surface air stability. This study showed that the material bulk phase (symmetry), surface site, element type, and surface termination are all (though not the only) important factors that affect the adsorption strength. Contrary to previous studies, the P phase is not always more air-stable than the O phase; our calculations showed that the NaNiO2 O phase is more stable than the P phase. The calculated band center and occupation showed a direct relationship with the adsorption energy. The Na site adsorption for CO2 and H2O showed the same V-shape trend. However, the TM adsorption for CO2 and H2O showed a different trend. With an increased t2g band center, CO2 adsorption strength increases. There is no clear trend for H2O adsorption. Our calculations showed that the electronic structure of the surface atomic of adsorption site plays a decisive role in CO2 and H2O adsorption strength. This study demonstrated an effective method for obtaining a stability parameter regarding the electronic structure, which can be used to screen the air-stable layered oxide sodium cathode in the future. Full article
(This article belongs to the Special Issue Nanostructured Materials for Energy Storage)
Show Figures

Figure 1

11 pages, 2750 KiB  
Article
Effect of Annealing on Vacancy-Type Defects and Heterogeneous Cu Precipitation Behavior in Fe60Cr12Mn8Cu15Mo3V2 Alloy
by Fengjiao Ye, Te Zhu, Peng Zhang, Peng Kuang, Haibiao Wu and Xingzhong Cao
Materials 2025, 18(11), 2613; https://doi.org/10.3390/ma18112613 - 3 Jun 2025
Viewed by 421
Abstract
This study systematically investigates the evolution of vacancy-type defects and heterogeneous Cu nanoprecipitates in an Fe60Cr12Mn8Cu15Mo3V2 (at%) multi-principal element alloy during thermal processing, utilizing Positron annihilation lifetime spectroscopy (PAS), coincidence Doppler broadening [...] Read more.
This study systematically investigates the evolution of vacancy-type defects and heterogeneous Cu nanoprecipitates in an Fe60Cr12Mn8Cu15Mo3V2 (at%) multi-principal element alloy during thermal processing, utilizing Positron annihilation lifetime spectroscopy (PAS), coincidence Doppler broadening (CDB) spectroscopy, and transmission electron microscopy (TEM). The results show that the alloy exhibited a dual-phase coexistence structure of Body-Centered Cubic (BCC) and Face-Centered Cubic (FCC). The CDB results show that the density of heterogeneous Cu precipitates gradually increases with annealing temperature. Compared to the as-cast alloy, the precipitates annealed at 773 K exhibit a significantly reduced size (approximately 33 nm) with higher density. The PAS results demonstrate that gradual migration and aggregation of monovacancies at 573 K form vacancy clusters, while contraction and dissociation of these clusters dominate at 673 K. Within the temperature range of 773–973 K, the dynamic equilibrium between the aggregation and decomposition of vacancy clusters maintains stable annihilation characteristics with minimal lifetime changes. Full article
Show Figures

Figure 1

35 pages, 3634 KiB  
Article
Ripple Effect or Spatial Interaction? A Spatial Analysis of Green Finance and Carbon Emissions in the Yellow River Basin
by Jiayu Ru, Lu Gan and Gulinaer Yusufu
Sustainability 2025, 17(10), 4713; https://doi.org/10.3390/su17104713 - 20 May 2025
Viewed by 590
Abstract
Grounded in the theory of new economic geography, this research develops a comprehensive theoretical framework to examine the spatial interaction mechanisms between the Green Finance Index and carbon emissions. Employing a range of econometric techniques—including three-dimensional kernel density estimation, spatial quantile regression, bivariate [...] Read more.
Grounded in the theory of new economic geography, this research develops a comprehensive theoretical framework to examine the spatial interaction mechanisms between the Green Finance Index and carbon emissions. Employing a range of econometric techniques—including three-dimensional kernel density estimation, spatial quantile regression, bivariate spatial autocorrelation analysis, and the spatial linkage equation model—the dynamic evolution, spatial pattern shifts, and mutual influences of green finance and carbon emissions in the middle and lower reaches of the Yellow River from 2003 to 2022 are systematically assessed. The findings indicate that (1) both carbon emissions and the Green Finance Index have experienced a trajectory of continuous growth, phased decline, and structural optimization, accompanied by a gradual shift in the regional center of gravity from coastal economic zones towards resource-intensive and traditional industry-concentrated areas; (2) significant spatial clustering is evident for both green finance and carbon emissions, demonstrating a strong spatial correlation and regional synergy effects; (3) a persistent negative spatial correlation exists between green finance and carbon emissions; and (4) green finance exerts a stable negative spatial spillover effect on carbon emissions, suggesting that the influence of green finance extends beyond localities to adjacent regions through spatial externalities, manifesting pronounced spatial transmission and linkage characteristics. By unveiling the bidirectional spatial association between green finance and carbon emissions, this study highlights the pivotal role of green finance in driving regional low-carbon transitions. The results provide theoretical insights for optimizing green finance policies within the Yellow River Basin and offer valuable international references for similar regional low-carbon development initiatives. Full article
(This article belongs to the Topic Sustainable and Green Finance)
Show Figures

Figure 1

21 pages, 8416 KiB  
Article
First-Principles Calculations of the Effect of Ta Content on the Properties of UNbMoHfTa High-Entropy Alloys
by Yue Lin, Tao Wang, Jintao Wang, Wanxiao Guo, Weiyi Li, Yuheng Li and Hongbo Qiu
Metals 2025, 15(5), 551; https://doi.org/10.3390/met15050551 - 16 May 2025
Viewed by 447
Abstract
Uranium-containing high-entropy alloys (HEAs) exhibit great potential as a novel energetic structural material, attributed to their excellent performance in impact energy release, superior mechanical properties, and high density. This study investigates the effects of Ta content on the phase stability, lattice constant, density, [...] Read more.
Uranium-containing high-entropy alloys (HEAs) exhibit great potential as a novel energetic structural material, attributed to their excellent performance in impact energy release, superior mechanical properties, and high density. This study investigates the effects of Ta content on the phase stability, lattice constant, density, elastic constants, polycrystalline moduli, and electronic structure of (UNbMoHf)54−xTax high-entropy alloys (where x = 2, 6, 10, 14, 18), utilizing a combination of density functional theory (DFT) calculations and the special quasi-random structure (SQS) approach. Our findings confirm that these alloys maintain stable body-centered cubic structures, as evidenced by atomic radius difference and valence electron concentration evaluations. Analysis of elastic modulus, Cauchy pressure, and Vickers hardness indicates that Ta incorporation enhances mechanical properties and increases the anisotropy of these alloys. Furthermore, investigations into the electronic structure reveal that adding Ta reduces metallic character while increasing covalent characteristics, enhancing the contribution of Ta’s d-orbitals to the total density of states and intensifying covalent bonding interactions between Ta and other elements such as Nb, Mo, and U. These findings provide theoretical guidance for the design of high-performance UNbMoHfTa HEAs with tailored properties. Full article
Show Figures

Graphical abstract

13 pages, 4614 KiB  
Article
Corrosion Resistance and Wear Properties of CoCrFeNiMn/TiC High-Entropy Alloy-Based Composite Coatings Prepared by Laser Cladding
by Qiang Zhan, Fangyan Luo, Jiang Huang, Zhanshan Wang, Bin Ma and Chengpu Liu
Lubricants 2025, 13(5), 210; https://doi.org/10.3390/lubricants13050210 - 10 May 2025
Viewed by 594
Abstract
CoCrFeNiMn high-entropy alloy (HEA) composite coatings with 0, 10, and 20 wt% TiC are synthesized through laser cladding technology, and their corrosion and wear resistance are systematically investigated. The X-ray diffraction (XRD) results show that with the addition of TiC, the phases of [...] Read more.
CoCrFeNiMn high-entropy alloy (HEA) composite coatings with 0, 10, and 20 wt% TiC are synthesized through laser cladding technology, and their corrosion and wear resistance are systematically investigated. The X-ray diffraction (XRD) results show that with the addition of TiC, the phases of TiC and M23C6 are introduced, and lattice distortion occurs simultaneously (accompanied by the broadening and leftward shift of the main Face-Centered Cubic (FCC) peak). Scanning electron microscopy (SEM) reveals that the incompletely melted TiC particles in the coating (S2) are uniformly distributed in the matrix with 20 wt% TiC, while in the coating (S1) with 10 wt% TiC, due to gravitational sedimentation and decomposition during laser processing, the distribution of the reinforcing phase is insufficient. When rubbed against Si3N4, with the addition of TiC, S2 exhibits the lowest friction coefficient of 0.699 and wear volume of 0.0398 mm3. The corrosion resistance of S2 is more prominent in the simulated seawater (3.5 wt% NaCl). S2 shows the best corrosion resistance: it has the largest self-corrosion voltage (−0.425 V vs. SCE), the lowest self-corrosion current density (1.119 × 10−7 A/cm2), and exhibits stable passivation behavior with a wide passivation region. Electrochemical impedance spectroscopy (EIS) confirms that its passivation film is denser. This study shows that the addition of 20 wt% TiC optimizes the microstructural homogeneity and synergistically enhances the mechanical strengthening and electrochemical stability of the coating, providing a new strategy for the making of HEA-based layers in harsh wear-corrosion coupling environments. Full article
(This article belongs to the Special Issue Wear-Resistant Coatings and Film Materials)
Show Figures

Figure 1

11 pages, 2114 KiB  
Article
Kinematic Analysis of Free Vertical Split with 720° Turn in Elite Chinese Rhythmic Gymnastics
by Tao Liu, Liangsen Wang, Liquan Gao and Yuliang Sun
Sensors 2025, 25(9), 2667; https://doi.org/10.3390/s25092667 - 23 Apr 2025
Viewed by 626
Abstract
This study investigates the kinematic characteristics of the free vertical split with 720° turn (C 807). C 807 is the international designation in rhythmic gymnastics for a free vertical split with a 720° turn. This research holds significant importance in enhancing the technical [...] Read more.
This study investigates the kinematic characteristics of the free vertical split with 720° turn (C 807). C 807 is the international designation in rhythmic gymnastics for a free vertical split with a 720° turn. This research holds significant importance in enhancing the technical proficiency of gymnasts and reducing their risk of injury. Eight national-level female gymnasts (age = 20 ± 3 years) performed the C 807. Kinematic data were collected using a 3D motion capture system. The movement was divided into four phases, and Visual 3D (V6.0, CMotion, Germantown, MD, USA) software was used for data processing and analysis. The joint angles of the upper and lower limbs, as well as the torsion angles of the lower limb joints, were analyzed. Key findings included tibial torsion, knee hyperextension in the support leg, and changes in elbow flexion during each phase. The center of mass (COM) trajectory showed that, during the backward preparatory swing phase, COM height gradually decreased and slightly increased before the initiation phase. In the initiation phase, COM height initially decreased and then increased, while the rotation phase showed fluctuating but stable COM height. The results highlight the importance of joint angle control and COM fluctuations during movement. Training should focus on leg swing speed, lower limb strength, knee stability, and upper limb coordination to enhance balance, improve rotation speed, and prevent injuries. Full article
(This article belongs to the Special Issue Sensors Technology for Sports Biomechanics Applications)
Show Figures

Figure 1

24 pages, 18730 KiB  
Article
Comparison of Surface Current Measurement Between Compact and Square-Array Ocean Radar
by Yu-Hsuan Huang and Chia-Yan Cheng
J. Mar. Sci. Eng. 2025, 13(4), 778; https://doi.org/10.3390/jmse13040778 - 14 Apr 2025
Viewed by 515
Abstract
High-frequency (HF) ocean radars have become essential tools for monitoring surface currents, offering real-time, wide-area coverage with cost-effectiveness. This study compares the compact CODAR system (MABT, 13 MHz) and the square-array phased-array radar (KNTN, 8 MHz) deployed at Cape Maobitou, Taiwan. Radial velocity [...] Read more.
High-frequency (HF) ocean radars have become essential tools for monitoring surface currents, offering real-time, wide-area coverage with cost-effectiveness. This study compares the compact CODAR system (MABT, 13 MHz) and the square-array phased-array radar (KNTN, 8 MHz) deployed at Cape Maobitou, Taiwan. Radial velocity measurements were evaluated against data from the Global Drifter Program (GDP), and a quality control (QC) mechanism was applied to improve the data’s reliability. The results indicated that KNTN provides broader spatial coverage, whereas MABT demonstrates higher precision in radial velocity measurements. Baseline velocity comparisons between MABT and KNTN revealed a correlation coefficient of 0.77 and a root-mean-square deviation (RMSD) of 0.23 m/s, which are consistent with typical values reported in previous radar performance evaluations. Drifter-based velocity comparisons showed an initial correlation of 0.49, with an RMSD of 0.43 m/s. In more stable oceanic regions, the correlation improved to 0.81, with the RMSD decreasing to 0.24 m/s. To clarify, this study does not include multiple environmental scenarios but focuses on cases where both radar systems operated simultaneously and where surface drifter data were available within the overlapping area. Comparisons are thus limited by these spatiotemporal conditions. Radar data may still be affected by environmental or human factors, such as ionospheric variations, interference from radio frequency management issues, or inappropriate parameter settings, which could reduce the accuracy and consistency of the observations. International ocean observing programs have developed quality management procedures to enhance data reliability. In Taiwan, the Taiwan Ocean Research Institute (TORI) has established a data quality management mechanism based on international standards for data filtering, noise reduction, and outlier detection, improving the accuracy and stability of radar-derived velocity measurements.To eliminate the effects caused by different center frequencies between MABT and KNTN, this study used the same algorithms and parameter settings as much as possible in all steps, from Doppler spectra processing to radial velocity calculation, ensuring the comparability of the data. This study highlights the strengths and limitations of compact and phased-array HF radar systems based on co-observed cases under consistent operational conditions. Future research should explore multi-frequency radar integration to enhance spatial coverage and measurement precision, improving real-time coastal current monitoring and operational forecasting. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

14 pages, 746 KiB  
Article
Patient Perspectives on Healthcare Utilization During the COVID-19 Pandemic in People with Multiple Sclerosis—A Longitudinal Analysis
by Heidi Stölzer-Hutsch, Dirk Schriefer, Joachim Kugler and Tjalf Ziemssen
Healthcare 2025, 13(6), 646; https://doi.org/10.3390/healthcare13060646 - 16 Mar 2025
Viewed by 611
Abstract
Background/Objectives: The COVID-19 pandemic disrupted healthcare systems globally, altering the management of chronic conditions like multiple sclerosis (MS) and interrupting the regular monitoring and support that people with MS (pwMS) typically need. The aim of this study was to examine changes in the [...] Read more.
Background/Objectives: The COVID-19 pandemic disrupted healthcare systems globally, altering the management of chronic conditions like multiple sclerosis (MS) and interrupting the regular monitoring and support that people with MS (pwMS) typically need. The aim of this study was to examine changes in the utilization of MS healthcare resources over various periods during the COVID-19 pandemic in 2020 and 2021, and to assess how these changes affected the perceptions of pwMSregarding their care. Methods: A longitudinal survey study was conducted at the MS Center at the University Hospital Dresden, Germany, involving four survey periods from April 2020 to December 2021. The study assessed the use of healthcare resources, including consultations with specialists, the use of rehabilitative therapy facilities, and unmet healthcare needs, across various phases of the pandemic, encompassing both lockdown and less restrictive periods. Results: At the onset of the pandemic in April 2020, during the first lockdown, 750 questionnaires were evaluated. While most pwMS reported consistent medical care compared with pre-pandemic levels, 19.2% had fewer general practitioner visits, and 10.6% fewer neurologist visits. During the follow-up survey periods, the use of medical care generally remained stable, although there were notable reductions reported by a subset of participants. Conclusions: The findings suggest that medical and therapeutic care for pwMS in Germany remained largely accessible during the COVID-19 pandemic in 2020 and 2021. However, the study also reveals certain gaps in care that may be addressed by incorporating digital technologies into medical care and rehabilitation, potentially enhancing the management of healthcare during future pandemics or similar situations. Full article
Show Figures

Figure 1

8 pages, 2084 KiB  
Communication
Crystallography and Morphology of (Gd,Y)H2 Hydride in a Mg-Gd-Y-Al Alloy
by Kun Chen, Yangxin Li, Yang Su, Shufen Chu, Zhihao Xiong, Dong Qiu and Xiaoqin Zeng
Crystals 2025, 15(3), 249; https://doi.org/10.3390/cryst15030249 - 6 Mar 2025
Viewed by 672
Abstract
Hydrogen can be easily captured by the rare-earth (RE) elements in hydrogen-rich environments, which significantly affect the phase compositions and mechanical performance of Mg-RE based alloys. However, the morphology of RE hydrides and their orientation relationships (ORs) with the Mg matrix have not [...] Read more.
Hydrogen can be easily captured by the rare-earth (RE) elements in hydrogen-rich environments, which significantly affect the phase compositions and mechanical performance of Mg-RE based alloys. However, the morphology of RE hydrides and their orientation relationships (ORs) with the Mg matrix have not been well explained. Here, a stable face-centered cubic (FCC) Gd,YH2 hydride was introduced and uniformly distributed in a Mg-15Gd-2.5Y-1Al alloy after hydrogenation treatment at 500 °C and 2 MPa for 40 h. The plate-like Gd,YH2 hydride with six variants was identified to exhibit an OR with the magnesium (Mg) matrix, which is [0001]Mg//[001]Gd,YH2, (101¯0)Mg10.5 from (002)Gd,YH2, (12¯10)Mg10.5 from (020)Gd,YH2. Further crystallographic matching calculations based on the edge-to-edge matching model suggest that such an OR is energetically favorable and provides the actual interface between the RE hydrides and the Mg matrix during precipitation. Our findings offer new insights into the microstructural regulation of Mg alloys in hydrogenation environments. Full article
(This article belongs to the Special Issue Preparation and Characterization of Precipitates in Magnesium Alloys)
Show Figures

Figure 1

22 pages, 7530 KiB  
Article
Experimental Study of a Novel Prototype of Dual-Cycle Two-Phase Cooling System for a Data Cabinet
by Hao Cheng, Tongzhi Yang, Yifan Zhao, Leixin Wang, Weixing Yuan and Kexian Ren
Appl. Sci. 2025, 15(5), 2386; https://doi.org/10.3390/app15052386 - 23 Feb 2025
Cited by 1 | Viewed by 1117
Abstract
As Information Technology continues to rapidly evolve, the scale and energy consumption of data centers have seen a significant surge. Traditional air-cooling systems in data centers are notably energy intensive. This study proposes an innovative dual-cycle two-phase cooling system (DTCS) for retrofitting existing [...] Read more.
As Information Technology continues to rapidly evolve, the scale and energy consumption of data centers have seen a significant surge. Traditional air-cooling systems in data centers are notably energy intensive. This study proposes an innovative dual-cycle two-phase cooling system (DTCS) for retrofitting existing server cabinets. The system integrates the two synergistic subsystems of a pump-driven chip-level two-phase cooling system (PCTCS) and a pump-driven backplane-level two-phase cooling system (PBTCS). The PCTCS provides year-round natural cooling of high-power chips, and experimental results indicate that even under extreme outdoor conditions of up to 42 °C, the PCTCS can maintain the chip temperature at 76 °C. At the same time, the PBTCS effectively cools all components in the cabinet except the high-power chips. By efficiently controlling the chip temperature through the PCTCS, the novel DTCS ensures stable operation at data room temperatures up to 33 °C, thereby significantly reducing the energy consumption of the cooling system. The average annual pPUE of the cooling system is 1.078 at the test site in Xiangyang, Hubei province in China. The DTCS could perform well across various Chinese cities even under severe hot and moist conditions, with the average annual pPUE consistently below 1.1. Full article
(This article belongs to the Special Issue Applied Thermodynamics)
Show Figures

Figure 1

19 pages, 4874 KiB  
Article
Electrochemical Fabrication of Ni–Co Alloy over a Wide pH Range Using Sodium Citrate as a Complexing Agent
by Évany Silva dos Santos, Josiane Dantas Costa, Arthur Filgueira de Almeida, Aureliano Xavier dos Santos, Lincoln Rodrigues Sampaio de Araújo, Renato Alexandre Costa de Santana and Ana Regina Nascimento Campos
Coatings 2025, 15(2), 138; https://doi.org/10.3390/coatings15020138 - 24 Jan 2025
Viewed by 902
Abstract
In this study, nickel–cobalt (Ni–Co) coatings were fabricated via electrodeposition using a 22 central composite factorial design with two central and two axial points, totaling ten experiments. The effects of pH and current density on the coatings’ chemical composition and properties were [...] Read more.
In this study, nickel–cobalt (Ni–Co) coatings were fabricated via electrodeposition using a 22 central composite factorial design with two central and two axial points, totaling ten experiments. The effects of pH and current density on the coatings’ chemical composition and properties were evaluated. Coatings were characterized by microstructure, morphology, magnetic properties, and corrosion resistance. The results showed that pH significantly influenced chemical composition, while current density had no notable effect. Acidic pH produced cobalt-rich coatings (43–81 at.%), with uniform morphology, higher saturation magnetization, and lower corrosion resistance. Maximum cobalt content (81 at.%) resulted in a mixed face-centered cubic (fcc) + hexagonal close-packed (hcp) phase. Alkaline pH yielded nickel-rich coatings (89–95 at.%), featuring nodular morphology, lower magnetization, higher corrosion resistance, and, exclusively, the fcc phase. The highest polarization resistance (66.1 kΩ) occurred at pH 8.83 and 60 mA/cm2, while resistance decreased with increasing cobalt content. The pH effect on deposition was linked to the formation of citrate complexes: ammonia and citrate complexes promoted nickel deposition under alkaline conditions, while stable cobalt complexes dominated in an acidic pH. These findings highlight the potential to tailor Ni–Co coatings for applications such as corrosion-resistant coatings (nickel-rich) or magnetic devices (cobalt-rich). Full article
Show Figures

Figure 1

17 pages, 5548 KiB  
Article
Decoupling and Collaboration: An Intelligent Gateway-Based Internet of Things System Architecture for Meat Processing
by Jun Liu, Chenggang Zhou, Haoyuan Wei, Jie Pi and Daoying Wang
Agriculture 2025, 15(2), 179; https://doi.org/10.3390/agriculture15020179 - 15 Jan 2025
Cited by 2 | Viewed by 1145
Abstract
The complex multi-stage process of meat processing encompasses critical phases, including slaughtering, cooling, cutting, packaging, warehousing, and logistics. The quality and nutritional value of the final meat product are significantly influenced by each processing link. To address the major challenges in the meat [...] Read more.
The complex multi-stage process of meat processing encompasses critical phases, including slaughtering, cooling, cutting, packaging, warehousing, and logistics. The quality and nutritional value of the final meat product are significantly influenced by each processing link. To address the major challenges in the meat processing industry, including device heterogeneity, model deficiencies, rapidly increasing demands for data analysis, and limitations of cloud computing, this study proposes an Internet of Things (IoT) architecture. This architecture is centered around an intelligently decoupled gateway design and edge-cloud collaborative intelligent meat inspection. Pork freshness detection is used as an example. In this paper, a high-precision and lightweight pork freshness detection model is developed by optimizing the MobileNetV3 model with Efficient Channel Attention (ECA). The experimental results indicate that the model’s accuracy on the test set is 99.8%, with a loss function value of 0.019. Building upon these results, this paper presents an experimental platform for real-time pork freshness detection, implemented by deploying the model on an intelligent gateway. The platform demonstrates stable performance with peak model memory usage under 600 MB, average CPU utilization below 20%, and gateway internal response times not exceeding 100 ms. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop