First-Principles Calculations of the Effect of Ta Content on the Properties of UNbMoHfTa High-Entropy Alloys
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Phase Structure, Lattice Constants, and Density
3.2. Elastic Properties and Mechanical Properties
a | C11 | C12 | C44 | B | G | E | ||
---|---|---|---|---|---|---|---|---|
U | This work | 3.432 | 86.93 | 155.06 | 38.47 | 132.35 | 134.49 | 249.27 |
Other | 3.427 a | 86 a | 155 a | 37 a | 132 | 113 | 265 | |
Nb | This work | 3.304 | 250.53 | 135.57 | 20.08 | 173.89 | 31.09 | 87.96 |
Other | 3.310 b | 243.7 b | 135.4 b | 19 b | 173.00 | 40.51 | 112.72 | |
Mo | This work | 3.162 | 473.50 | 162.24 | 105.80 | 265.99 | 123.54 | 320.91 |
Other | 3.169 b | 454.2 b | 169.2 b | 96 b | 265.33 | 130.24 | 335.77 | |
Hf | This work | 3.540 | 142.50 | 84.30 | 66.20 | 108.760 | 56.820 | 145.170 |
Other | 3.539 c | - | - | - | 103 c | 67 c | - | |
Ta | This work | 3.319 | 265.13 | 161.57 | 76.38 | 196.09 | 65.36 | 176.48 |
Other | 3.306 b | 266 b | 158 b | 87 b | 194 | 71.86 | 191.86 | |
UNbMoTaHf | This work | 3.354 | 224.0 | 114.69 | 48.50 | 150.97 | 50.78 | 136.99 |
Other | - | 275.58 | 131.58 | 62.76 | 179.58 | 66.31 | 175.87 d | |
3.359 e | 256.83 | 102.33 | 67.20 | 153.83 e | 70.96 e | 184.5 e | ||
Experiment | 3.321 f | - | - | - | - | - | 171.14 f |
3.3. Electronic Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, P.; Wang, Z.; Jiang, C.; Mao, L.; Li, Q. Experimental study on impact-initiated characters of W/Zr energetic fragments. Mater. Des. 2015, 84, 72–78. [Google Scholar] [CrossRef]
- Zhou, Q.; Hu, Q.; Wang, B.; Zhou, B.; Chen, P.; Liu, R. Fabrication and characterization of the Ni–Al energetic structural material with high energy density and mechanical properties. J. Alloys Compd. 2020, 832, 154894. [Google Scholar] [CrossRef]
- Wang, M.; Li, J.; Zhang, J.; Liu, X.; Mao, Z.; Weng, Z.; Wang, H.; Tao, J. Microstructure Evolution and Compressive Properties of Multilayered Al/Ni Energetic Structural Materials under Different Strain Rates. J. Mater. Eng. Perform. 2020, 29, 506–514. [Google Scholar] [CrossRef]
- Sathiyamoorthi, P.; Kim, H.S. High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties. Prog. Mater. Sci. 2022, 123, 100709. [Google Scholar] [CrossRef]
- Zhou, Z.; Peng, X.; Lv, W.; Yang, S.; Li, H.; Guo, H.; Wang, J. Ultra-high temperature oxidation resistant refractory high entropy alloys fabricated by laser melting deposition: Al concentration regulation and oxidation mechanism. Corros. Sci. 2023, 224, 111537. [Google Scholar] [CrossRef]
- Feng, H.; Li, H.; Dai, J.; Han, Y.; Qu, J.; Jiang, Z.; Zhao, Y.; Zhang, T. Why CoCrFeMnNi HEA could not passivate in chloride solution?—A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying. Corros. Sci. 2022, 204, 110396. [Google Scholar] [CrossRef]
- Lu, C.; Niu, L.; Chen, N.; Jin, K.; Yang, T.; Xiu, P.; Zhang, Y.; Gao, F.; Bei, H.; Shi, S.; et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat. Commun. 2016, 7, 13564. [Google Scholar] [CrossRef]
- Sharma, M.M.; Sharma, P.; Karn, N.K.; Awana, V.P.S. Comprehensive review on topological superconducting materials and interfaces. Supercond. Sci. Technol. 2022, 35, 083003. [Google Scholar] [CrossRef]
- Jung, S.G.; Han, Y.; Kim, J.H.; Hidayati, R.; Rhyee, J.S.; Lee, J.M.; Kang, W.N.; Choi, W.S.; Jeon, H.R.; Suk, J.; et al. High critical current density and high-tolerance superconductivity in high-entropy alloy thin films. Nat. Commun. 2022, 13, 3373. [Google Scholar] [CrossRef]
- Gonzales, A.; Watkins, J.K.; Wagner, A.R.; Jaques, B.J.; Sooby, E.S. Challenges and opportunities to alloyed and composite fuel architectures to mitigate high uranium density fuel oxidation: Uranium silicide. J. Nucl. Mater. 2021, 553, 153026. [Google Scholar] [CrossRef]
- Ren, K.; Liu, H.; Chen, R.; Tang, Y.; Guo, B.; Li, S.; Wang, J.; Wang, R.; Lu, F. Compression properties and impact energy release characteristics of TiZrNbV high-entropy alloy. Mater. Sci. Eng. A 2021, 827, 142074. [Google Scholar] [CrossRef]
- Meng, J.; Shen, B.; Wang, J.; Xue, R.; Chen, J.; Li, S.; Tang, Y. Energy-release behavior of TiZrNbV high-entropy alloy. Intermetallics 2023, 162, 108036. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, R.; Ran, C.; Arab, A.; Geng, H.; Gao, M.; Guo, B.; Zhou, Q.; Zhou, Q.; Chen, P. Ignition and energy release characteristics of energetic high-entropy alloy HfZrTiTa0.2Al0.8 under dynamic loading. J. Mater. Res. Technol. 2024, 28, 2819–2830. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, K.; Chen, T.; Wang, Q.; Wei, B. Microstructural evolution and energetic characteristics of TiZrHfTa0.7W0.3 high-entropy alloy under high strain rates and its application in high-velocity penetration. J. Mater. Sci. Technol. 2023, 132, 144–153. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Tang, Y.; Zhu, L.a.; Ye, Y.; Li, S.; Bai, S. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53. Mater. Des. 2017, 133, 435–443. [Google Scholar] [CrossRef]
- Eckelmeyer, K.H.; Romig, A.D.; Ludtka, G.M.; Mackiewicz-Ludtka, G.; Chapman, L.R. The effects of Ti content and quenching on phase transformations, microstructures, and mechanical properties in uranium-titanium alloys. J. Nucl. Mater. 2022, 559, 153438. [Google Scholar] [CrossRef]
- Zhang, S.; Zou, D.; Su, B.; Xiao, D.; He, L.; Zhao, Y.; Su, S. Formation process, microstructure characterization, and evolution mechanism of adiabatic shear bands in U-5.7Nb alloy under dynamic deformation. J. Nucl. Mater. 2025, 603, 155371. [Google Scholar] [CrossRef]
- Morrell, J.S.; Jackson, M.J. Uranium Processing and Properties; Springer: New York, NY, USA, 2013; pp. 95–121. [Google Scholar]
- Kim, D.K.; Lee, S.; Hyung Baek, W. Microstructural study of adiabatic shear bands formed by high-speed impact in a tungsten heavy alloy penetrator. Mater. Sci. Eng. A 1998, 249, 197–205. [Google Scholar] [CrossRef]
- Su, H.; Zhang, C.; Yan, Z.; Gao, P.; Guo, H.; Pan, G.; Wang, J. Numerical Simulation of Penetration Process of Depleted Uranium Alloy Based on an FEM-SPH Coupling Algorithm. Metals 2023, 13, 79. [Google Scholar] [CrossRef]
- Zhu, F.; Chen, Y.; Zhu, G. Numerical simulation study on penetration performance of depleted Uranium (DU) alloy fragments. Def. Technol. 2021, 17, 50–55. [Google Scholar] [CrossRef]
- Shi, J.; Huang, H.; Hu, G.; Zhang, P.; Jiang, C.; Xu, H.; Luo, C. Microstructure and mechanical properties of two uranium-containing high-entropy alloys. J. Alloys Compd. 2021, 860, 158295. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Liaw, P.K.; Zhang, Y. A Strategic Design Route to Find a Depleted Uranium High-Entropy Alloy with Great Strength. Metals 2022, 12, 699. [Google Scholar] [CrossRef]
- Aizenshtein, M.; Brosh, E.; Ungarish, Z.; Levi, S.; Tubul, M.; Fadel, D.; Greenberg, E.; Hayun, S. High entropy uranium-based alloys: Thermodynamics, characterization and mechanical properties. J. Nucl. Mater. 2022, 558, 153378. [Google Scholar] [CrossRef]
- Fu, T.; Zhu, Y.; Pan, H.; Shi, J.; Yi, T.; Xie, D.; Shen, Z.; Teng, C.; Wu, Y.; Wu, L. Irradiation softening in a uranium containing NbTiZrU high entropy alloy induced by Xe ion implantation. Mater. Today Commun. 2025, 42, 111231. [Google Scholar] [CrossRef]
- Beausoleil, G.; Zillinger, J.; Hawkins, L.; Yao, T.; Weiss, A.G.; Pu, X.; Jerred, N.; Kaoumi, D. Designing Nuclear Fuels with a Multi-Principal Element Alloying Approach. Nucl. Technol. 2024, 210, 511–531. [Google Scholar] [CrossRef]
- Huang, H.; Wang, X.; Shi, J.; Huang, H.; Zhao, Y.; Xu, H.; Zhang, P.; Long, Z.; Bai, B.; Fa, T.; et al. Material informatics for uranium-bearing equiatomic disordered solid solution alloys. Mater. Today Commun. 2021, 29, 102960. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, H.; Ding, X.; Sun, J. Rapid design and screen high strength U-based high-entropy alloys from first-principles calculations. J. Mater. Sci. Technol. 2024, 179, 174–186. [Google Scholar] [CrossRef]
- Strumza, E.; Hayun, S. Comprehensive study of phase transitions in equiatomic AlCoCrFeNi high-entropy alloy. J. Alloys Compd. 2021, 856, 158220. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, J.; Fang, Q.; Feng, H. Effect of Al solute concentration on mechanical properties of AlxFeCuCrNi high-entropy alloys: A first-principles study. Phys. B Condens. Matter 2019, 566, 30–37. [Google Scholar] [CrossRef]
- Hu, Y.L.; Bai, L.H.; Tong, Y.G.; Deng, D.Y.; Liang, X.B.; Zhang, J.; Li, Y.J.; Chen, Y.X. First-principle calculation investigation of NbMoTaW based refractory high entropy alloys. J. Alloys Compd. 2020, 827, 153963. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, H.; Hu, Q.; Ding, X.; Sun, J. First-principles design of high strength refractory high-entropy alloys. J. Mater. Res. Technol. 2024, 29, 3420–3436. [Google Scholar] [CrossRef]
- Upreti, D.; Basnet, R.; Sharma, M.M.; Chhetri, S.K.; Acharya, G.; Nabi, M.R.U.; Sakon, J.; Benamara, M.; Mortazavi, M.; Hu, J. Medium-Entropy Engineering of Magnetism in Layered Antiferromagnet CuXNi2(1-X)CrXP2S6. Adv. Funct. Mater. 2025, 35, 2418722. [Google Scholar] [CrossRef]
- Chen, S.; Ma, Z.; Qiu, S.; Zhang, L.; Zhang, S.; Yang, R.; Hu, Q. Phase decomposition and strengthening in HfNbTaTiZr high entropy alloy from first-principles calculations. Acta Mater. 2022, 225, 117582. [Google Scholar] [CrossRef]
- King, D.J.M.; Middleburgh, S.C.; McGregor, A.G.; Cortie, M.B. Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 2016, 104, 172–179. [Google Scholar] [CrossRef]
- Nong, Z.; Zhu, J.; Zhao, R. Prediction of structure and elastic properties of AlCrFeNiTi system high entropy alloys. Intermetallics 2017, 86, 134–146. [Google Scholar] [CrossRef]
- Tian, L.-Y.; Hu, Q.-M.; Yang, R.; Zhao, J.; Johansson, B.; Vitos, L. Elastic constants of random solid solutions by SQS and CPA approaches: The case of fcc Ti-Al. J. Phys. Condens. Matter 2015, 27, 315702. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- van de Walle, A.; Tiwary, P.; de Jong, M.; Olmsted, D.L.; Asta, M.; Dick, A.; Shin, D.; Wang, Y.; Chen, L.Q.; Liu, Z.K. Efficient stochastic generation of special quasirandom structures. Calphad 2013, 42, 13–18. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Cover Image, Volume 37, Issue 11. J. Comput. Chem. 2016, 37, iii-iii. [CrossRef]
- Deringer, V.L.; Tchougréeff, A.L.; Dronskowski, R. Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets. J. Phys. Chem. A 2011, 115, 5461–5466. [Google Scholar] [CrossRef]
- Vegard, L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 1921, 5, 17–26. [Google Scholar] [CrossRef]
- Yin, B.; Curtin, W.A. First-principles-based prediction of yield strength in the RhIrPdPtNiCu high-entropy alloy. NPJ Comput. Mater. 2019, 5, 14. [Google Scholar] [CrossRef]
- Chandrasekar, S.; Santhanam, S. A calculation of the bulk modulus of polycrystalline materials. J. Mater. Sci. 1989, 24, 4265–4267. [Google Scholar] [CrossRef]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Voigt, W. Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik); Vieweg+Teubner: Wiesbaden, Germany, 1966. [Google Scholar]
- Knowles, K.M.; Howie, P.R. The Directional Dependence of Elastic Stiffness and Compliance Shear Coefficients and Shear Moduli in Cubic Materials. J. Elast. 2015, 120, 87–108. [Google Scholar] [CrossRef]
- Ledbetter, H.M. Elastic properties of zinc: A compilation and a review. J. Phys. Chem. Ref. Data 1977, 6, 1181–1203. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, B.; Zhao, Z. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 2012, 33, 93–106. [Google Scholar] [CrossRef]
- Foreman, A.J.E. Dislocation energies in anisotropic crystals. Acta Metall. 1955, 3, 322–330. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, Y.; Wang, K.; Wang, Z.; Hu, T.; Fan, T.; Ma, L.; Tang, P. Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0 ≤ x ≤ 0.3) High-Entropy Alloys: A First-Principles Study. Acta Metall. Sin. Engl. Lett. 2021, 34, 455–464. [Google Scholar] [CrossRef]
- Savin, M.M.; Chernov, V.M.; Strokova, A.M. Energy factor of dislocations in hexagonal crystals. Phys. Status Solidi A 1976, 35, 747–754. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Li, Z.; Liu, Z.; Zhao, E.; Liu, J. Prediction of NbTaTiZr-based high-entropy alloys with high strength or ductility: First-principles calculations. J. Mater. Res. Technol. 2024, 30, 8854–8861. [Google Scholar] [CrossRef]
- Mizutani, U. Hume-Rothery rules for structurally complex alloy phases. MRS Bull. 2012, 37, 169. [Google Scholar] [CrossRef]
- Fang, S.; Xiao, X.; Xia, L.; Li, W.; Dong, Y. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J. Non Cryst. Solids 2003, 321, 120–125. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef]
- Guo, S.; Ng, C.; Lu, J.; Liu, C.T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 2011, 109, 103505. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-Solution Phase Formation Rules for Multi-component Alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Pettifor, D. Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 1992, 8, 345–349. [Google Scholar] [CrossRef]
- Chen, S.; Gong, X.G.; Wei, S.-H. Crystal structures and mechanical properties of superhard BC2N and BC4N alloys: First-principles calculations. Phys. Rev. B 2008, 77, 014113. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, J.; Zhang, Y.; Li, Z.; Zhao, E. First-principles calculation for mechanical properties of TiZrHfNbTa series refractory high-entropy alloys. Mater. Today Commun. 2024, 40, 110165. [Google Scholar] [CrossRef]
- Pugh, S.F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Hao, Y.L.; Li, S.J.; Sun, B.B.; Sui, M.L.; Yang, R. Ductile Titanium Alloy with Low Poisson’s Ratio. Phys. Rev. Lett. 2007, 98, 216405. [Google Scholar] [CrossRef]
- Ji, G.; Zhou, Z.; Meng, F.; Yang, X.; Sheng, R.; Qiao, J.; Liaw, P.K.; Li, M.; Jiang, L.; Chen, S.; et al. Effect of Zr addition on the local structure and mechanical properties of Ti–Ta–Nb–Zr refractory high-entropy alloys. J. Mater. Res. Technol. 2022, 19, 4428–4438. [Google Scholar] [CrossRef]
- Mo, J.-Y.; Wan, Y.-X.; Zhang, Z.-B.; Wang, X.; Li, X.-Q.; Shen, B.-L.; Liang, X.-B. First-principle prediction of structural and mechanical properties in NbMoTaWRex refractory high-entropy alloys with experimental validation. Rare Met. 2022, 41, 3343–3350. [Google Scholar] [CrossRef]
- Beeler, B.; Deo, C.; Baskes, M.; Okuniewski, M. First principles calculations of the structure and elastic constants of α, β and γ uranium. J. Nucl. Mater. 2013, 433, 143–151. [Google Scholar] [CrossRef]
- Söderlind, P.; Eriksson, O.; Wills, J.M.; Boring, A.M. Theory of elastic constants of cubic transition metals and alloys. Phys. Rev. B 1993, 48, 5844–5851. [Google Scholar] [CrossRef]
- Aguayo, A.; Murrieta, G.; de Coss, R. Elastic stability and electronic structure of fcc Ti, Zr, and Hf: A first-principles study. Phys. Rev. B 2002, 65, 092106. [Google Scholar] [CrossRef]
- Chen, P. In Situ Neutron Diffraction Study on the Phase Structure Stability and Toughness Mechanism of Uranium Based High Entropy Alloys; National Natural Science Foundation: Beijing, China, 2023; pp. 12–20. [Google Scholar]
- Chung, D.H.; Buessem, W.R. The Elastic Anisotropy of Crystals. J. Appl. Phys. 1967, 38, 2010–2012. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Q.; Hu, Y.; Mao, C.; Zhou, X.; Lu, X.; Zhang, M.; Tong, Y.; Tang, K.; Peng, P. Interfacial bonding mechanism and adhesive transfer of brazed diamond with Ni-based filler alloy: First-principles and experimental perspective. Carbon 2019, 153, 104–115. [Google Scholar] [CrossRef]
- Bai, L.; Hu, Y.; Liang, X.; Tong, Y.; Liu, J.; Zhang, Z.; Li, Y.; Zhang, J. Titanium alloying enhancement of mechanical properties of NbTaMoW refractory high-Entropy alloy: First-principles and experiments perspective. J. Alloys Compd. 2021, 857, 157542. [Google Scholar] [CrossRef]
- Li, Y.; Liang, S.; Gong, J.; Wu, W.; Wang, Y.; Chen, Z. Effect of Ti on the structure and mechanical properties of TixVNbMo (x=0.5, 1.0, 1.5, 2.0) refractory high-entropy alloys: A combined first principles and experimental study. Intermetallics 2025, 181, 108760. [Google Scholar] [CrossRef]
- Avula, I.; Chavan, A.; Mukherjee, S.; Roy, M. Phase stability and mechanical properties of Ta enriched TiTaNbZrMo refractory high entropy alloys. J. Alloys Compd. 2024, 989, 174408. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, Y.Z.; Wang, X.; Jiang, C.L.; Wang, M.; Ma, C.; Huang, H. Microstructure and mechanical properties of UNbTiHf1-xMox high-entropy alloys. Mater. Sci. Eng. A 2022, 860, 144239. [Google Scholar] [CrossRef]
Alloy | δ × 100 | ΔHmix(kJ/mol) | VEC | ΔSmix J/(mol·K) | Ω |
---|---|---|---|---|---|
U13Nb13Mo13Hf13Ta2 | 6.18 | −0.75 | 4.52 | 12.42 | 27.30 |
U12Nb12Mo12Hf12Ta6 | 6.15 | −1.19 | 4.56 | 13.15 | 19.20 |
U11Nb11Mo11Hf11Ta10 | 5.75 | −1.54 | 4.59 | 13.38 | 15.78 |
U10Nb10Mo10Hf10Ta14 | 5.67 | −1.81 | 4.63 | 13.30 | 13.95 |
U9Nb9Mo9Hf9Ta18 | 5.24 | −2.00 | 4.67 | 12.98 | 12.87 |
Alloy | Hform (eV/atom) | Ecoh (eV/atom) | Etot (eV) |
---|---|---|---|
U13Nb13Mo13Hf13Ta2 | −0.0061 | −9.1864 | −566.96 |
U12Nb12Mo12Hf12Ta6 | −0.0046 | −9.2079 | −572.35 |
U11Nb11Mo11Hf11Ta10 | −0.0096 | −9.2360 | −578.10 |
U10Nb10Mo10Hf10Ta14 | −0.0021 | −9.2516 | −583.17 |
U9Nb9Mo9Hf9Ta18 | −0.0088 | −9.2815 | −589.01 |
Alloy | U | Nb | Mo | Hf | Ta |
---|---|---|---|---|---|
(eV/atom) | −10.8737 | −10.9432 | −10.2138 | −11.8116 | −9.739 |
(eV) | −1.0726 | −0.4372 | −0.8203 | −2.3309 | −2.7649 |
Alloy | EF/eV | Total Dos (States/eV) |
---|---|---|
U13Nb13Mo13Hf13Ta2 | 10.29 | 76.44 |
U12Nb12Mo12Hf12Ta6 | 9.94 | 73.98 |
U11Nb11Mo11Hf11Ta10 | 9.57 | 71.27 |
U10Nb10Mo10Hf10Ta14 | 9.21 | 70.24 |
U9Nb9Mo9Hf9Ta18 | 8.88 | 68.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Wang, T.; Wang, J.; Guo, W.; Li, W.; Li, Y.; Qiu, H. First-Principles Calculations of the Effect of Ta Content on the Properties of UNbMoHfTa High-Entropy Alloys. Metals 2025, 15, 551. https://doi.org/10.3390/met15050551
Lin Y, Wang T, Wang J, Guo W, Li W, Li Y, Qiu H. First-Principles Calculations of the Effect of Ta Content on the Properties of UNbMoHfTa High-Entropy Alloys. Metals. 2025; 15(5):551. https://doi.org/10.3390/met15050551
Chicago/Turabian StyleLin, Yue, Tao Wang, Jintao Wang, Wanxiao Guo, Weiyi Li, Yuheng Li, and Hongbo Qiu. 2025. "First-Principles Calculations of the Effect of Ta Content on the Properties of UNbMoHfTa High-Entropy Alloys" Metals 15, no. 5: 551. https://doi.org/10.3390/met15050551
APA StyleLin, Y., Wang, T., Wang, J., Guo, W., Li, W., Li, Y., & Qiu, H. (2025). First-Principles Calculations of the Effect of Ta Content on the Properties of UNbMoHfTa High-Entropy Alloys. Metals, 15(5), 551. https://doi.org/10.3390/met15050551