Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,967)

Search Parameters:
Keywords = stability of production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 750 KiB  
Review
Using Biocontrol Fungi to Control Helminthosis in Wild Animals: An Innovative Proposal for the Health and Conservation of Species
by Júlia dos Santos Fonseca, Beatriz Bacelar Barbosa, Adolfo Paz Silva, María Sol Arias Vázquez, Cristiana Filipa Cazapal Monteiro, Huarrisson Azevedo Santos and Jackson Victor de Araújo
Pathogens 2025, 14(8), 775; https://doi.org/10.3390/pathogens14080775 (registering DOI) - 5 Aug 2025
Abstract
Helminth parasites of wild animals represent a major threat to the health of these animals, leading to significant losses in performance, health, and zoonotic implications. In some zoos, anthelmintics have traditionally been used to control these parasites, many of which are also zoonotic. [...] Read more.
Helminth parasites of wild animals represent a major threat to the health of these animals, leading to significant losses in performance, health, and zoonotic implications. In some zoos, anthelmintics have traditionally been used to control these parasites, many of which are also zoonotic. Other actions, such as the removal of organic waste, have also been adopted. Few or no control measures are applied to free-ranging wild animals. Helminthophagous fungi are a promising biological alternative. When animals ingest fungal spores, they are excreted in their feces, where they trap and destroy helminth larvae and eggs, preventing and reducing the parasite load in the environment. Another alternative is to administer fungi by spraying them directly into the environment. This review aims to examine the use of helminthophagous fungi in the control of helminthiases in wild animals, highlighting their potential to minimize dependence on chemical treatments and promote sustainable animal breeding and production. There are many challenges to making this viable, such as environmental variability, stability of formulations, and acceptance of this new technology. These fungi have been shown to reduce parasite burdens in wild animals by up to 75% and can be administered through the animals’ feeding troughs. To date, evidence shows that helminthophagous fungi can reliably curb environmental parasite loads for extended periods, offering a sustainable alternative to repeated anthelmintic dosing. Their use has been linked to tangible gains in body condition, weight, and overall welfare in various captive and free-ranging wildlife species. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

88 pages, 9998 KiB  
Review
Research and Developments of Heterogeneous Catalytic Technologies
by Milan Králik, Peter Koóš, Martin Markovič and Pavol Lopatka
Molecules 2025, 30(15), 3279; https://doi.org/10.3390/molecules30153279 - 5 Aug 2025
Abstract
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation [...] Read more.
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation energies and stabilizing catalytic functionality. Particular attention is given to catalyst deactivation mechanisms and potential regeneration strategies. The application of molecular modeling and chemical engineering analyses, including reaction kinetics, thermal effects, and mass and heat transport phenomena, is identified as essential for R&D_HeCaTe. Reactor configuration is discussed in relation to key physicochemical parameters such as molecular diffusivity, reaction exothermicity, operating temperature and pressure, and the phase and “aggressiveness” of the reaction system. Suitable reactor types—such as suspension reactors, fixed-bed reactors, and flow microreactors—are evaluated accordingly. Economic and environmental considerations are also addressed, with a focus on the complexity of reactions, selectivity versus conversion trade-offs, catalyst disposal, and separation challenges. To illustrate the breadth and applicability of the proposed framework, representative industrial processes are discussed, including ammonia synthesis, fluid catalytic cracking, methanol production, alkyl tert-butyl ethers, and aniline. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts: From Synthesis to Application)
21 pages, 3832 KiB  
Article
Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China
by Hafeez Noor, Fida Noor, Zhiqiang Gao, Majed Alotaibi and Mahmoud F. Seleiman
Water 2025, 17(15), 2329; https://doi.org/10.3390/w17152329 - 5 Aug 2025
Abstract
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among [...] Read more.
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among researchers on the most appropriate field management practices regarding WUE, which requires further integrated quantitative analysis. We conducted a meta-analysis by quantifying the effect of agricultural practices surrounding nitrogen (N) fertilizer management. The two experimental cultivars were Yunhan–20410 and Yunhan–618. The subplots included nitrogen 0 kg·ha−1 (N0), 90 kg·ha−1 (N90), 180 kg·ha−1 (N180), 210 kg·ha−1 (N210), and 240 kg·ha−1 (N240). Our results show that higher N rates (up to N210) enhanced water consumption during the node-flowering and flowering-maturity time periods. YH–618 showed higher water use during the sowing–greening and node-flowering periods but decreased use during the greening-node and flowering-maturity periods compared to YH–20410. The N210 treatment under YH–618 maximized water use efficiency (WUE). Increased N rates (N180–N210) decreased covering temperatures (Tmax, Tmin, Taver) during flowering, increasing the level of grain filling. Spike numbers rose with N application, with an off-peak at N210 for strong-gluten wheat. The 1000-grain weight was at first enhanced but decreased at the far end of N180–N210. YH–618 with N210 achieved a harvest index (HI) similar to that of YH–20410 with N180, while excessive N (N240) or water reduced the HI. Dry matter accumulation increased up to N210, resulting in earlier stabilization. Soil water consumption from wintering to jointing was strongly correlated with pre-flowering dry matter biological process and yield, while jointing–flowering water use was linked to post-flowering dry matter and spike numbers. Post-flowering dry matter accumulation was critical for yield, whereas spike numbers positively impacted yield but negatively affected 1000-grain weight. In conclusion, our results provide evidence for determining suitable integrated agricultural establishment strategies to ensure efficient water use and sustainable production in the Loess Plateau region. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

19 pages, 3697 KiB  
Article
Investigating the Behavior of a Natural Emulsifier in One-Pot and Standard Cosmetic Emulsions
by Mauro Battaiotto, Paolo Sonzini, Simone Conti, Miryam Chiara Malacarne and Enrico Caruso
Cosmetics 2025, 12(4), 164; https://doi.org/10.3390/cosmetics12040164 - 5 Aug 2025
Abstract
The cosmetic industry is growing at an impressive rate worldwide. In the cosmetic field, natural-origin ingredients represent the new frontier in this industry. Among the main components of cosmetics, lipids, emulsifiers, rheological modifiers, preservatives, colorants, and antioxidants can be found. These compounds form [...] Read more.
The cosmetic industry is growing at an impressive rate worldwide. In the cosmetic field, natural-origin ingredients represent the new frontier in this industry. Among the main components of cosmetics, lipids, emulsifiers, rheological modifiers, preservatives, colorants, and antioxidants can be found. These compounds form emulsions, which are among the main cosmetic formulations. An important aspect in this regard is the evaluation of emulsions’ stability over time and emulsions’ production methodology. In this paper, a comparison is made between two emulsion production technologies, the Standard and the “One-Pot” methods, through the characterization of the raw material ABWAX® Revomul, a multifunctional wax for cosmetic use which consists of a low-melting structuring wax of vegetal origin (Rhus wax) and a natural emulsifier (Polyglyceril-3 Stearate). First, we evaluated the affinity between the wax raw materials and emollients of different chemical nature; then, we analyzed the impact of the production method on the emulsions to identify similarities and differences. ABWAX® Revomul demonstrated a high level of effectiveness in regard to stabilizing water-in-oil emulsions. This study suggests that from an industrial point of view, the application of the two procedures allows products with different characteristics to be obtained, consequently allowing a specific method to be chosen to obtain the desired product. Full article
(This article belongs to the Special Issue Advanced Cosmetic Sciences: Sustainability in Materials and Processes)
Show Figures

Figure 1

13 pages, 1841 KiB  
Article
Valorizing Biomass Waste: Hydrothermal Carbonization and Chemical Activation for Activated Carbon Production
by Fidel Vallejo, Diana Yánez, Luis Díaz-Robles, Marcelo Oyaneder, Serguei Alejandro-Martín, Rasa Zalakeviciute and Tamara Romero
Biomass 2025, 5(3), 45; https://doi.org/10.3390/biomass5030045 - 5 Aug 2025
Abstract
This study optimizes the production of activated carbons from hydrothermally carbonized (HTC) biomass using potassium hydroxide (KOH) and phosphoric acid (H3PO4) as activating agents. A 23 factorial experimental design evaluated the effects of agent-to-precursor ratio, dry impregnation time, [...] Read more.
This study optimizes the production of activated carbons from hydrothermally carbonized (HTC) biomass using potassium hydroxide (KOH) and phosphoric acid (H3PO4) as activating agents. A 23 factorial experimental design evaluated the effects of agent-to-precursor ratio, dry impregnation time, and activation duration on mass yield and iodine adsorption capacity. KOH-activated carbons achieved superior iodine numbers (up to 1289 mg/g) but lower mass yields (18–35%), reflecting enhanced porosity at the cost of material loss. Conversely, H3PO4 activation yielded higher mass retention (up to 54.86%) with moderate iodine numbers (up to 1117.3 mg/g), balancing porosity and yield. HTC pretreatment at 190 °C reduced the ash content, thereby enhancing the stability of hydrochar. These findings highlight the trade-offs between adsorption performance and process efficiency, with KOH suited for high-porosity applications (e.g., water purification) and H3PO4 for industrial scalability. The study advances biomass waste valorization, aligning with circular economy principles and offering sustainable solutions for environmental and industrial applications, such as water purification and energy storage. Full article
Show Figures

Figure 1

26 pages, 5455 KiB  
Article
Features of Thermal Stabilization of PVC Modified with Microstructured Titanium Phosphate
by Irina N. Vikhareva, Anton Abramian, Dragan Manojlović and Oleg Bol’shakov
Polymers 2025, 17(15), 2140; https://doi.org/10.3390/polym17152140 - 5 Aug 2025
Abstract
Poly(vinyl chloride) (PVC) undergoes thermal degradation during processing and operation, which necessitates the use of effective thermal stabilizers. The purpose of this work is to comprehensively evaluate the potential of new hierarchically structured titanium phosphates (TiP) with controlled morphology as thermal stabilizers of [...] Read more.
Poly(vinyl chloride) (PVC) undergoes thermal degradation during processing and operation, which necessitates the use of effective thermal stabilizers. The purpose of this work is to comprehensively evaluate the potential of new hierarchically structured titanium phosphates (TiP) with controlled morphology as thermal stabilizers of plasticized PVC, focusing on the effect of morphology and Ti/P ratio on their stabilizing efficiency. The thermal stability of the compositions was studied by thermogravimetric analysis (TGA) in both inert (Ar) and oxidizing (air) atmospheres. The effect of TiP concentration and its synergy with industrial stabilizers was analyzed. An assessment of the key degradation parameters is given: the temperature of degradation onset, the rate of decomposition, exothermic effects, and the carbon residue yield. In an inert environment, TiPMSI/TiPMSII microspheres demonstrated an optimal balance by increasing the temperature of degradation onset and the residual yield while suppressing the rate of decomposition. In an oxidizing environment, TiPR rods and TiPMSII microspheres provided maximum stability, enhancing resistance to degradation onset and reducing the degradation rate by 10–15%. Key factors of effectiveness include ordered morphology (spheres, rods); the Ti-deficient Ti/P ratio (~0.86), which enhances HCl binding; and crystallinity. The stabilization mechanism of titanium phosphates is attributed to their high affinity for hydrogen chloride (HCl), which catalyzes PVC chain scission, a catalyst for the destruction of the PVC chain. The unique microstructure of titanium phosphate provides a high specific surface area and, as a result, greater activity in the HCl neutralization reaction. The formation of a sol–phosphate framework creates a barrier to heat and oxygen. An additional contribution comes from the inhibition of oxidative processes and the possible interaction with unstable chlorallyl groups in PVC macromolecules. Thus, hierarchically structured titanium phosphates have shown high potential as multifunctional PVC thermostabilizers for modern polymer materials. Potential applications include the development of environmentally friendly PVC formulations with partial or complete replacement of toxic stabilizers, the optimization of thermal stabilization for products used in aggressive environments, and the use of hierarchical TiP structures in flame-resistant and halogen-free PVC-based compositions. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

10 pages, 386 KiB  
Article
Certified Seed Use Enhances Yield Stability in Cereal Production Under Temperate Climate Conditions
by Patrycja Ojdowska, Tadeusz Oleksiak, Marcin Studnicki and Marzena Iwańska
Agronomy 2025, 15(8), 1886; https://doi.org/10.3390/agronomy15081886 - 5 Aug 2025
Abstract
In the face of growing demand for food and climate change, ensuring the stability and height of crop yields is becoming a key challenge for modern agriculture. One of the solutions supporting the sustainable development of crop production is the use of certified [...] Read more.
In the face of growing demand for food and climate change, ensuring the stability and height of crop yields is becoming a key challenge for modern agriculture. One of the solutions supporting the sustainable development of crop production is the use of certified seed. The aim of this study was to assess the impact of using certified seed on the level and stability of yields of three cereal species: winter wheat, winter triticale and spring barley, in temperate climate conditions. Data came from surveys conducted on over 8000 farms in six agroecoregions of Poland in 2021–2023. The analysis showed significantly higher yields on farms using certified seed for all species studied. Additionally, greater yield stability (lower values of Shukla variance and Wricke ecovalence) was noted in the case of using certified seeds, especially in region IV. This indicates the positive impact of certified seeds (e.g., genetic purity, health, and vigor) on the efficiency and resilience of agricultural systems. This phenomenon is of particular importance in the context of climate change and may be an important element of risk management strategies in agriculture. Full article
(This article belongs to the Special Issue Genotype × Environment Interactions in Crop Production—2nd Edition)
Show Figures

Figure 1

16 pages, 3000 KiB  
Article
Metabolic Variations in Bamboo Shoot Boiled Liquid During Pediococcus pentosaceus B49 Fermentation
by Juqing Huang, Meng Sun, Xuefang Guan, Lingyue Zhong, Jie Li, Qi Wang and Shizhong Zhang
Foods 2025, 14(15), 2731; https://doi.org/10.3390/foods14152731 - 5 Aug 2025
Abstract
Bamboo shoot boiled liquid (BSBL), a processing byproduct containing soluble proteins, peptides, amino acids, carbohydrates, and phenolics, is typically discarded, causing resource waste and environmental issues. This study analyzed metabolic changes in BSBL during Pediococcus pentosaceus B49 fermentation. The result of partial least [...] Read more.
Bamboo shoot boiled liquid (BSBL), a processing byproduct containing soluble proteins, peptides, amino acids, carbohydrates, and phenolics, is typically discarded, causing resource waste and environmental issues. This study analyzed metabolic changes in BSBL during Pediococcus pentosaceus B49 fermentation. The result of partial least squares discriminant analysis (PLS-DA) revealed significant metabolite profile differences across fermentation times (0 h, 24 h, 48 h, 72 h, 96 h). The most substantial alterations occurred within the first 24 h, followed by stabilization. Compared to unfermented BSBL, fermented samples exhibited significantly elevated signal intensities for 5,7-dimethoxyflavone, cinnamic acid, 3,4-dihydro-2H-1-benzopyran-2-one, 6,8-dimethyl-4-hydroxycoumarin, and 2-hydroxycinnamic acid (p < 0.05), showing upward trends over time. Conversely, (+)-gallocatechin intensity decreased gradually. Bitter peptides, such as alanylisoleucine, isoleucylisoleucine, leucylvaline, and phenylalanylisoleucine, in BSBL exhibited a significant reduction following fermentation with P. pentosaceus B49 (p < 0.05). KEGG enrichment indicated tyrosine metabolism (ko00350) and arginine/proline metabolism (ko00330) as the most impacted pathways. These findings elucidate metabolic regulation in BSBL fermentation, supporting development of functional fermented bamboo products. Full article
Show Figures

Figure 1

20 pages, 1622 KiB  
Article
Effect of Hemp Protein and Sea Buckthorn Extract on Quality and Shelf Life of Cooked-Smoked Sausages
by Kainar Bukarbayev, Sholpan Abzhanova, Lyazzat Baibolova, Gulshat Zhaksylykova, Talgat Kulazhanov, Vitalii Vasilenko, Bagila Jetpisbayeva, Alma Katasheva, Sultan Sabraly and Yerkin Yerzhigitov
Foods 2025, 14(15), 2730; https://doi.org/10.3390/foods14152730 - 5 Aug 2025
Abstract
Modern meat processing faces several challenges, including high resource consumption, environmental impact, and the need to enhance the nutritional and biological value of finished products. In this context, interest is growing in functional plant-based ingredients capable of improving the quality of meat products. [...] Read more.
Modern meat processing faces several challenges, including high resource consumption, environmental impact, and the need to enhance the nutritional and biological value of finished products. In this context, interest is growing in functional plant-based ingredients capable of improving the quality of meat products. The aim of this study was to evaluate the effect of adding 0.01% hemp protein powder and 0.01% sea buckthorn extract (based on the weight of unsalted raw material) on the nutritional, technological, and microbiological characteristics of cooked-smoked sausages. The results demonstrated an increase in total protein content, a 2.5-fold rise in tocopherol levels, as well as a 17.9% improvement in the Amino Acid Score of threonine and a 2.48% increase in the biological value of protein. Samples enriched with plant-based components exhibited enhanced organoleptic properties and greater storage stability over 36 days. In addition, extrusion parameters for the production of the protein additive were optimized, resulting in a stable functional ingredient. Full article
Show Figures

Figure 1

13 pages, 1859 KiB  
Article
Suspension Fertilizers Based on Waste Organic Matter from Peanut Oil Extraction By-Products
by Sainan Xiang, Baoshen Li and Yang Lyu
Agronomy 2025, 15(8), 1885; https://doi.org/10.3390/agronomy15081885 - 5 Aug 2025
Abstract
The use of chemical fertilizers has significantly increased crop yields but has also led to soil problems such as nutrient imbalance and salinization. In response, organic fertilizers have emerged as a crucial component for sustainable agricultural development. This study was designed to develop [...] Read more.
The use of chemical fertilizers has significantly increased crop yields but has also led to soil problems such as nutrient imbalance and salinization. In response, organic fertilizers have emerged as a crucial component for sustainable agricultural development. This study was designed to develop an easily applicable organic suspension fertilizer using peanut bran, the primary by-product of peanut oil extraction, as the main raw material. Fourier-transform infrared (FTIR) analysis revealed that 80 °C is the optimal heating temperature for forming a stable peanut-bran suspension. A comprehensive experimental investigation was conducted to evaluate the effects of different peanut bran addition levels, stabilizers, emulsifiers, and suspending agents on the stability of suspension fertilizers. The results identified the optimal suspension fertilizer formulation as comprising 20% peanut bran, 0.5% sodium bentonite, 0.1% monoglyceride, 0.2% sucrose ester, 0.02% carrageenan, and 0.3% xanthan gum. This formulation ensures good stability and fluidity of the suspension fertilizer while maintaining a low cost of 0.134 USD·kg−1. The findings provide a scalable technological framework for valorizing agro-industrial waste into high-performance organic fertilizers. Full article
Show Figures

Figure 1

671 KiB  
Proceeding Paper
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
by Partha Protim Borthakur and Barbie Borthakur
Chem. Proc. 2025, 17(1), 6; https://doi.org/10.3390/chemproc2025017006 - 4 Aug 2025
Abstract
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting [...] Read more.
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru), iridium (Ir), and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations, enabling cost-effective and scalable hydrogen production. Additionally, nickel-based catalysts supported on alumina optimize SMR, reducing coke formation and improving efficiency. In biofuel production, heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes, improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar, red mud, and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production, offering environmental and economic benefits. Power-to-X technologies, which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels, rely on advanced catalysts to improve reaction rates, selectivity, and energy efficiency. Innovations in non-precious metal catalysts, nanostructured materials, and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency, reduce environmental footprints, and ensure the viability of renewable energy technologies. Full article
Show Figures

Figure 1

17 pages, 415 KiB  
Review
Advanced Wood Composites with Recyclable or Biodegradable Polymers Embedded—A Review of Current Trends
by Paschalina Terzopoulou, Dimitris S. Achilias and Evangelia C. Vouvoudi
J. Compos. Sci. 2025, 9(8), 415; https://doi.org/10.3390/jcs9080415 - 4 Aug 2025
Abstract
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable [...] Read more.
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable polymers as matrix materials. The integration of waste wood particles into the production of WPCs addresses global environmental challenges, including plastic pollution and deforestation, by offering an alternative to conventional wood-based and petroleum-based products. Key topics covered in the review include raw material sources, fiber pre-treatments, compatibilizers, mechanical performance, water absorption behavior, thermal stability and end-use applications. Full article
Show Figures

Figure 1

34 pages, 9516 KiB  
Article
Proteus sp. Strain JHY1 Synergizes with Exogenous Dopamine to Enhance Rice Growth Performance Under Salt Stress
by Jing Ji, Baoying Ma, Runzhong Wang and Tiange Li
Microorganisms 2025, 13(8), 1820; https://doi.org/10.3390/microorganisms13081820 - 4 Aug 2025
Abstract
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous [...] Read more.
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous dopamine (DA) significantly enhanced the production of indole-3-acetic acid and ammonia by strain JHY1. Pot experiments revealed that both DA and JHY1 treatments effectively alleviated the adverse effects of 225 mM NaCl on rice, promoting biomass, plant height, and root length. More importantly, the combined application of DA-JHY1 showed a significant synergistic effect in mitigating salt stress. The treatment increased the chlorophyll content, net photosynthetic rate, osmotic regulators (proline, soluble sugars, and protein), and reduced lipid peroxidation. The treatment also increased soil nutrients (ammoniacal nitrogen and available phosphorus), enhanced soil enzyme activities (sucrase and alkaline phosphatase), stabilized the ion balance (K+/Na+), and modulated the soil rhizosphere microbial community by increasing beneficial bacteria, such as Actinobacteria and Firmicutes. This study provides the first evidence that the synergistic effect of DA and PGPR contributes to enhanced salt tolerance in rice, offering a novel strategy for alleviating the adverse effects of salt stress on plant growth. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

13 pages, 1674 KiB  
Article
Impact of Substrate Amount and Fruiting Induction Methods in Lentinula edodes Cultivation
by Bruno de Souza Rocha, Wagner Gonçalves Vieira Junior, Adriano Taffarel Camargo de Paula, Asser Botelho Santana, Marcos Antônio da Silva Freitas, Milton Mineo Hirai, Lucas da Silva Alves and Diego Cunha Zied
Horticulturae 2025, 11(8), 915; https://doi.org/10.3390/horticulturae11080915 (registering DOI) - 4 Aug 2025
Abstract
Mushroom production is a sustainable practice but requires improvements, such as in Lentinula edodes (Berk) Pegler cultivation, which has high water and labor demands. In this context, this study proposed replacing the traditional primordia induction method by submersion with a water injection method. [...] Read more.
Mushroom production is a sustainable practice but requires improvements, such as in Lentinula edodes (Berk) Pegler cultivation, which has high water and labor demands. In this context, this study proposed replacing the traditional primordia induction method by submersion with a water injection method. Two primordia induction methods (submersion and injection) and two cultivation block formats were compared: rectangular cube (2 kg) and cylindrical (3.5 kg). The substrate, composed of eucalyptus sawdust (72%), wheat bran (12.5%), rice bran (12.5%), CaCO3 (1%), and CaSO4 (2%), was inoculated with strain LED 19/11 and incubated for 80 days at 26 ± 5 °C and 85 ± 15% humidity. After this period, the blocks were washed and transferred to the production environment. Fruiting was induced either by submersion or water injection, and production was evaluated over four harvest flushes. The 2 kg blocks had higher yields with submersion (16.62%), while the 3.5 kg blocks responded better to injection (13.01%), showing more homogeneous production. Increasing the substrate quantity contributes to greater harvest stability across production cycles. Water injections proved to be a viable alternative, reducing handling and facilitating large-scale production. The use of this technique demonstrates great importance in reducing water use and also the need for labor in cultivation. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Figure 1

15 pages, 647 KiB  
Article
Effects of Burdock Addition and Different Starters on the Quality and Flavor Improvement of Duck Sausages
by Li Cui, Xuan Zhao, Xingye Song, Wenjing Zhou, Tao Wang, Wuyang Huang and Yuxing Guo
Biology 2025, 14(8), 996; https://doi.org/10.3390/biology14080996 (registering DOI) - 4 Aug 2025
Abstract
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, [...] Read more.
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, and flavor profiles of duck sausages. Three bacterial strains, Lacticaseibacillus casei, L. helveticus, and L. plantarum, were selected based on sensory analysis, and their effects on sausage properties were evaluated through combined fermentation trials. The results demonstrated that duck sausages fermented with L. plantarum and L. helveticus and supplemented with 3% burdock powder (PHB group) exhibited > 1.5-fold higher antioxidant activity (ABTS at 85.2 μmol trolox/g and DPPH at 92.7 μmol trolox/g, respectively; p < 0.05) and 15% increase in total phenolic content (8.24 mg gallic acid/g) compared to non-fermented counterparts. The PHB formulation also enhanced color stability (lightness, redness, yellowness), textural characteristics (hardness, springiness, cohesiveness), and sensory acceptability. Volatile compound analysis revealed a reduction in off-odor aldehydes (hexanal, (E)-2-octenal, (E)-2-decenal, and (E,E)-2,4-decadienal) and increased production of desirable aromatic compounds like tetramethyl-pyrazine. These findings highlight the potential of combining lactic acid bacteria fermentation with burdock powder to develop functional duck sausages with improved nutritional and sensory properties. Full article
(This article belongs to the Special Issue Nutraceutical and Bioactive Compounds in Foods)
Show Figures

Figure 1

Back to TopTop