Using Biocontrol Fungi to Control Helminthosis in Wild Animals: An Innovative Proposal for the Health and Conservation of Species
Abstract
1. Introduction
2. Conservation of Wild Species
3. Helminths in Wild Animals
4. Zoonotic Importance of Helminthosis in Wild Animals
5. Helminthophagous Fungi Useful for Controlling Helminths Affecting Wild Animal Species
- -
- Ovicide: As the name suggests, it groups fungi that are able to develop hyphae that can attach to the cuticle or the egg cover, penetrate inside, and take all the inner content. This is a large group, in which the most frequently cited species are Pochonia chlamydosporia, Mucor circinelloides, Purpureocillium lilacinum, and different strains belonging to the genus Trichoderma [93,94,95]. It is interesting to note that some of these fungi were tested against plant pathogens before their interest in veterinary medicine was discovered.
- -
- Larvicide: In this case, the mobile phases or larvae are targeted, which is the reason for the numerous traps originating in their mycelia with the objective of trapping them; these fungi are called trapping or nematophagous fungi. The most representative species is Duddingtonia flagrans, which has been involved in more than half of the investigations performed up to now [96,97,98]. Another useful species belongs to Arthrobotrys spp., whereas it is suspected to belong to Clonostachys rosea.
6. Challenges for the Use of Helminthophagous Fungi to Control Helminthosis in Wild Animals
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thompson, R.C.A. Parasite zoonoses and wildlife: One Health, spillover, and human activity. Int. J. Parasitol. 2013, 43, 1079–1088. [Google Scholar] [CrossRef]
- Palomero, A.M.; Cazapal-Monteiro, C.F.; Valderrábano, E.; Paz-Silva, A.; Sánchez-Andrade, R.; Arias, M.S. Soil fungi enable the control of gastrointestinal nematodes in wild bovidae captive in a zoological park: A 4 year trial. Parasitology 2020, 147, 791–798. [Google Scholar] [CrossRef]
- Frantz, A.C.; Lippert, S.; Gaasch, J.; Heddergott, M.; Kox, L. First records of the raccoon roundworm (Baylisascaris procyonis) in Luxembourg: Evidence for natural spread and a novel introduction. Eur. J. Wildl. Res. 2024, 70, 91. [Google Scholar] [CrossRef]
- Farkas, C.; Juhász, A.; Fekete, B.; Egri, B. Comparative analysis of Ascaris suum and Macracanthorhynchus hirudinaceus infections in free ranging and captive wild boars (Sus scrofa) in Hungary. Animals 2024, 14, 932. [Google Scholar] [CrossRef] [PubMed]
- Seguel, M.; Gottdenker, N. The diversity and impact of hookworm infections in wildlife. Int. J. Parasitol. Parasites Wildl. 2017, 6, 177–194. [Google Scholar] [CrossRef] [PubMed]
- Nechybová, S.; Vejl, P.; Hart, V.; Melounová, M.; Čílová, D.; Vašek, J.; Jankovská, I.; Vadlejch, J.; Langrová, I. Long term occurrence of Trichuris species in wild ruminants in the Czech Republic. Parasitol. Res. 2018, 117, 1699–1708. [Google Scholar] [CrossRef]
- Winter, J.; Rehbein, S.; Joachim, A. Transmission of helminths between species of ruminants in Austria appears more likely to occur than generally assumed. Front. Vet. Sci. 2018, 5, 30. [Google Scholar] [CrossRef]
- Alarcón-Zapata, A.M.; Romero-Salas, D.; Chaparro-Gutiérrez, J.J.; González-Hernández, M.; Ojeda-Chi, M.M.; Serrano-Solís, A. Frequency of Giardia spp. and Cryptosporidium spp. in domestic and captive wild animals in the north of Veracruz, Mexico. Pak. Vet. J. 2023, 43, 814–818. [Google Scholar] [CrossRef]
- Sayed, E.; Altilmisani, N.M.; Albishri, F.; Ahmed, A.; Elkhalifa, S.M.; Al-Dubai, T.A.; Al-Wesabi, E.O. Prevalence and zoonotic potential of parasites in wild rats in Jeddah City, Saudi Arabia. Int. J. Vet. Sci. 2024, 13, 232–240. [Google Scholar] [CrossRef]
- Araújo, J.V.; Fonseca, J.S.; Barbosa, B.B.; Valverde, H.A.; Santos, H.A.; Braga, F.R. The role of helminthophagous fungi in the biological control of human and zoonotic intestinal helminths. Pathogens 2024, 13, 741. [Google Scholar] [CrossRef]
- Pérez-Anzúrez, G.; Mendoza-de Gives, P.; Colinas-Picazo, A.; Gutiérrez-Medina, E.; Bautista-García, G.A.; Delgado-Núñez, E.J.; Olmedo-Juárez, A. Assessing the in vitro individual and combined effect of Arthrobotrys oligospora and A. musiformis liquid culture filtrates against infective larvae of the sheep blood feeding nematode Haemonchus contortus (Trichostrongylidae). Pathogens 2024, 13, 498. [Google Scholar] [PubMed]
- Salmo, R.; Viña, C.; Zubiria, I.; Malagón, J.Á.H.; Sanchís, J.M.; Cazapal, C.; Arias, M.S.; Sánchez-Andrade, R.; Paz-Silva, A. Formulating parasiticidal fungi in dried edible gelatins to reduce the risk of infection by Trichuris sp. among continuous grazing bison. Pathogens 2024, 13, 82. [Google Scholar] [CrossRef]
- Palomero, A.M.; Cazapal-Monteiro, C.F.; Viña, C.; Hernández, J.A.; Voinot, M.; Vilá, M.; Silva, M.I.; Paz-Silva, A.; Sánchez-Andrade, R.; Arias, M.S. Formulating fungal spores to prevent infection by trichostrongylids in a zoological park: Practical approaches to a persisting problem. Biol. Control 2021, 152, 104466. [Google Scholar] [CrossRef]
- Rodrigues, A.S.L.; Pilgrim, J.D.; Lamoreux, J.F.; Hoffmann, M.; Brooks, T.M. The value of the IUCN red list for conservation. Trends Ecol. Evol. 2006, 21, 71–76. [Google Scholar] [CrossRef]
- Norris, K. Biodiversity in the context of ecosystem services: The applied need for systems approaches. Philosophical transactions of the royal society. Biol. Sci. 2012, 367, 191–199. [Google Scholar] [CrossRef]
- Schaaf, C.D. The role of zoological parks in biodiversity conservation in the Gulf of Guinea islands. Biodivers. Conserv. 1994, 3, 962–968. [Google Scholar] [CrossRef]
- Hernández, J.A.; Cazapal-Monteiro, C.F.; Arroyo, F.L.; Silva, M.I.; Palomero, A.M.; Paz-Silva, A.; Sánchez-Andrade, R.; Arias, M.S. Biological control of soil transmitted helminths (STHs) in a zoological park by using saprophytic fungi. Biol. Control 2018, 122, 24–30. [Google Scholar] [CrossRef]
- Paz-silva, A.; Salmo, R.; Viña, C.; Palomero, A.M.; Hernández, J.A.; Sánchez-Andrade, R.; Cazapal-Monteiro, C.; Arias, M.S. Gelatin treats containing filamentous fungi to promote sustainable control of helminths among pets and zoo animals. Biol. Control 2023, 179, 105184. [Google Scholar] [CrossRef]
- Bordes, F.; Morand, S. The impact of multiple infections on wild animal hosts: A review. Infect. Ecol. Epidemiol. 2011, 1, 7346. [Google Scholar] [CrossRef] [PubMed]
- Holland, C.V. A walk on the wild side: A review of the epidemiology of Toxocara canis and Toxocara cati in wild hosts. Int. J. Parasitol: Parasites Wildl. 2023, 22, 216–228. [Google Scholar] [CrossRef]
- Okulewicz, A.; Perec-Matysiak, A.; Buńkowska, K.; Hildebrand, J. Toxocara canis, Toxocara cati and Toxascaris leonine in wild and domestic carnivores. Helminthologia 2012, 49, 3–10. [Google Scholar] [CrossRef]
- Zhou, C.; Li, M.; Yuan, K.; Deng, S.; Peng, W. Pig Ascaris: An important source of human ascariasis in China. Infect. Genet. Evol. 2012, 12, 1172–1177. [Google Scholar] [CrossRef]
- Heddergott, M.; Lippert, S.; Schliephake, A.; Gaede, W.; Schleimer, A.; Frantz, A.C. Spread of the Zoonotic Nematode Baylisascaris procyonis into a Naive Raccoon Population. Ecohealth 2023, 20, 263–272. [Google Scholar] [CrossRef]
- Samson, A.; Dubay, S.A.; Huspeni, T.C.; Cyr, A. Influence of environmental variables on Baylisascaris procyonis infection in raccoons. J. Parasitol. 2012, 98, 1279–1282. [Google Scholar] [CrossRef]
- Vieira, F.M.; Muniz-Pereira, L.C.; Souza-Lima, S.; Rocha, B.M.; Luque, J.L. Parasitic nematodes of three species of wild carnivore mammals from Atlantic forest in the state of Minas Gerais, Brazil. Rev. Mex. Biodiv. 2017, 88, 801–806. [Google Scholar] [CrossRef]
- Rivero, J.; García-Sánchez, Á.M.; Zurita, A.; Cutillas, C.; Callejón, R. Trichuris trichiura isolated from Macacasylvanus: Morphological, biometrical, and molecular study. BMC Vet. Res. 2020, 16, 445. [Google Scholar] [CrossRef]
- Ooi, H.K.; Tenora, F.; Itoh, K.; Kamiya, M. Comparative study of Trichuris trichiura from nonhuman primates and from man, and their difference with T. suis. J. Vet. Med. 1993, 55, 363–366. [Google Scholar] [CrossRef]
- Cutillas, C.; Callejón, R.; de Rojas, M.; Tewes, B.; Ubeda, J.; Ariza, C.; Guevara, D. Trichuris suis and Trichuris trichiura are different nematode species. Acta Trop. 2009, 111, 299–307. [Google Scholar] [CrossRef]
- Robertson, I.D.; Irwin, P.J.; Lymbery, A.J.; Thompson, R.C.A. The role of companion animals in the emergence of parasitic zoonoses. Int. J. Parasitol. 2000, 30, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Carrasco, C.; Berriatua, E.; Garijo, M.; Martínez, J.; Alonso, F.D.; de Ybáñez, R.R. Epidemiological study of non-systemic parasitism in dogs in southeast Mediterranean Spain assessed by coprological and post-mortem examination. Zoonoses Public Health 2007, 54, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gallegos, L.M.; Núñez, C.R.; Gómez, L.G.B.; Castañeda, J.S.M.; Cardenas, R.H. Presence of Toxocara spp. in Domestic Cats in the State of Mexico. Acta Sci. Vet. 2016, 44, 5. [Google Scholar] [CrossRef]
- Beugnet, F.; Halos, L.; Guillot, J. Textbook of Clinical Parasitology in Dogs and Cats; Servet Editorial-Grupo Asís Biomedia, S.L. Spain: Zaragoza, Spain, 2018; pp. 35–40. [Google Scholar]
- Deplazes, P.; Van Knapen, F.; Schweiger, A.; Overgaauw, P.A. Role of pet dogs and cats in the transmission of helminthic zoonoses in Europe, with a focus on echinococcosis and toxocarosis. Vet. Parasitol. 2011, 182, 41–53. [Google Scholar] [CrossRef]
- Deplazes, P.; Eckert, J.; Mathis, A.; Von Samson-Himmelstjerna, G.; Zahner, H. Parasitology in Veterinary Medicine; Wageningen Academic Publishers: Leiden, The Netherlands, 2016; p. 650. [Google Scholar] [CrossRef]
- Ionică, A.M.; Deak, G.; Boncea, R.; Gherman, C.M.; Mihalca, A.D. The European Badger as a New Host for Dirofilaria immitis and an Update on the Distribution of the Heartworm in Wild Carnivores from Romania. Pathogens 2022, 11, 420. [Google Scholar] [CrossRef]
- Alsarraf, M.; Dwużnik-Szarek, D.; Hildebrand, J.; Mierzejewska, E.J.; Kloch, A.; Kot, K.; Kurek, K.; Nowak, S.; Mysłajek, R.W.; Myśliwy, I.; et al. Occurrence of Dirofilaria repens in wild carnivores in Poland. Parasitol. Res. 2023, 122, 1229–1237. [Google Scholar] [CrossRef]
- Safarov, A.; Akramova, F.; Azimov, D.; Mihalca, A.D.; Ionică, A.M. Updates on the distribution and host spectrum of Dirofilaria repens in the Republic of Uzbekistan. Parasitol. Res. 2021, 120, 3987–3992. [Google Scholar] [CrossRef]
- Thompson, A.; Kutz, S.J.; Smith, A. Parasite Zoonoses and Wildlife: Emerging Issues. Int. J. Environ. Res. Public Health 2009, 6, 678–693. [Google Scholar] [CrossRef]
- Fonseca, J.S.; Valverde, H.A.; Barbosa, B.B.; Santos, H.A.; Araújo, J.V. Assessing the applications and efficacy of using helminthophagous fungi to control canine gastrointestinal parasites. Acta Trop. 2024, 254, 107180. [Google Scholar] [CrossRef] [PubMed]
- Cazapal-Monteiro, C.F.; Hernández, J.A.; Arroyo, F.L.; Miguélez, S.; Romasanta, Á.; Paz-Silva, A.; Sánchez-Andrade, R.; Arias, M.S. Analysis of the effect of soil saprophytic fungi on the eggs of Baylisascaris procyonis. Parasitol. Res. 2015, 114, 2443–2450. [Google Scholar] [CrossRef]
- Goodman, D.; Haji, H.J.; Bickle, Q.D.; Stoltzfus, R.J.; Tielsch, J.M.; Ramsan, M.; Savioli, L.; Albonico, M. A comparison of methods for detecting the eggs of Ascaris, Trichuris, and hookworm in infant stool, and the epidemiology of infection in Zanzibari infants. Am. J. Trop. Med. 2007, 76, 725–731. [Google Scholar] [CrossRef]
- Paquet-Durand, I.; Hernández, J.; Dolz, G.; Romero Zuñiga, J.J.; Schnieder, T.; Epe, C. Prevalence of Toxocara spp., Toxascaris leonina, and ancylostomidae in public parks and beaches in different climate zones of Costa Rica. Acta Trop. 2007, 104, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Soriano, S.V.; Pierangeli, N.B.; Roccia, I.; Bergagna, H.F.; Lazzarini, L.E.; Celescinco, A.; Saiz, M.S.; Kossman, A.; Contreras, P.A.; Arias, C.; et al. A wide diversity of zoonotic intestinal parasites infects urban and rural dogs in Neuquén, Patagonia, Argentina. Vet. Parasitol. 2010, 167, 81–85. [Google Scholar] [CrossRef]
- Macpherson, C.N. The epidemiology and public health importance of toxocariasis: A zoonosis of global importance. Int. J. Parasitol. 2013, 43, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M. Toxocara cati: An underestimated zoonotic agent. Trends Parasitol. 2003, 19, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Fillaux, J.; Magnaval, J.F. Laboratory diagnosis of human toxocariasis. Vet. Parasitol. 2013, 193, 327–336. [Google Scholar] [CrossRef]
- Moreira, G.M.; Telmo, P.L.; Mendonça, M.; Moreira, A.N.; McBride, A.J.; Scaini, C.J.; Conceição, F.R. Human toxocariasis: Current advances in diagnostics, treatment, and interventions. Trends Parasitol. 2014, 30, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Acha, P.N.; Szyfres, B. Zoonoses and Communicable Diseases Common to Man and Animals, 3rd ed.; Pan American Health Organization (PAHO): Washington, DC, USA; WHO: Washington, DC, USA, 2003; Volume 1, Available online: https://www3.paho.org/hq/dmdocuments/2012/Acha-Zoonoses-Eng.pdf (accessed on 9 May 2025).
- Overgaauw, P.A.; Van Knapen, F. Veterinary and public health aspects of Toxocara spp. Vet. Parasitol. 2013, 193, 398–403. [Google Scholar] [CrossRef]
- Fan, C.K.; Liao, C.W.; Cheng, Y.C. Factors affecting disease manifestation of toxocarosis in humans: Genetics and environment. Vet. Parasitol. 2013, 193, 342–352. [Google Scholar] [CrossRef]
- Magnaval, J.F.; Michault, A.; Calon, N.; Charlet, J.P. Epidemiology of human toxocariasis in La Réunion. Trans. R. Soc. Trop. Med. Hyg. 1994, 88, 531–533. [Google Scholar] [CrossRef]
- Eid, M.M.; El-Kowrany, S.I.; Othman, A.A.; El Gendy, D.I.; Saied, E.M. Immunopathological changes in the brain of immunosuppressed mice experimentally infected with Toxocara canis. Korean J. Parasitol. 2015, 53, 51–58. [Google Scholar] [CrossRef]
- World Health Organization. Trichuris Trichiura: Background Document for the WHO Guidelines on Sanitation and Health; Drinking-Water and Sanitation Related Pathogens Series; World Health Organization: Switzerland, Geneva, 2025. [Google Scholar] [CrossRef]
- McDowell, M.A.; Rafati, S. (Eds.) Neglected Tropical Diseases—Middle East and North Africa; Springer-Verlag: Wien, Austria, 2014; Available online: https://content.e-bookshelf.de/media/reading/L-3932696-5238dd8435.pdf (accessed on 9 May 2025).
- Wang, H.B.; Zhang, H.J.; Song, L.L.; Zhu, L.; Chen, M.; Ren, G.J.; Liu, G.H.; Zhao, G.H. Morphological and molecular confirmation of the validity of Trichuris rhinopiptheroxella in the endangered golden snub-nosed monkey (Rhinopithecus roxellana). J. Helminthol. 2019, 93, 601–607. [Google Scholar] [CrossRef]
- Ravasi, D.F.; O’Riain, M.J.; Davids, F.; Illing, N. Phylogenetic evidence that two distinct Trichuris genotypes infect both humans and non-human primates. PLoS ONE 2012, 7, 44187. [Google Scholar] [CrossRef]
- Betson, M.; Søe, M.; Nejsum, P. Human trichuriasis: Whipworm genetics, phylogeny, transmission and future research directions. Curr. Trop. Med. Rep. 2015, 2, 209–217. [Google Scholar] [CrossRef]
- Knight, R.A. Morphological differences in Trichuris ovis associated with different host species. J. Parsitol. 1984, 70, 842–843. [Google Scholar] [CrossRef]
- Liu, G.H.; Zhou, W.; Nisbet, A.J.; Xu, M.J.; Zhou, D.H.; Zhao, G.H.; Wang, S.K.; Song, H.Q.; Lin, R.Q.; Zhu, X.Q. Characterization of Trichuris trichiura from humans and T. suis from pigs in China using internal transcribed spacers of nuclear ribosomal DNA. J. Helmintol. 2014, 88, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.; Al-Jubury, A.; Hansen, T.V.A.; Olsen, A.; Christensen, H.; Thamsborg, S.M.; Nejsum, P. Genetic analysis of Trichuris suis and Trichuris trichiura recovered from humans and pigs in a sympatric setting in Uganda. Vet. Parasitol. 2012, 188, 68–77. [Google Scholar] [CrossRef]
- Robertson, I.D.; Thompson, R.C.A. Enteric parasitic zoonoses of domesticated dogs and cats. Microbes Infec. 2002, 4, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Ta, R.; Blond, B.N. The prevalence of and contributors to neurocysticercosis in endemic regions. Neurol. Sci. 2022, 15, 120393. [Google Scholar] [CrossRef] [PubMed]
- Torgerson, P.R.; Macpherson, C.N. The socioeconomic burden of parasitic zoonoses: Global trends. Vet. Parasitol. 2011, 182, 79–95. [Google Scholar] [CrossRef]
- Ten Doesschate, S.J.; Pomroy, W.E.; Tapia-Escárate, D.; Scott, I.; Wilson, P.R. Establishment rate of cattle gastrointestinal nematodes in farmed red deer (Cervus elaphus). Vet. Parasitol. 2017, 243, 105–108. [Google Scholar] [CrossRef]
- Pfukenyi, D.M.; Mukaratirwa, S. Amphistome infections in domestic and wild ruminants in East and Southern Africa: A review. Onderstepoort J. Vet. Res. 2018, 85, 1–13. [Google Scholar] [CrossRef]
- Voinot, M.; Cazapal-Monteiro, C.; Hernández, J.Á.; Palomero, A.M.; Arroyo, F.L.; Sanchís, J.; Pedreira, J.; Sánchez-Andrade, R.; Paz-Silva, A.; Arias, M.S. Integrating the control of helminths in dairy cattle: Deworming, rotational grazing and nutritional pellets with parasiticide fungi. Vet. Parasitol. 2020, 278, 109038. [Google Scholar] [CrossRef]
- Choubisa, S.L. Can ruminants become infected with trematode parasites through irrigation? J. Vet. Health Sci. 2024, 5, 1–4. [Google Scholar]
- Megersa, B.; Hussein, B.; Shemsu, J.; Kassahun, R.; Merera, O.; Moje, N.; Edao, B.M.; Waktole, H.; Ashenafi, H.; Ayana, D. Trematode infection in ruminants and diversity of snail hosts across three agro-ecological zones in Ethiopia. BMC Vet. Res. 2024, 20, 197. [Google Scholar] [CrossRef]
- Poulle, M.L.; Bastien, M.; Richard, Y.; Josse-Dupuis, É.; Aubert, D.; Villena, I.; Knapp, J. Detection of Echinococcus multilocularis and other foodborne parasites in fox, cat and dog faeces collected in kitchen gardens in a highly endemic area for alveolar echinococcosis. Parasite 2017, 24, 29. [Google Scholar] [CrossRef]
- Haghighat, K.; Haniloo, A.; Shemshadi, B.; Torabi, N. Gastrointestinal parasites of dogs and foxes in the Zanjan province of Iran: With an emphasis on Echinococcus species. Vet. Parasitol. 2024, 50, 101013. [Google Scholar] [CrossRef]
- Schneider, A.; Moré, G.; Pewsner, M.; Frey, C.F.; Basso, W. Cestodes in Eurasian wolves (Canis lupus lupus) and domestic dogs (Canis lupus familiaris) in Switzerland. Int. J. Parasitol. Parasites Wildl. 2024, 26, 101027. [Google Scholar] [CrossRef] [PubMed]
- Palomino-Guerrera, W.; Huaman, M.R.; Flores-Prado, V.; Padilla, D.G.; Zárate-Rendón, D.A. Gastrointestinal parasites in free grazing goats from Ayacucho, Peru: Prevalence and risk factors associated with infection in herds. Trop. Anim. Health Prod. 2024, 56, 365. [Google Scholar] [CrossRef]
- Rojas-Moncada, J.; Torrel, T.; Vargas-Rocha, L. Detection and prevalence of parasites in creole cattle from a rural area in an Andean district of Peru. Trop. Anim. Health Prod. 2025, 57, 265. [Google Scholar] [CrossRef]
- Francisco, I.; Arias, M.; Cortiñas, F.J.; Francisco, R.; Mochales, E.; Sánchez, J.A.; Uriarte, J.; Suárez, J.L.; Morrondo, P.; Sánchez-Andrade, R.; et al. Silvopastoralism and autochthonous equine livestock: Analysis of the infection by endoparasites. Vet. Parasitol. 2009, 164, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Carminatti, A.; Chitolina, M.B.; Ribeiro, A.B.; Forest, M.; Collet, S.G.; Prestes, A.M.; Camillo, G. Occurrence and risk factors associated with gastrointestinal parasitism in horses reared in different systems. Vet. Parasitol. 2023, 42, 100890. [Google Scholar] [CrossRef] [PubMed]
- Megyesi, Š.L.; Königová, A.; Babják, M.; Molnár, L.; Rajský, M.; Szestáková, E.; Major, P.; Soroka, J.; Dolinská, M.U.; Komáromyová, M.; et al. Wild ruminants as a potential risk factor for transmission of drug resistance in the abomasal nematode Haemonchus contortus. Eur. J. Wildl. Res. 2020, 66, 9. [Google Scholar] [CrossRef]
- Paguem, A.; Abanda, B.; Ngwasiri, N.N.; Eisenbarth, A.; Renz, A.; Streit, A.; Achukwi, M.D. Host specificity and phylogeny of Trichostrongylidae of domestic ruminants in the Guinea savannah of the Adamawa plateau in Cameroon. Vet. Parasitol. 2020, 21, 100412. [Google Scholar] [CrossRef]
- Brown, T.L.; Airs, P.M.; Porter, S.; Caplat, P.; Morgan, E.R. Understanding the role of wild ruminants in anthelmintic resistance in livestock. Biol. Lett. 2022, 18, 20220057. [Google Scholar] [CrossRef]
- Poissant, J.; Gavriliuc, S.; Bellaw, J.; Redman, E.M.; Avramenko, R.W.; Robinson, D.; Workentine, M.L.; Shury, T.K.; Jenkins, E.J.; McLoughlin, P.D.; et al. A repeatable and quantitative DNA metabarcoding assay to characterize mixed strongyle infections in horses. Int. J. Parasitol. 2021, 51, 183–192. [Google Scholar] [CrossRef]
- Kuzmina, T.A.; Königová, A.; Antipov, A.; Kuzmin, Y.; Kharchenko, V.; Syrota, Y. Changes in equine strongylid communities after two decades of annual anthelmintic treatments at the farm level. Parasitol. Res. 2024, 123, 394. [Google Scholar] [CrossRef]
- Myšková, E.; Brož, M.; Fuglei, E.; Kvičerová, J.; Mácová, A.; Sak, B.; Kváč, M.; Ditrich, O. Gastrointestinal parasites of arctic foxes (Vulpes lagopus) and sibling voles (Microtus levis) in Spitsbergen, Svalbard. Parasitol. Res. 2019, 118, 3409–3418. [Google Scholar] [CrossRef] [PubMed]
- Viña, C.; Salmo, R.; Pena, M.V.; Palomero, A.M.; Hernández, J.Á.; Cazapal-Monteiro, C.; Arias, M.S.; Sánchez-Andrade, R.; Paz-Silva, A. A New Comestible Formulation of Parasiticide Fungi to Reduce the Risk of Soil-Transmitted Helminth Infections in a Canine Shelter. Pathogens 2022, 11, 1391. [Google Scholar] [CrossRef]
- Tylkowska, A.; Pilarczyk, B.; Tomza-Marciniak, A.; Pilarczyk, R. The prevalence of intestinal nematodes among red foxes (Vulpes vulpes) in north-western Poland. Acta Vet. Scand. 2021, 63, 19. [Google Scholar] [CrossRef]
- Katsarou, E.I.; Arsenopoulos, K.V.; Michael, C.K.; Lianou, D.T.; Petinaki, E.; Papadopoulos, E.; Fthenakis, G.C. Gastrointestinal Helminth Infections in Dogs in Sheep and Goat Farms in Greece: Prevalence, Involvement of Wild Canid Predators and Use of Anthelmintics. Animals 2024, 14, 3233. [Google Scholar] [CrossRef]
- Kristen, P.L. Parasites and the conservation of small populations: The case of Baylisascaris procyonis. Int. J. Parasitol. Parasites Wildl. 2013, 2, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Kittl, S.; Frey, C.F.; Brodard, I.; Scalisi, N.; Vargas Amado, M.E.; Thomann, A.; Schierack, P.; Jores, J. Zoonotic bacterial and parasitic intestinal pathogens in foxes, raccoons and other predators from eastern Germany. Environ. Microbiol. Rep. 2024, 16, 13261. [Google Scholar] [CrossRef]
- Jones, H.; Jimenez, C.P.D.; Burton, W.; Sobotyk, C.; Verocai, G.G.; Nagamori, Y.; Warren, Z.; Marsh, A.; Pulaski, C.; Walden, H.S.D.; et al. Distribution and prevalence of Baylisascaris in domestic dogs in the United States and Canada, 2017–2023. One Health 2025, 20, 101095. [Google Scholar] [CrossRef]
- Castro, G.A. Helminths: Structure, Classification, Growth, and Development. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch: Galveston, TX, USA, 1996. Available online: https://www.ncbi.nlm.nih.gov/books/NBK8282/ (accessed on 26 May 2025).
- Hoopes, J.; Hill, J.E.; Polley, L.; Fernando, C.; Wagner, B.; Schurer, J.; Jenkins, E. Enteric parasites of free-roaming, owned, and rural cats in prairie regions of Canada. Can. Vet. J. 2015, 56, 495–501. [Google Scholar]
- Boguś, M.I.; Czygier, M.; Kedra, E.; Samborski, J. In vitro assessment of the influence of nutrition and temperature on growing rates of five Duddingtonia flagrans isolates, their insecticidal properties and ability to impair Heligmosomoides polygyrus motility. Exp. Parasitol. 2005, 109, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Lozano, J.; Almeida, C.; Oliveira, M.; Paz-Silva, A.; Madeira de Carvalho, L. Biocontrol of Avian Gastrointestinal Parasites Using Predatory Fungi: Current Status, Challenges, and Opportunities. Parasitologia 2022, 2, 37–44. [Google Scholar] [CrossRef]
- Junco, M.; Iglesias, L.E.; Sagüés, F.; Zegbi, S.; Guerrero, I.; Saumell, C.A. A review of the use of Duddingtonia flagrans as a biological controller of strongylid nematodes in horses. Parasitol. Res. 2023, 122, 357–368. [Google Scholar] [CrossRef]
- Araújo, J.V.; Braga, F.R.; Mendoza-de-Gives, P.; Paz-Silva, A.; Vilela, V.L.R. Recent Advances in the Control of Helminths of Domestic Animals by Helminthophagous Fungi. Parasitologia 2021, 1, 168–176. [Google Scholar] [CrossRef]
- Manzanilla-López, R.H.; Esteves, I.; Finetti-Sialer, M.M.; Hirsch, P.R.; Ward, E.; Devonshire, J.; Hidalgo-Díaz, L. Pochonia chlamydosporia: Advances and Challenges to Improve Its Performance as a Biological Control Agent of Sedentary Endo-parasitic Nematodes. J. Nematol. 2013, 45, 1–7. [Google Scholar] [PubMed]
- Ferreira, S.R.; de Araújo, J.V.; Braga, F.R.; Araujo, J.M.; Frassy, L.N.; Ferreira, A.S. Biological control of Ascaris suum eggs by Pochonia chlamydosporia fungus. Vet. Res. Commun. 2011, 35, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Canhão-Dias, M.; Paz-Silva, A.; Madeira de Carvalho, L.M. The efficacy of predatory fungi on the control of gastrointestinal parasites in domestic and wild animals-A systematic review. Vet. Parasitol. 2020, 283, 109173. [Google Scholar] [CrossRef]
- Pérez-Anzúrez, G.; Olmedo-Juárez, A.; von-Son de Fernex, E.; Alonso-Díaz, M.Á.; Delgado-Núñez, E.J.; López-Arellano, M.E.; González-Cortázar, M.; Zamilpa, A.; Ocampo-Gutierrez, A.Y.; Paz-Silva, A.; et al. Arthrobotrys musiformis (Orbiliales) Kills Haemonchus contortus Infective Larvae (Trichostronylidae) through Its Predatory Activity and Its Fungal Culture Filtrates. Pathogens 2022, 11, 1068. [Google Scholar] [CrossRef] [PubMed]
- Fernández, S.; Zegbi, S.; Sagües, F.; Iglesias, L.; Guerrero, I.; Saumell, C. Trapping Behaviour of Duddingtonia flagrans against Gastrointestinal Nematodes of Cattle under Year-Round Grazing Conditions. Pathogens 2023, 12, 401. [Google Scholar] [CrossRef]
- Singh, K.P.; Vaish, S.S.; Kumar, N.; Singh, K.D.; Kumari, M. Catenaria anguillulae as an efficient biological control agent of Anguina tritici in vitro. Biol. Control. 2012, 61, 185–193. [Google Scholar] [CrossRef]
- Terry, J. The Use of Duddingtonia flagrans for Gastrointestinal Parasitic Nematode Control in Feces of Exotic Artiodactylids at Disney’s Animal Kingdom®. Master’s Thesis, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, USA, 2013. [Google Scholar]
- Young, K. The Effect of the Nematode Trapping Fungus Duddingtonia flagrans against Gastrointestinal Nematodes of Exotic Ruminant Hoofstock at Disney’s® Animal Kingdom Lodge. Master’s Thesis, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, USA, 2018. [Google Scholar]
- Arias, M.; Cazapal-Monteiro, C.; Valderrábano, E.; Miguélez, S.; Rois, J.L.; López-Arellano, M.E.; Madeira De Carvalho, L.; Mendoza De Gives, P.; Sánchez-Andrade, R.; Paz-Silva, A. A Preliminary Study of the Biological Control of Strongyles Affecting Equids in a Zoological Park. J. Equine Vet. Sci. 2013, 33, 1115–1120. [Google Scholar] [CrossRef]
- Palomero, A.M.; Hernández, J.A.; Cazapal-Monteiro, C.F.; Balán, F.A.; Silva, M.I.; Paz-Silva, A.; Sánchez-Andrade, R.; Vázquez, M.S.A. Implementation of Biological Control to the Integrated Control of Strongyle Infection among Wild Captive Equids in a Zoological Park. BioMed Res. Int. 2018, 2018, 4267683. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Xiang, M.; Liu, X. Fungos Capturadores de Nematoides. Microbiol. Spectr. 2017, 5, 963–974. [Google Scholar] [CrossRef]
- Arias, M.S.; Cazapal-Monteiro, C.F.; Suárez, J.; Miguélez, S.; Francisco, I.; Arroyo, F.L.; Suárez, J.L.; Paz-Silva, A.; Sánchez-Andrade, R.; de Gives, P.M. Mixed production of filamentous fungal spores for preventing soil-transmitted helminth zoonoses: A preliminary analysis. BioMed Res. Int. 2013, 2013, 567876. [Google Scholar] [CrossRef]
- Fonseca, J.d.S.; Altoé, L.S.C.; de Carvalho, L.M.; de Freitas Soares, F.E.; Braga, F.R.; de Araújo, J.V. Nematophagous fungus Pochonia chlamydosporia to control parasitic diseases in animals. Appl. Microbiol. Biotechnol. 2023, 107, 3859–3868. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.V.; Stephano, M.A.; Sampaio, W.M. Effects of temperature, mineral salt and passage through the gastrointestinal tract of calves on sodium alginate formulation of Arthrobotrys robusta—A nematode-trapping fungus. Rev. Bras. Parasitol. Vet. 2000, 9, 55–60. [Google Scholar]
- Araujo, J.V.; Sampaio, W.M.; Vasconcellos, R.S.; Campos, A.K. Effects of different temperatures and mineral salt on pellets of Monacrosporium thaumasium—A nematode-trapping fungus. Vet. Arhiv 2000, 70, 181–190. [Google Scholar]
- Morgan, M.; Behnke, J.M.; Lucas, J.A.; Peberdy, J.F. In vitro assessment of the influence of nutrition, temperature and larval density on trapping of the infective larvae of Heligmosomoides polygyrus by Arthrobotrys oligospora, Duddingtonia flagrans and Monacrosporium megalosporum. Parasitology 1997, 115, 303–310. [Google Scholar] [CrossRef]
- Braga, F.R.; Araújo, J.V.; Silva, A.R.; Araujo, J.M.; Carvalho, R.O.; Tavela, A.O.; Campos, A.K.; Carvalho, G.R. Biological control of horse cyathostomin (Nematoda: Cyathostominae) using the nematophagous fungus Duddingtonia flagrans in tropical southeastern Brazil. Vet. Parasitol. 2009, 163, 335–340. [Google Scholar] [CrossRef] [PubMed]
- do Carmo, T.A.; Mena, M.O.; Cipriano, I.A.; Favare, G.M.; Guelpa, G.J.; Pinto, S.C.; Amarante, A.F.T.; Araújo, J.V.; de Soutello, R.V.G. Biological control of gastrointestinal nematodes in horses fed with grass in association with nematophagus fungi Duddingtonia flagrans and Pochonia chlamydosporia. Biol. Control 2023, 182, 1049–9644. [CrossRef]
- Ferraz, C.M.; Comério, L.C.; Segantine, V.B.S.; de Assis, J.P.B.; Costa Silva, L.P.; Bezerra, L.D.N.R.; de Araújo, J.V.; Vilela, V.L.R.; Soares, F.E.d.F.; Rossi, G.A.M.; et al. Silver Nanoparticles from Duddingtonia flagrans: Evaluation of Potential Ovicidal Activity on Toxocara canis Eggs. Pathogens 2024, 13, 1043. [Google Scholar] [CrossRef] [PubMed]
Helminth | Wild Animals | Route of Infection | References |
---|---|---|---|
Toxocara canis * and T. cati * | Carnivores | Oral route, transplacental and transmammary transmission | [20,21] |
Ascaris suum * | Pigs | Oral route | [22] |
Toxascaris leonina | Carnivores | Oral route | [21] |
Baylisascaris procyonis * | Carnivores (Raccoon) Primates | Oral route | [23,24] |
Trichuris vulpis * | Canids | Oral route | [25] |
Trichuris ovis, Trichuris discolor | Ruminants | Oral route | [6] |
Trichuris trichiura * | Primates | Oral route | [26] |
Trichuris suis * | Pigs and wild boar | Oral route | [27,28] |
Ancylostoma spp. * | Carnivores | Oral route, percutaneous and transmammary transmission | [29] |
Uncinaria stenocephala * | Carnivores | Oral route, percutaneous and transmammary transmission | [29] |
Dipylidium caninum * | Carnivores | [30,31,32] | |
Oral route—Ingestion of an infected flea | |||
Taenia spp. ** | Carnivores | Oral route: Eggs—Intermediate hosts Contaminated meat—Definitive hosts | [33,34] |
Echinococcus granulosus *, E. multilocularis * | Carnivores | Oral route: Eggs—Intermediate hosts Viscera of intermediate hosts—Definitive hosts | [33] |
Dirofilaria immitis * | Carnivores | Vector-borne transmission | [35,36] |
D. repens * | Carnivores | Vector-borne transmission | [36,37] |
Helminths | Hosts | References | |||
---|---|---|---|---|---|
Group | Species | Domestic | Susceptible Wild Animals | ||
Trematodes | |||||
Fasciola hepatica Gastric fluke | Herbivores (Ruminants) | Herbivores (Ruminants) | [65,66,67,68] | ||
Cestodes | |||||
Taenia spp. Mesocestoides spp. Echinococcus spp. | Carnivores (Dogs) | Carnivores (Wolves, foxes) | [69,70,71] | ||
Moniezia spp. | Ruminants | Ruminants | [72,73] | ||
Anoplocephala spp. | Equids | Equids | [74,75] | ||
Nematodes | |||||
Trichostrongylids | Trichostrongylus spp. Cooperia spp. Haemonchus spp. Teladorsagia spp. Marshalagia spp. | Ruminants (Cattle, sheep, goats) | Ruminants (Moufflon, roe deer) | [76,77,78] | |
Strongylids | |||||
Cyathostomins Strongylus spp. | Equids | Equids | [74,79,80] | ||
Hookworms | |||||
Ancylostoma spp. Uncinaria spp. | Carnivores (Dogs) | Carnivores (Wolves, foxes) | [70,81,82,83,84] | ||
Roundworms | |||||
Toxocara canis Toxascaris leonina | Carnivores (Dogs, cats) | Carnivores (Wolves, foxes) | [20,82,83,84] | ||
Ascaris suum | Swine | Swine | [4] | ||
Toxocara vitulorum (formerly Neoascaris vitulorum) | Ruminants | Ruminants | [73] | ||
Baylisascaris procyonis | Carnivores | Carnivores | [85,86,87] | ||
Whipworms | |||||
Capillaria spp. Trichuris spp. | All | All | [70,82,83] |
Helminth | Host | Parasitophagous Fungus | |
---|---|---|---|
Strongyles | Equines Lemur | Duddingtonia flagrans (larvicide) | 66–94% 50–83% |
Trichostrongylids | Wapiti, bison | Duddingtonia flagrans + Mucor circinelloides (ovicide) (blend) | 69–71% |
Trichurids | Bison | Duddingtonia flagrans + Mucor circinelloides (ovicide) (blend) | 50% |
Trichurids | Dromedaries | Mucor circinelloides Trichoderma atrobrunneum (ovicides) | 50% 50% |
Toxascaris leonina | Lynxes | Mucor circinelloides Verticillium sp. (ovicides) | 58% 67% |
Baylisascaris procyonis | Raccoon | Duddingtonia flagrans (larvicide) Mucor circinelloides (ovicide) Pochonia chlamydosporia (ovicide) Purpureocillium lilacinum (ovicide) | 0% 53–69% 52–67% 45–62% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, J.d.S.; Barbosa, B.B.; Silva, A.P.; Vázquez, M.S.A.; Cazapal Monteiro, C.F.; Santos, H.A.; de Araújo, J.V. Using Biocontrol Fungi to Control Helminthosis in Wild Animals: An Innovative Proposal for the Health and Conservation of Species. Pathogens 2025, 14, 775. https://doi.org/10.3390/pathogens14080775
Fonseca JdS, Barbosa BB, Silva AP, Vázquez MSA, Cazapal Monteiro CF, Santos HA, de Araújo JV. Using Biocontrol Fungi to Control Helminthosis in Wild Animals: An Innovative Proposal for the Health and Conservation of Species. Pathogens. 2025; 14(8):775. https://doi.org/10.3390/pathogens14080775
Chicago/Turabian StyleFonseca, Júlia dos Santos, Beatriz Bacelar Barbosa, Adolfo Paz Silva, María Sol Arias Vázquez, Cristiana Filipa Cazapal Monteiro, Huarrisson Azevedo Santos, and Jackson Victor de Araújo. 2025. "Using Biocontrol Fungi to Control Helminthosis in Wild Animals: An Innovative Proposal for the Health and Conservation of Species" Pathogens 14, no. 8: 775. https://doi.org/10.3390/pathogens14080775
APA StyleFonseca, J. d. S., Barbosa, B. B., Silva, A. P., Vázquez, M. S. A., Cazapal Monteiro, C. F., Santos, H. A., & de Araújo, J. V. (2025). Using Biocontrol Fungi to Control Helminthosis in Wild Animals: An Innovative Proposal for the Health and Conservation of Species. Pathogens, 14(8), 775. https://doi.org/10.3390/pathogens14080775