Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = square-ring antennas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2184 KiB  
Article
A Wideband Circularly Polarized Filtering Dipole Antenna
by Xianjing Lin, Ruishan Huang, Miaowang Zeng and An Yan
Symmetry 2025, 17(7), 1047; https://doi.org/10.3390/sym17071047 - 3 Jul 2025
Viewed by 272
Abstract
This paper presents a circularly polarized (CP) antenna based on crossed dipoles with bandpass-type filtering radiation response. The antenna employs a pair of crossed dipole arms as radiators, which are printed on the upper and lower planes of the substrate. To achieve bandpass [...] Read more.
This paper presents a circularly polarized (CP) antenna based on crossed dipoles with bandpass-type filtering radiation response. The antenna employs a pair of crossed dipole arms as radiators, which are printed on the upper and lower planes of the substrate. To achieve bandpass filtering effects, radiation nulls are introduced on both sides of the passband. By vertically extending the ends of the four dipole arms, a ring-shaped current is formed between adjacent dipoles, generating the upper-band radiation null. Additionally, four parasitic patches are introduced parallel to the ends of the crossed dipole arms, creating another upper-band radiation null, further enhancing the frequency selectivity at the band edges and broadening the axial ratio (AR) bandwidth. Moreover, a square-ring slot is etched on the ground plane to introduce a lower-band radiation null, ultimately achieving a good bandpass filtering response. The proposed wideband CP filtering dipole antenna is implemented and tested. The antenna has a compact size of 0.49λ0× 0.49λ0× 0.16λ0 (where λ0 denotes the wavelength corresponding to the lowest operating frequency). The measured results show that the proposed antenna has an impedance bandwidth of 75% (1.65–3.66 GHz) and an overlapping AR bandwidth of 46.9% (2.25–3.63 GHz). Without additional filtering circuits, the antenna exhibits a stable gain of approximately 7 dB and three radiation nulls, with suppression levels of 20 dB in both the lower and upper stopbands, achieving good bandpass filtering performance. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

20 pages, 5762 KiB  
Article
Multi-Band Unmanned Aerial Vehicle Antenna for Integrated 5G and GNSS Connectivity
by Suguna Gunasekaran, Manikandan Chinnusami, Rajesh Anbazhagan, Karunyaa Sureshkumar and Shreela Sridhar
Telecom 2025, 6(2), 38; https://doi.org/10.3390/telecom6020038 - 3 Jun 2025
Viewed by 560
Abstract
This paper proposes a dual-band antenna to support 5G communication with linear polarization and the global navigation satellite system (GNSS) band with circular polarization. A single inverted T-shaped patch antenna with a defective ground was designed on the Schott Foturan II (Ceramized 560 [...] Read more.
This paper proposes a dual-band antenna to support 5G communication with linear polarization and the global navigation satellite system (GNSS) band with circular polarization. A single inverted T-shaped patch antenna with a defective ground was designed on the Schott Foturan II (Ceramized 560 degrees) substrate. Then, an L-shaped stub and slot were inserted into the ground to achieve the 5G and GNSS bands. The antenna was then designed as a 1 × 2 multiple-input and multiple-output (MIMO) antenna to increase the directivity. A square ring-shaped frequency selective surface (FSS) was intended on the FR-4 substrate to improve the gain of the MIMO antenna. The FSS MIMO antenna increased the 3D gain from 2.8 to 5.4 dBi for the GNSS band and from 4.9 to 6.43 dBi for the 5G n79 band. The proposed antenna can receive and transmit the frequency bands covering sub-6 GHz 5G band n79 (4400–5000 MHz) and GNSS band E6 (1260–1300 MHz), respectively. A multi-port unmanned aerial vehicle antenna was fabricated, and its performance was characterized in terms of bandwidth, axial ratio, and gain. Full article
Show Figures

Figure 1

11 pages, 11178 KiB  
Communication
A Wideband Circularly Polarized Dipole Antenna with Compact Size and Low-Pass Filtering Response
by Xianjing Lin, Zhangrun Weng, Yibin Hong and Yao Zhang
Sensors 2024, 24(12), 3914; https://doi.org/10.3390/s24123914 - 17 Jun 2024
Cited by 3 | Viewed by 1713
Abstract
This paper presents a compact wideband circularly polarized cross-dipole antenna with a low-pass filter response. It consists of two pairs of folded cross-dipole arms printed separately on both sides of the top substrate, and the two dipole arms on the same surface are [...] Read more.
This paper presents a compact wideband circularly polarized cross-dipole antenna with a low-pass filter response. It consists of two pairs of folded cross-dipole arms printed separately on both sides of the top substrate, and the two dipole arms on the same surface are connected by an annular phase-shifting delay line to generate circular polarization. A bent metal square ring and four small metal square rings around the cross-dipoles are employed to introduce new resonant frequencies, effectively extending the impedance and axial-ratio bandwidth. Four square patches printed on the middle substrate are connected to the ground plane by the vertical metal plates in order to reduce the antenna height. Thus, a compact wideband circularly polarized antenna is realized. In addition, a transmission zero can be introduced at the upper frequency stopband by the bent metal square rings, without using extra filter circuits. For verification, the proposed model is implemented and tested. The overall size of the model is 90mm×90mm×33mm (0.37λ0×0.37λ0×0.14λ0; λ0 denotes the center operating frequency). The measured impedance bandwidth and 3 dB axial-ratio (AR) bandwidth are 53.3% and 41%, respectively. An upper-band radiation suppression level greater than 15 dB is realized, indicating a good low-pass filter response. Full article
(This article belongs to the Special Issue Antenna Technologies for Wireless Sensing and Communications)
Show Figures

Figure 1

13 pages, 2372 KiB  
Article
A Four-Port Dual-Band Dual-Polarized Antenna for Ku-Band Satellite Communications
by Son Trinh-Van, Woo Yong Yang, Hyung Won Cho and Keum Cheol Hwang
Appl. Sci. 2024, 14(7), 2730; https://doi.org/10.3390/app14072730 - 25 Mar 2024
Cited by 5 | Viewed by 2611
Abstract
This paper presents the development of a four-port dual-band dual-polarized antenna for transmitting/receiving (Tx/Rx) applications in Ku-band satellite communications. The antenna consists of two antenna elements sharing a common radiating aperture, a low-band element formed by an L-probe proximity-fed square-ring radiator for [...] Read more.
This paper presents the development of a four-port dual-band dual-polarized antenna for transmitting/receiving (Tx/Rx) applications in Ku-band satellite communications. The antenna consists of two antenna elements sharing a common radiating aperture, a low-band element formed by an L-probe proximity-fed square-ring radiator for operation at the Rx band of 10.7–12.75 GHz, and a high-band element realized by a stacked-patch radiator for operation at the Tx band of 13.75–14.5 GHz. Within a compact multilayer structure, the antenna achieves wide dual-band operation, with each band having the ability to simultaneously operate with dual polarization. An antenna prototype is fabricated and tested to verify its performance. The experimental results show that the proposed antenna achieves an impedance bandwidth of 9.28–12.96 GHz (13.21–15.32 GHz), an isolation value between two orthogonal polarizations of 12 dB (12.4 dB), and a peak gain of 6.63 dBi (5.42 diBi) at the low band (high band). Tx/Rx isolation of more than 14 dB is achieved in both the Rx band and Tx band. Full article
Show Figures

Figure 1

8 pages, 14144 KiB  
Communication
A Quad-Band Highly Selective Frequency Selective Surface with Ultra-Wideband Rejection
by Minrui Wang, Zheng Xiang, Yi Li, Baoyi Xu and Long Yang
Micromachines 2024, 15(1), 126; https://doi.org/10.3390/mi15010126 - 11 Jan 2024
Cited by 3 | Viewed by 1865
Abstract
In this paper, a highly selective quad-band frequency selective surface (FSS) with ultra-wideband rejection is presented. The proposed FSS structure was developed by cascading five metallic layers by three thin dielectric substrates. The five metallic layers are composed of two bent slot layers, [...] Read more.
In this paper, a highly selective quad-band frequency selective surface (FSS) with ultra-wideband rejection is presented. The proposed FSS structure was developed by cascading five metallic layers by three thin dielectric substrates. The five metallic layers are composed of two bent slot layers, two metallic square rings, and a metal patch. The dimensions of the unit cell are 0.13λ0× 0.13λ0× 0.18λ0 (λ0 is the free-space wavelength at the first operating frequency). The proposed structure achieves four transmission bands and has two wide stop-bands located at 1 to 5.5 GHz and 14 to 40 GHz, with a suppressed transmission coefficient below −20 dB. In order to verify the simulation results, an FSS prototype was fabricated and measured. It can be observed that the measured results are in favorable agreement with the simulation results. Its multiple narrow passbands and highly selective and ultra-wideband rejection properties ensure that our design can play a significant role in narrowband antennas, spatial filters, and many other fields. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

12 pages, 13164 KiB  
Article
Single-Layer Wide-Angle Scanning Linear Phased Arrays Based on Multimode Microstrip Patch Elements
by Dongsheng Li, Jie Yang, Jianing Zhao, Yongzhen Dong, Hao Li, Tianming Li, Haiyang Wang, Biao Hu, Yihong Zhou, Fang Li and Ruoyang Yang
Micromachines 2024, 15(1), 3; https://doi.org/10.3390/mi15010003 - 19 Dec 2023
Viewed by 1610
Abstract
This paper introduces a novel single-layer microstrip patch element designed to achieve a wide beamwidth, in order to address the growing demand for wide-angle scanning capabilities in modern phased array systems. The proposed element, comprising a slot-etched circular patch and an array of [...] Read more.
This paper introduces a novel single-layer microstrip patch element designed to achieve a wide beamwidth, in order to address the growing demand for wide-angle scanning capabilities in modern phased array systems. The proposed element, comprising a slot-etched circular patch and an array of metallized holes arranged in square rings, offers a unique approach to beam shaping. By carefully adjusting parameters such as the slot structure and feeding position, our element is engineered to simultaneously excite both the TM01 and TM21 modes, a key feature that contributes to its wide beamwidth characteristics. Through the constructive interference of these modes, our element demonstrates a remarkable 3 dB beamwidth of approximately 150° in both principal planes, showcasing its potential for wide-angle scanning applications. To validate the practical performance of this proposed element, two linear phased arrays are manufactured and experimentally evaluated. The simulation results confirm the wide-angle scanning capability of the antennas in both the E-plane and H-plane. Furthermore, the experimental assessment demonstrates that these linear phased arrays can effectively generate scanning beams within a frequency range of 25 GHz to 28 GHz, covering a wide angular range from −60° to 60°, while maintaining a gain loss within 3 dB. This innovative design approach not only offers a promising solution for achieving a wide beamwidth in microstrip patch elements, but also holds significant potential for the development of cost-effective phased arrays with wide-angle scanning capabilities, making it a valuable contribution to the advancement of phased array technology. Full article
(This article belongs to the Special Issue Advanced Antenna System: Structural Analysis, Design and Application)
Show Figures

Figure 1

14 pages, 12562 KiB  
Article
High-Linearity Wireless Passive Temperature Sensor Based on Metamaterial Structure with Rotation-Insensitive Distance-Based Warning Ability
by Chenying Wang, Luntao Chen, Bian Tian and Zhuangde Jiang
Nanomaterials 2023, 13(17), 2482; https://doi.org/10.3390/nano13172482 - 3 Sep 2023
Cited by 3 | Viewed by 1832
Abstract
A wireless passive temperature sensor based on a metamaterial structure is proposed that is capable of measuring the temperature of moving parts. The sensor structure consists of an alumina ceramic substrate with a square metal double split-ring resonator fixed centrally on the ceramic [...] Read more.
A wireless passive temperature sensor based on a metamaterial structure is proposed that is capable of measuring the temperature of moving parts. The sensor structure consists of an alumina ceramic substrate with a square metal double split-ring resonator fixed centrally on the ceramic substrate. Since the dielectric constant of the alumina ceramic substrate is temperature sensitive, the resonant frequency of the sensor is altered due to changes in temperature. A wireless antenna is used to detect the change in the resonant frequency of the sensor using a wireless antenna, thereby realizing temperature sensing operation of the sensor. The temperature sensitivity of the sensor is determined to be 205.22 kHz/°C with a strong linear response when tested over the temperature range of 25–135 °C, which is evident from the R2 being 0.995. Additionally, the frequency variation in this sensor is insensitive to the angle of rotation and can be used for temperature measurement of rotating parts. The sensor also has a distance warning functionality, which offers additional safety for the user by providing early warning signals when the heating equipment overheats after operating for extended durations. Full article
Show Figures

Figure 1

19 pages, 8546 KiB  
Article
A Miniaturized Tri-Band Implantable Antenna for ISM/WMTS/Lower UWB/Wi-Fi Frequencies
by Anupma Gupta, Vipan Kumar, Shonak Bansal, Mohammed H. Alsharif, Abu Jahid and Ho-Shin Cho
Sensors 2023, 23(15), 6989; https://doi.org/10.3390/s23156989 - 7 Aug 2023
Cited by 27 | Viewed by 2579
Abstract
This study aims to design a compact antenna structure suitable for implantable devices, with a broad frequency range covering various bands such as the Industrial Scientific and Medical band (868–868.6 MHz, 902–928 MHz, 5.725–5.875 GHz), the Wireless Medical Telemetry Service (WMTS) band, a [...] Read more.
This study aims to design a compact antenna structure suitable for implantable devices, with a broad frequency range covering various bands such as the Industrial Scientific and Medical band (868–868.6 MHz, 902–928 MHz, 5.725–5.875 GHz), the Wireless Medical Telemetry Service (WMTS) band, a subset of the unlicensed 3.5–4.5 GHz ultra-wideband (UWB) that is free of interference, and various Wi-Fi spectra (3.6 GHz, 4.9 GHz, 5 GHz, 5.9 GHz, 6 GHz). The antenna supports both low and high frequencies for efficient data transfer and is compatible with various communication technologies. The antenna features an asynchronous-meandered radiator, a parasitic patch, and an open-ended square ring-shaped ground plane. The antenna is deployed deep inside the muscle layer of a rectangular phantom below the skin and fat layer at a depth of 7 mm for numerical simulation. Furthermore, the antenna is deployed in a cylindrical phantom and bent to check the suitability for different organs. A prototype of the antenna is created, and its reflection coefficient and radiation patterns are measured in fresh pork tissue. The proposed antenna is considered a suitable candidate for implantable technology compared to other designs reported in the literature. It can be observed that the proposed antenna in this study has the smallest volume (75 mm3) and widest bandwidth (181.8% for 0.86 GHz, 9.58% for 1.43 GHz, and 285.7% for the UWB subset and Wi-Fi). It also has the highest gain (−26 dBi for ISM, −14 dBi for WMTS, and −14.2 dBi for UWB subset and Wi-Fi) compared to other antennas in the literature. In addition, the SAR values for the proposed antenna are well below the safety limits prescribed by IEEE Std C95.1-1999, with SAR values of 0.409 W/Kg for 0.8 GHz, 0.534 W/Kg for 1.43 GHz, 0.529 W/Kg for 3.5 GHz, and 0.665 W/Kg for 5.5 GHz when the applied input power is 10 mW. Overall, the proposed antenna in this study demonstrates superior performance compared to existing tri-band implantable antennas in terms of size, bandwidth, gain, and SAR values. Full article
(This article belongs to the Special Issue Smart Antennas for Future Communications)
Show Figures

Figure 1

19 pages, 5021 KiB  
Article
Design and Fabrication of a Low-Cost, Multiband and High Gain Square Tooth-Enabled Metamaterial Superstrate Microstrip Patch Antenna
by Khaled Aliqab, Sunil Lavadiya, Meshari Alsharari, Ammar Armghan, Malek G. Daher and Shobhit K. Patel
Micromachines 2023, 14(1), 163; https://doi.org/10.3390/mi14010163 - 8 Jan 2023
Cited by 16 | Viewed by 4231
Abstract
The manuscript represents a novel square tooth-enabled superstrate metamaterial loaded microstrip patch antenna for the multiple frequency band operation. The proposed tooth-based metamaterial antenna provides better gain and directivity. Four antenna structures are numerically investigated for the different geometry of the patch and [...] Read more.
The manuscript represents a novel square tooth-enabled superstrate metamaterial loaded microstrip patch antenna for the multiple frequency band operation. The proposed tooth-based metamaterial antenna provides better gain and directivity. Four antenna structures are numerically investigated for the different geometry of the patch and tooth. These proposed structures are simulated, fabricated, measured, and compared for the frequency range of 3 GHz to 9 GHz. The electrical equivalent model of the split-ring resonator is also analyzed in the manuscript. The comparative analysis of all of the proposed structures has been carried out, in terms of several bands, reflectance response, VSWR, gain and bandwidth. The results are compared with previously published works. The effects are simulated using a high-frequency structure simulator tool with the finite element method. The measured and fabricated results are compared for verification purposes. The proposed structure provides seven bands of operation and 8.57 dB of gain. It is observed that the proposed design offers the multiple frequency band operation with a good gain. The proposed tooth-based metamaterial antenna suits applications, such as the surveillance radar, satellite communication, weather monitoring and many other wireless devices. Full article
(This article belongs to the Special Issue Advanced Antennas for Wireless Communication Systems)
Show Figures

Figure 1

13 pages, 4200 KiB  
Article
A Tunable and Wearable Dual-Band Metamaterial Absorber Based on Polyethylene Terephthalate (PET) Substrate for Sensing Applications
by Qana A. Alsulami, S. Wageh, Ahmed A. Al-Ghamdi, Rana Muhammad Hasan Bilal and Muhammad Ahsan Saeed
Polymers 2022, 14(21), 4503; https://doi.org/10.3390/polym14214503 - 25 Oct 2022
Cited by 38 | Viewed by 3329
Abstract
Advanced wireless communication technology claims miniaturized, reconfigurable, highly efficient, and flexible meta-devices for various applications, including conformal implementation, flexible antennas, wearable sensors, etc. Therefore, bearing these challenges in mind, a dual-band flexible metamaterial absorber (MMA) with frequency-reconfigurable characteristics is developed in this research. [...] Read more.
Advanced wireless communication technology claims miniaturized, reconfigurable, highly efficient, and flexible meta-devices for various applications, including conformal implementation, flexible antennas, wearable sensors, etc. Therefore, bearing these challenges in mind, a dual-band flexible metamaterial absorber (MMA) with frequency-reconfigurable characteristics is developed in this research. The geometry of the proposed MMA comprises a square patch surrounded by a square ring, which is mounted over a copper-backed flexible dielectric substrate. The top surface of the MMA is made of silver nanoparticle ink and a middle polyethylene terephthalate (PET) substrate backed by a copper groundsheet. The proposed MMA shows an absorption rate of above 99% at 24 and 35 GHz. In addition, the absorption features are also studied for different oblique incident angles, and it is found that the proposed MMA remains stable for θ = 10–50°. The frequency tunability characteristics are achieved by stimulating the capacitance of the varactor diode, which connects the inner patch with the outer ring. To justify the robustness and conformability of the presented MMA, the absorption features are also studied by bending the MMA over different radii of an arbitrary cylinder. Moreover, a multiple-reflection interference model is developed to justify the simulated and calculated absorption of the proposed MMA. It is found that the simulated and calculated results are in close agreement with each other. This kind of MMA could be useful for dual-band sensing and filtering operations. Full article
(This article belongs to the Special Issue Polymers for Photovoltaics and Wearable Devices)
Show Figures

Figure 1

15 pages, 6991 KiB  
Article
Quad-Port Circularly Polarized MIMO Antenna with Wide Axial Ratio
by Vamshi Kollipara and Samineni Peddakrishna
Sensors 2022, 22(20), 7972; https://doi.org/10.3390/s22207972 - 19 Oct 2022
Cited by 17 | Viewed by 2672
Abstract
This article studies a quad-port multi-input-multi-output (MIMO) circularly polarized antenna with good isolation properties. Using characteristic mode analysis (CMA), the first six distinct modes of the asymmetric square slot with an inverted L-strip are analyzed. In this study, modal parameter extraction is carried [...] Read more.
This article studies a quad-port multi-input-multi-output (MIMO) circularly polarized antenna with good isolation properties. Using characteristic mode analysis (CMA), the first six distinct modes of the asymmetric square slot with an inverted L-strip are analyzed. In this study, modal parameter extraction is carried out for circular polarization (CP) radiation. A simple annular ring microstrip feed is excited to obtain broadband CP based on CMA. The single-unit feeding structure is replicated orthogonally four times to achieve a CP MIMO antenna. This antenna provides port isolation of more than 21 dB without the use of an additional decoupling element. The quad-port CP-MIMO antenna is simulated with a total dimension of 50 × 50 mm2. The antenna attains impedance matching (S11 < −10 dB) from 5.37 GHz to beyond 11 GHz with an axial ratio bandwidth (ARBW) of 4.65 GHz (5.61 GHz to 10.26 GHz). The peak realized gain of the MIMO antenna is measured at 5.69 dBi at 8.4 GHz. Additionally, the diversity performance parameters of the MIMO structure are computed. The advantages of the proposed structure have been evaluated by comparing it to previously reported MIMO structures. A prototype of the MIMO structure measurements was found to match the simulation results. Full article
Show Figures

Figure 1

14 pages, 3380 KiB  
Article
A Miniaturized Triple-Band Antenna Based on Square Split Ring for IoT Applications
by Duaa H. Abdulzahra, Falih Alnahwi, Abdulkareem S. Abdullah, Yasir I. A. Al-Yasir and Raed A. Abd-Alhameed
Electronics 2022, 11(18), 2818; https://doi.org/10.3390/electronics11182818 - 7 Sep 2022
Cited by 17 | Viewed by 2516
Abstract
This article presents a miniaturized triple-band antenna for Internet of Things (IoT) applications. The miniaturization is achieved by using a split square ring resonator and half ring resonator. The antenna is fabricated on an FR4 substrate with dimensions of (33 × 22 × [...] Read more.
This article presents a miniaturized triple-band antenna for Internet of Things (IoT) applications. The miniaturization is achieved by using a split square ring resonator and half ring resonator. The antenna is fabricated on an FR4 substrate with dimensions of (33 × 22 × 1.6) mm3. The proposed antenna resonates at the frequencies 2.4 GHz, 3.7 GHz, and 5.8 GHz for WLAN and WiMax applications. The obtained −10 dB bandwidth for the three bands of the proposed antenna are 300 MHz, 360 MHz, and 900 MHz, respectively. The measured reflection coefficient values of the proposed antenna corresponding to each resonant frequency are equal to −14.772 dB, −20.971 dB, and −28.1755 dB, respectively. The measured gain values are 1.43 dBi, 0.89 dBi, and 1 dBi, respectively, at each resonant frequency. There is a good agreement between the measured and simulated results, and both show an omnidirectional radiation pattern at each of the antenna resonant frequencies that is suitable for IoT portable devices. Full article
(This article belongs to the Special Issue RF/Microwave Circuits for 5G and Beyond)
Show Figures

Figure 1

15 pages, 7544 KiB  
Article
A Compact Triple-Band UWB Inverted Triangular Antenna with Dual-Notch Band Characteristics Using SSRR Metamaterial Structure for Use in Next-Generation Wireless Systems
by Arshad Karimbu Vallappil, Bilal A. Khawaja, Mohamad Kamal A. Rahim, Muhammad Naeem Iqbal, Hassan T. Chattha and Mohamad Fakrie bin Mohamad Ali
Fractal Fract. 2022, 6(8), 422; https://doi.org/10.3390/fractalfract6080422 - 30 Jul 2022
Cited by 18 | Viewed by 2893
Abstract
A compact triple-band operation ultra-wideband (UWB) antenna with dual-notch band characteristics is presented in this paper. By inserting three metamaterial (MTM) square split-ring resonators (MTM-SSRRs) and a triangular slot on the radiating patch, the antenna develops measured dual-band rejection at 4.17–5.33 GHz and [...] Read more.
A compact triple-band operation ultra-wideband (UWB) antenna with dual-notch band characteristics is presented in this paper. By inserting three metamaterial (MTM) square split-ring resonators (MTM-SSRRs) and a triangular slot on the radiating patch, the antenna develops measured dual-band rejection at 4.17–5.33 GHz and 6.5–8.9 GHz in the UWB frequency range (3–12 GHz). The proposed antenna offers three frequency bands of operation in the UWB range, which are between 3–4.17 GHz (~1.2 GHz bandwidth), 5.33–6.5 GHz (~1.17 GHz bandwidth), and 8.9–12 GHz (~3.1 GHz bandwidth), respectively. The higher resonating frequency band can be tuned/controlled by varying the width of the triangle slot, while the medium operational band can be controlled by adjusting the width of the SSRR slot. Initially, the simulated S-parameter response, 2D and 3D radiation patterns, gain, and surface current distribution of the proposed UWB inverted triangular antenna has been studied using epoxy glass FR4 substrate having parameters εr = 4.3, h = 1.6 mm, and tan δ = 0.025, respectively. In order to validate the simulation results, the proposed UWB antenna with dual-notch band characteristics is finally fabricated and measured. The fabricated antenna’s return-loss and far-field measurements show good agreement with the simulated results. The proposed antenna achieved the measured gain of 2.3 dBi, 4.9 dBi, and 5.2 dBi at 3.5 GHz, 6.1 GHz, and 9.25 GHz, respectively. Additionally, an in-depth comparative study is performed to analyze the performance of the proposed antenna with existing designs available in the literature. The results show that the proposed antenna is an excellent candidate for fifth-generation (5G) mobile base-stations, next-generation WiFi-6E indoor distributed antenna systems (IDAS), as well as C-band and X-band applications. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

20 pages, 6172 KiB  
Article
Quad-Band Polarization-Insensitive Square Split-Ring Resonator (SSRR) with an Inner Jerusalem Cross Metamaterial Absorber for Ku- and K-Band Sensing Applications
by Mohammad Lutful Hakim, Touhidul Alam, Mohammad Tariqul Islam, Mohd Hafiz Baharuddin, Ahmed Alzamil and Md. Shabiul Islam
Sensors 2022, 22(12), 4489; https://doi.org/10.3390/s22124489 - 14 Jun 2022
Cited by 46 | Viewed by 3567
Abstract
The development of metamaterial absorbers has become attractive for various fields of application, such as sensing, detectors, wireless communication, antenna design, emitters, spatial light modulators, etc. Multiband absorbers with polarization insensitivity have drawn significant attention in microwave absorption and sensing research. In this [...] Read more.
The development of metamaterial absorbers has become attractive for various fields of application, such as sensing, detectors, wireless communication, antenna design, emitters, spatial light modulators, etc. Multiband absorbers with polarization insensitivity have drawn significant attention in microwave absorption and sensing research. In this paper, we propose a quad-band polarization-insensitive metamaterial absorber (MMA) for Ku- and K-band applications. The proposed patch comprises two square split-ring resonators (SSRR), four microstrip lines, and an inner Jerusalem cross to generate four corresponding resonances at 12.62 GHz,14.12 GHz, 17.53 GHz, and 19.91 GHz with 97%, 99.51%, 99%, and 99.5% absorption, respectively. The complex values of permittivity, permeability, refractive index, and impedance of MMA were extracted and discussed. The absorption mechanism of the designed MMA was explored by impedance matching, equivalent circuit model, as well as magnetic field and electric field analysis. The overall patch has a rotational-symmetrical structure, which plays a crucial role in acquiring the polarization-insensitive property. The design also shows stable absorption for both transverse electric (TE) and transverse magnetic (TM) modes. Its near-unity absorption and excellent sensing performance make it a potential candidate for sensing applications. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

9 pages, 6117 KiB  
Article
A New mm-Wave Antenna Array with Wideband Characteristics for Next Generation Communication Systems
by Mehr E Munir, Abdullah G. Al Harbi, Saad Hassan Kiani, Mohamed Marey, Naser Ojaroudi Parchin, Jehanzeb Khan, Hala Mostafa, Javed Iqbal, Muhammad Abbas Khan, Chan Hwang See and Raed A. Abd-Alhameed
Electronics 2022, 11(10), 1560; https://doi.org/10.3390/electronics11101560 - 13 May 2022
Cited by 78 | Viewed by 3264
Abstract
This paper presents a planar multi-circular loop antenna with a wide impedance bandwidth for next generation mm-wave systems. The proposed antenna comprises three circular rings with a partial ground plane with a square slot. The resonating structure is designed on a 0.254 mm [...] Read more.
This paper presents a planar multi-circular loop antenna with a wide impedance bandwidth for next generation mm-wave systems. The proposed antenna comprises three circular rings with a partial ground plane with a square slot. The resonating structure is designed on a 0.254 mm thin RO5880 substrate with a relative permittivity of 2.3. The single element of the proposed design showed a resonance response from 26.5 to 41 GHz, with a peak gain of 4 dBi and radiation efficiency of 96%. The proposed multicircular ring antenna element is transformed into a four-element array system. The array size is kept at 18.25 × 12.5 × 0.254 mm3 with a peak gain of 11 dBi. The antenna array is fabricated and measured using the in-house facility. The simulated and measured results are well agreed upon and are found to be suitable for mm-wave communication systems. Full article
(This article belongs to the Special Issue Antenna Designs for 5G/IoT and Space Applications)
Show Figures

Figure 1

Back to TopTop