Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (130)

Search Parameters:
Keywords = spray holes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 14981 KiB  
Article
Multi-Scale Modelling of Residual Stress on Arbitrary Substrate Geometry in Atmospheric Plasma Spray Process
by Jose Martínez-García, Venancio Martínez-García and Andreas Killinger
Coatings 2025, 15(6), 723; https://doi.org/10.3390/coatings15060723 - 17 Jun 2025
Viewed by 612
Abstract
This work presents an exhaustive parametric study of the multi-scale residual stress analysis on arbitrary substrate geometry based on a one-way-coupled thermo-mechanical model in an Atmospheric Plasma Spray process. It was carried out by modifying key process parameters, such as substrate surface geometry, [...] Read more.
This work presents an exhaustive parametric study of the multi-scale residual stress analysis on arbitrary substrate geometry based on a one-way-coupled thermo-mechanical model in an Atmospheric Plasma Spray process. It was carried out by modifying key process parameters, such as substrate surface geometry, substrate pre-heating temperature, and coating thickness, in an Al2O3 coating process on an aluminium substrate. The relationship of these parameters to the generation of quenching stress, thermal stress and residual stress was analysed at three different sub-modelling scales, from the macroscopic dimension of the substrate to the microscopic dimension of the splats. The thermo-mechanical phenomena occurring during the deposition process at the microscopic level were discussed in the proposed cases. Understanding these phenomena helps to optimise the parameters of the coating process by identifying the underlying mechanisms responsible for the generation of residual stresses. The simulated residual stresses of the 200 μm Al2O3 outer coated aluminium cylinder were experimental validated using the incremental high-speed micro-hole drilling and milling method. Full article
(This article belongs to the Special Issue Advances in Surface Coatings for Wear and Corrosion Protection)
Show Figures

Figure 1

19 pages, 5841 KiB  
Article
Spatial Distribution Characteristics of Droplet Size and Velocity in a Methanol Spray
by Zehao Feng, Junlong Zhang, Jiechong Gu, Yu Jin, Xiaoqing Tian and Zhixia He
Processes 2025, 13(6), 1883; https://doi.org/10.3390/pr13061883 - 13 Jun 2025
Viewed by 386
Abstract
The atomization performance of methanol fuel plays a crucial role in enhancing methanol engine efficiency, contributing to the decarbonization of the shipping industry. The droplet microscopic characteristics of methanol spray were experimentally investigated using a single-hole direct injection injector in a constant volume [...] Read more.
The atomization performance of methanol fuel plays a crucial role in enhancing methanol engine efficiency, contributing to the decarbonization of the shipping industry. The droplet microscopic characteristics of methanol spray were experimentally investigated using a single-hole direct injection injector in a constant volume chamber. The particle image analysis (PIA) system equipped with a slicer was employed for droplet detecting at a series of measurement positions in both the dense spray region and dilute spray region, then the spatial distributions of droplet size and velocity were examined. Key findings reveal distinct atomization behaviors between dense and dilute spray regions. Along the centerline, the methanol spray exhibited poor atomization, characterized by a high concentration of aggregated droplets, interconnected liquid structures, and large liquid masses. In contrast, the spray periphery demonstrated effective atomization, with only well-dispersed individual droplets observed. Droplet size distribution analysis showed a sharp decrease from the dense region to the dilute region near the nozzle. In the spray midbody, droplet diameter initially decreased significantly within the dense spray zone, stabilized in the transition zone, and then exhibited a slight increase in the dilute region—though remaining smaller than values observed at the central axis. Velocity measurements indicated a consistent decline in the axial velocity component due to air drag. In contrast, the radial velocity component displayed irregular variations, attributed to vortex-induced flow interactions. These experimentally observed droplet behaviors provide critical insights for refining spray models and enhancing computational simulations of methanol injection processes. Full article
Show Figures

Figure 1

23 pages, 5411 KiB  
Article
Numerical Study on the Heat Transfer Characteristics of a Hybrid Direct–Indirect Oil Cooling System for Electric Motors
by Jung-Su Park, Le Duc Tai and Moo-Yeon Lee
Symmetry 2025, 17(5), 760; https://doi.org/10.3390/sym17050760 - 14 May 2025
Viewed by 606
Abstract
Direct liquid cooling technology has the potential to enhance the thermal management performance of electric motors with continuously increasing energy density. However, direct liquid cooling technology has practical limitations for full-scale commercialization. In addition, the conventionally used indirect liquid cooling imposes higher thermal [...] Read more.
Direct liquid cooling technology has the potential to enhance the thermal management performance of electric motors with continuously increasing energy density. However, direct liquid cooling technology has practical limitations for full-scale commercialization. In addition, the conventionally used indirect liquid cooling imposes higher thermal resistance to cope with the increased thermal management performance of high power density electric motors. Therefore, this study proposes a hybrid direct–indirect oil cooling system as a next-generation cooling strategy for the enhanced thermal management of high power density electric motors. The heat transfer characteristics, including maximum winding, stator and motor housing temperatures, heat transfer coefficient, friction factor, pressure drop, and performance evaluation criteria (PEC), are investigated for different spray hole diameters, coolant oil volume flow rates, and motor heat loss levels. The computational model was validated with experimental results within a 5% error developed to evaluate heat transfer characteristics. The results show that spray hole diameter significantly influences cooling performance, with a larger diameter (1.7 mm) reducing hydraulic resistance while causing a slight increase in motor temperatures. The coolant oil volume flow rate has a major impact on heat dissipation, with an increase from 10 to 20 L/minute (LPM) reducing winding, stator, and housing temperatures by 22.05%, 22.70% and 24.02%, respectively. However, higher flow rates also resulted in an increased pressure drop, emphasizing the importance of the selection of a suitable volume flow rate based on the trade-off between cooling performance and energy consumption. Despite the increase in motor heat loss level from 2.6 kW to 8 kW, the hybrid direct–indirect oil cooling system effectively maintained all motor component temperatures below the critical threshold of 180 °C, confirming its suitability for high-performance electric motors. These findings contribute to the development and commercialization of the proposed next-generation cooling strategy for high power density electric motors for ensuring thermal stability and operational efficiency. Full article
Show Figures

Figure 1

19 pages, 4304 KiB  
Article
Design and Performance Evaluation of a Multi-Fluid Swirling Mixing Atomizer for Efficient Generation of Ozonated Droplets in Agricultural Applications
by Xinkang Hu, Bo Zhang, Xiaohong Xu, Zhongwei Chang, Xu Wang and Chundu Wu
Agronomy 2025, 15(5), 1082; https://doi.org/10.3390/agronomy15051082 - 29 Apr 2025
Cited by 1 | Viewed by 440
Abstract
With the widespread application of ozone technology in agricultural plant protection, developing an ozonated water atomizer that integrates efficient mixing and precise spraying has been recognized as a significant challenge. Swirling flow is considered a method to enhance hydrodynamics and mass transfer in [...] Read more.
With the widespread application of ozone technology in agricultural plant protection, developing an ozonated water atomizer that integrates efficient mixing and precise spraying has been recognized as a significant challenge. Swirling flow is considered a method to enhance hydrodynamics and mass transfer in gas–liquid mixing. This study innovatively combines an axial nozzle with a swirling mixing chamber, utilizing the negative pressure generated by the high-speed central airflow at the nozzle throat as the driving force for swirling mixing and initial atomization, completing mass transfer and preliminary atomization before the formation of the mist, thereby improving gas–liquid contact and mass transfer efficiency. Through numerical simulations, the impact of geometric parameters at key locations on the internal flow of the atomizer was analyzed. The optimized inlet diameter of the atomizer was found to be 9 mm, with a throat length of 3 mm and a self-priming hole diameter of 1.5 mm. Experimental results on droplet size and ozone droplet concentration verified that at the optimal spraying pressure of 0.6 MPa, a concentration of up to 3.73 mg·L−1 with an average droplet size of 102 µm, evenly distributed, could be generated at a distance of 40 cm from the target. This work provides a technological framework for advancing precision ozone-based plant protection, aligning with global efforts to reduce agrochemical footprints through innovative application systems. It offers theoretical guidance and data support for the development and design of high-efficiency ozone atomizers in agricultural applications, aiming to minimize the use of agricultural chemicals and promote the growth of green plant protection technologies. Full article
Show Figures

Figure 1

21 pages, 66840 KiB  
Article
Effect of Methanol Injector Bore Arrangement on Combustion and Emissions in Dual-Fuel Engines
by Xu Guo, Jiarui Chen and Xiwu Gong
Energies 2025, 18(8), 2038; https://doi.org/10.3390/en18082038 - 16 Apr 2025
Viewed by 395
Abstract
The physical and chemical properties of methanol differ significantly from those of conventional diesel, and its injection strategy plays a critical role in engine performance. In this study, a three-dimensional simulation model of a methanol–diesel dual-fuel engine integrated with chemical reaction kinetics was [...] Read more.
The physical and chemical properties of methanol differ significantly from those of conventional diesel, and its injection strategy plays a critical role in engine performance. In this study, a three-dimensional simulation model of a methanol–diesel dual-fuel engine integrated with chemical reaction kinetics was developed using CONVERGE software. The effects of methanol injection position and angle on combustion characteristics, emission performance, and engine economy were systematically investigated through numerical simulation and theoretical analysis, leading to the optimization of the methanol injection strategy. By varying the distance between the methanol nozzle and the cylinder head as well as the methanol injection angle, changes in temperature, pressure, heat release rate (HRR), and other engine parameters were analyzed. Additionally, the impact on emissions, including soot, HC, CO, and NOx, was evaluated, providing a theoretical foundation for optimizing dual-fuel engine performance and enhancing methanol utilization efficiency. The results indicate that the methanol injection position minimally affects engine performance. When the methanol spray is positioned 3 mm from the cylinder head, it facilitates the formation of a homogeneous mixture, resulting in optimal power output and enhanced environmental performance. In contrast, the injection angle has a more pronounced effect on combustion and emission characteristics. At a methanol injection angle of 65°, the mixture homogeneity reaches its optimal level, leading to a significant enhancement in combustion efficiency and engine power performance. Excessive injection angles may lead to combustion deterioration and reduced engine performance. The primary reason is that an excessive spray angle may cause methanol spray to impinge on the cylinder wall. This leads to wall wetting, which adversely affects mixture formation and combustion. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

15 pages, 12811 KiB  
Article
Cold Spray Preparation of High-Performance Anti-Cavitation Copper Coatings on Steel Substrates
by Yunzhen Pei, Zhongwu Sun, Weijie Liu, Chunming Deng, Jiayan Ma, Haiming Lan, Xin Chu and Yingchun Xie
Coatings 2025, 15(4), 381; https://doi.org/10.3390/coatings15040381 - 25 Mar 2025
Viewed by 778
Abstract
Copper and its alloys are widely used in marine environments due to their excellent corrosion resistance and thermal conductivity. Cold spray technology can avoid the thermal damage to the underlying material and is suitable for the manufacturing and repair of parts. In this [...] Read more.
Copper and its alloys are widely used in marine environments due to their excellent corrosion resistance and thermal conductivity. Cold spray technology can avoid the thermal damage to the underlying material and is suitable for the manufacturing and repair of parts. In this study, Cu coatings were prepared on 304 stainless steel substrates by high-pressure cold spray technology, and the effects of cold spray parameters on the microstructure, mechanical properties, and cavitation resistance were investigated. The coatings (Cu-N21, Cu-N22, and Cu-He) were prepared using distinct cold spray parameters: Cu-N21 and Cu-N22 employed nitrogen gas at 5 MPa/800 °C with different nozzle geometries, while Cu-He utilized helium gas at 3 MPa/600 °C. The results show that the porosity of the Cu coating prepared by cold spray technology is less than 0.1%. The coating treated with helium gas exhibits a higher bonding strength (81.3 MPa), whereas the coating treated with nitrogen demonstrates greater strain hardening (130–136 HV0.1). XRD results show that no phase change or oxidation occurred for coatings under all cold spraying conditions. After the cavitation test, the mass loss of the Cu coating is significantly less than that of the as-cast copper. The Cu coating surface first develops holes, and with the increase in cavitation time, the hole area begins to increase. However, with prolonged cavitation exposure, the surface of as-cast copper has a large area of holes, and with the increase in cavitation time, the hole growth rate is faster. These observations indicate the cavitation resistance of the Cu coating prepared by cold spray is more than 10 times higher than that of the as-cast copper. This study highlights the potential application of cold spray technology in the preparation of high-performance anti-cavitation copper coatings. Full article
Show Figures

Figure 1

20 pages, 9797 KiB  
Article
Developing AI Smart Sprayer for Punch-Hole Herbicide Application in Plasticulture Production System
by Renato Herrig Furlanetto, Ana Claudia Buzanini, Arnold Walter Schumann and Nathan Shawn Boyd
AgriEngineering 2025, 7(1), 2; https://doi.org/10.3390/agriengineering7010002 - 24 Dec 2024
Cited by 2 | Viewed by 1400
Abstract
In plasticulture production systems, the conventional practice involves broadcasting pre-emergent herbicides over the entire surface of raised beds before laying plastic mulch. However, weed emergence predominantly occurs through the transplant punch-holes in the mulch, leaving most of the applied herbicide beneath the plastic, [...] Read more.
In plasticulture production systems, the conventional practice involves broadcasting pre-emergent herbicides over the entire surface of raised beds before laying plastic mulch. However, weed emergence predominantly occurs through the transplant punch-holes in the mulch, leaving most of the applied herbicide beneath the plastic, where weeds cannot grow. To address this issue, we developed and evaluated a precision spraying system designed to target herbicide application to the transplant punch-holes. A dataset of 3378 images was manually collected and annotated during a tomato experimental trial at the University of Florida. A YOLOv8x model with a p2 output layer was trained, converted to TensorRT® to improve the inference time, and deployed on a custom-built computer. A Python-based graphical user interface (GUI) was developed to facilitate user interaction and the control of the smart sprayer system. The sprayer utilized a global shutter camera to capture real-time video input for the YOLOv8x model, which activates or disactivates a TeeJet solenoid for precise herbicide application upon detecting a punch-hole. The model demonstrated excellent performance, achieving precision, recall, mean average precision (mAP), and F1score exceeding 0.90. Field tests showed that the smart sprayer reduced herbicide use by up to 69% compared to conventional broadcast methods. The system achieved an 86% punch-hole recognition rate, with a 14% miss rate due to challenges such as plant occlusion and variable lighting conditions, indicating that the dataset needs to be improved. Despite these limitations, the smart sprayer effectively minimized off-target herbicide application without causing crop damage. This precision approach reduces chemical inputs and minimizes the potential environmental impact, representing a significant advancement in sustainable plasticulture weed management. Full article
(This article belongs to the Special Issue The Future of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

26 pages, 9447 KiB  
Article
Design and Analysis of an Electric Integrated Work Vehicle for Corn Intertillage Fertilization and Pesticide Spraying
by Dongdong Gu, Jiahan Zhang, Yijie Ding, Yongzhen Wang, Jie Yang, Ge Shi, Bin Li and Junqiang Zhao
Appl. Sci. 2024, 14(23), 11356; https://doi.org/10.3390/app142311356 - 5 Dec 2024
Cited by 1 | Viewed by 1246
Abstract
In response to the situation in the Huanghuai region, where corn fertilization and pesticide application primarily rely on manual methods such as hand broadcasting fertilizer and using manual backpack sprayers, resulting in low levels of mechanization, this study designed an electric integrated work [...] Read more.
In response to the situation in the Huanghuai region, where corn fertilization and pesticide application primarily rely on manual methods such as hand broadcasting fertilizer and using manual backpack sprayers, resulting in low levels of mechanization, this study designed an electric integrated work vehicle in line with the trend of developing new energy. The vehicle is powered by six 12 V, 100 Ah lead-acid batteries and integrates the functions of fertilization and pesticide spraying. It can achieve precise hole-fertilization, applying fertilizer to a depth of 100 to 150 mm near the roots of corn, and can also perform multi-row pesticide spraying. The vehicle’s electronic control system is divided into two functional areas: 220 V and 24 V. The walking system uses a 220 V, 2 kW AC servo motor, which is driven by converting the voltage of the 72 V battery group into a 220 V sine wave AC through an inverter, and the motor speed can be adjusted. The working width is adjusted by two fixed electric cylinders at the top of the rear wheel frame. The user can preset the width through the control panel, and during operation, the electric cylinders can be automatically controlled to the optimal working width via a whisker-type limit switch. Analysis using ADAMS software shows that when the vehicle speed is 2, 3, and 5 km per hour, the opening angles of the duckbill controller are 66°, 58°, and 48°, respectively, indicating that the higher the speed, the smaller the opening angle. This shortens the fertilization interval time and makes the fertilization spacing more stable. The maximum opening angle of the adjacent duckbill is 25°, indicating that the fertilization amount remains stable. When the vehicle is moving in reverse, the duckbill always remains closed, and at different speeds, the opening angle change curve of the duckbill controller is smooth and regular. This vehicle significantly improves the efficiency and precision of corn planting. However, improvements are still needed in battery technology, control system optimization, and the high cost of electric agricultural machinery to promote the widespread application of agricultural mechanization. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

27 pages, 10631 KiB  
Article
Bearing Characteristics of Deep Cement Mixing Integrated Drilling, Mixing and Jetting Piles Based on Numerical Simulation
by Yang Wang, Yuhe Zhang, Kaixing Zhang, Yu Rong, Runze Xu, Jie Li, Weizhe Feng, Zihan Sang, Zhanyong Yao and Kai Yao
Sustainability 2024, 16(21), 9198; https://doi.org/10.3390/su16219198 - 23 Oct 2024
Cited by 3 | Viewed by 1436
Abstract
The Deep Cement Mixing Integrated Drilling, Mixing and Jetting (DMJ) technique has been developed through the installation of high-pressure spray holes at the mixing blades, with the objective of enhancing the bearing capacity of deep-mixed piles in the Yellow River floodplain. In order [...] Read more.
The Deep Cement Mixing Integrated Drilling, Mixing and Jetting (DMJ) technique has been developed through the installation of high-pressure spray holes at the mixing blades, with the objective of enhancing the bearing capacity of deep-mixed piles in the Yellow River floodplain. In order to enhance the bearing capacity of the foundation, variable-modulus piles and capped piles were incorporated within the DMJ piles. Engineering applications have demonstrated that DMJ piles can effectively address the issue of foundation reinforcement in the Yellow River floodplain region, minimize the wastage of cement, and reduce the environmental pollution associated with waste slurry. Nevertheless, a comprehensive study of the relevant factors is still lacking in the available literature. This study addresses this gap by conducting a numerical simulation of these two types of DMJ piles based on the preliminary field test data, with the objective of analyzing both the single-pile-bearing characteristics and the composite foundation-bearing characteristics. Furthermore, the study seeks to optimize the DMJ pile’s structure based on the simulation results. The findings demonstrate that the premature failure of a single pile during the bearing process can be averted if the modulus of the pile core reaches a minimum of 0.3 GPa or if the pile cap thickness exceeds 1 m. The utilization of large-diameter drilling, stirring and spraying piles can markedly enhance the bearing capacity of the composite foundation and mitigate the differential settlement of pile and soil. The spacing of the pile has been identified as a significant factor influencing the differential settlement of pile and soil. Consequently, this study also examines the impact of pile spacing on the differential settlement of piles and soil. Full article
Show Figures

Figure 1

24 pages, 5293 KiB  
Article
Computational Fluid Dynamics Study on Bottom-Hole Multiphase Flow Fields Formed by Polycrystalline Diamond Compact Drill Bits in Foam Drilling
by Lihong Wei and Jaime Honra
Fluids 2024, 9(9), 211; https://doi.org/10.3390/fluids9090211 - 10 Sep 2024
Cited by 1 | Viewed by 1306
Abstract
High-temperature geothermal wells frequently employ foam drilling fluids and Polycrystalline Diamond Compact (PDC) drill bits. Understanding the bottom-hole flow field of PDC drill bits in foam drilling is essential for accurately analyzing their hydraulic structure design. Based on computational fluid dynamics (CFD) and [...] Read more.
High-temperature geothermal wells frequently employ foam drilling fluids and Polycrystalline Diamond Compact (PDC) drill bits. Understanding the bottom-hole flow field of PDC drill bits in foam drilling is essential for accurately analyzing their hydraulic structure design. Based on computational fluid dynamics (CFD) and multiphase flow theory, this paper establishes a numerical simulation technique for gas-liquid-solid multiphase flow in foam drilling with PDC drill bits, combined with a qualitative and quantitative hydraulic structure evaluation method. This method is applied to simulate the bottom-hole flow field of a six-blade PDC drill bit. The results show that the flow velocity of the air phase in foam drilling fluid is generally higher than that of the water phase. Some blades’ cutting teeth exhibit poor cleaning and cooling effects, with individual cutting teeth showing signs of erosion damage and cuttings cross-flow between channels. To address these issues, optimizing the nozzle spray angle and channel design is necessary to improve hydraulic energy distribution, enhance drilling efficiency, and extend drill bit life. This study provides new ideas and methods for developing geothermal drilling technology in the numerical simulation of a gas-liquid-solid three-phase flow field. Additionally, the combined qualitative and quantitative evaluation method offers new insights and approaches for research and practice in drilling engineering. Full article
(This article belongs to the Special Issue Multiphase Flow and Granular Mechanics)
Show Figures

Figure 1

21 pages, 6338 KiB  
Article
Numerical Study on Internal Flow and Cavitation Characteristics of GDI Injectors for Different Nozzle Orifice Geometries
by Chaoqun Hu, Zhijun Wu, Alessandro Ferrari, Meng Ji, Jun Deng and Oscar Vento
Energies 2024, 17(16), 4114; https://doi.org/10.3390/en17164114 - 19 Aug 2024
Cited by 2 | Viewed by 1474
Abstract
The geometry of an orifice is a major determinant of nozzle internal flow and cavitation, which directly govern spray atomization and consequently affect combustion and fuel economy in internal combustion engines. In this study, simulation models of the nozzle at different angles between [...] Read more.
The geometry of an orifice is a major determinant of nozzle internal flow and cavitation, which directly govern spray atomization and consequently affect combustion and fuel economy in internal combustion engines. In this study, simulation models of the nozzle at different angles between the normal and the injection hole inlet cross-section and the injection hole axis, as well as with different injection hole cone angles (a positive angle between the injection hole axis and its walls implies a divergent hole), were investigated by means of a previously developed numerical model that was validated based on experimental data from X-ray image technology. The results indicate that as the angle between the normal and the injection hole inlet cross-section and the injection hole axis increases, the cavitation asymmetry within the injection hole intensifies, accompanied by a decrease in the gas volume fraction. On one side of the injection hole, the hydraulic flip width expands, while, on the other side of the injection hole, the flow state gradually changes from hydraulic flip to super-cavitation flow, transitional cavitation and fully reattached flow. The divergent orifice layout intensifies cavitation, and the higher the positive injection hole cone angle, the bigger the hydraulic flip width. The convergent layout of the injection hole suppresses cavitation, and cavitation inside the nozzle disappears completely when the injection hole cone angle is less than −10°. Full article
Show Figures

Figure 1

13 pages, 5141 KiB  
Article
Enhancing the Photoelectrochemical Performance of a Superlattice p–n Heterojunction CuFe2O4/ZnFe2O4 Electrode for Hydrogen Production
by M. K. Al Turkestani
Condens. Matter 2024, 9(3), 31; https://doi.org/10.3390/condmat9030031 - 26 Jul 2024
Cited by 1 | Viewed by 1308
Abstract
A p–n heterojunction film consisting of p-type CuFe2O4 and n-type ZnFe2O4 was fabricated in this study. The n-type ZnFe2O4 film was deposited on a stainless steel substrate using the spray pyrolysis method, after which [...] Read more.
A p–n heterojunction film consisting of p-type CuFe2O4 and n-type ZnFe2O4 was fabricated in this study. The n-type ZnFe2O4 film was deposited on a stainless steel substrate using the spray pyrolysis method, after which a top layer of p-type CuFe2O4 thin film was deposited and annealed. Characterization techniques, such as X-ray diffraction, scanning electron microscopy, UV–Vis diffuse reflectance spectroscopy, and photoluminescence, confirmed the formation of a superlattice p–n heterojunction between CuFe2O4 and ZnFe2O4. Photoelectrochemical measurements were conducted to investigate the photoelectrochemical properties of the samples, resulting in a photocurrent of 1.2 mA/cm2 at 1.5 V (vs. Ag/AgCl) under illumination from a 100-watt LED light source. Utilizing the p–n junction of CuFe2O4/ZnFe2O4 as a photoanode increased the hydrogen production rate by 30% compared to that of the dark measurement. This enhancement in performance was attributed to the potential barrier at the p–n heterojunction interface, which improved the separation of photoinduced electron–hole pairs and facilitated a more efficient charge transfer. Additionally, coating the stainless steel electrode with this ferrite sample improved both the corrosion resistance and the stability of hydrogen production over extended operation times. Full article
(This article belongs to the Section Physics of Materials)
Show Figures

Figure 1

14 pages, 4399 KiB  
Article
Spray-Coated Transition Metal Dichalcogenides as Hole Transport Layers in Inverted NFA-Based Organic Photovoltaics with Enhanced Stability under Solar and Artificial Light
by Marinos Tountas, Katerina Anagnostou, Evangelos Sotiropoulos, Christos Polyzoidis and Emmanuel Kymakis
Nanoenergy Adv. 2024, 4(3), 221-234; https://doi.org/10.3390/nanoenergyadv4030014 - 10 Jul 2024
Cited by 3 | Viewed by 2148
Abstract
In this study, we explored the potential of exfoliated transition metal dichalcogenides (TMDs) as innovative spray-coated hole transport layers (HTLs) in organic photovoltaics (OPVs), addressing the need for efficient and stable materials in solar cell technology. This research was motivated by the need [...] Read more.
In this study, we explored the potential of exfoliated transition metal dichalcogenides (TMDs) as innovative spray-coated hole transport layers (HTLs) in organic photovoltaics (OPVs), addressing the need for efficient and stable materials in solar cell technology. This research was motivated by the need for alternative HTLs that can offer enhanced performance under varying lighting conditions, particularly in indoor environments. Employing UV-visible absorption and Raman spectroscopy, we characterized the optical properties of MoS2, MoSe2, WS2, and WSe2, confirming their distinct excitonic transitions and direct bandgap features. The nanocrystalline nature of these TMDs, revealed through XRD patterns and crystallite size estimation using the Scherrer method, significantly contributes to their enhanced physical properties and operational efficiency as HTLs in OPVs. These TMDs were then integrated into OPV devices and evaluated under standard solar and indoor lighting conditions, to assess their effectiveness as HTLs. The results demonstrated that MoS2, in particular, displayed remarkable performance, rivalling traditional HTL materials like MoO3. It maintained high power conversion efficiency across a spectrum of light intensities, illustrating its versatility for both outdoor and indoor applications. Additionally, MoS2 showed superior stability over extended periods, suggesting its potential for long-term usage in OPVs. This study contributes significantly to the field of photovoltaic materials, presenting TMDs, especially MoS2, as promising candidates for efficient and stable OPVs in diverse lighting conditions, thereby broadening the scope of solar cell applications. Full article
(This article belongs to the Topic Nanomaterials for Energy and Environmental Applications)
Show Figures

Figure 1

15 pages, 16925 KiB  
Article
An Experimental Study on the Flash Boiling Characteristics of Liquid Ammonia Spray in a Constant Volume Chamber under High Injection Pressure
by Haibin He, Jie Wu, Lei Wang, Hua Lou, Songfeng Li, Lvmeng Huang and Zhanming Chen
Processes 2024, 12(6), 1076; https://doi.org/10.3390/pr12061076 - 24 May 2024
Cited by 3 | Viewed by 1786
Abstract
The spray characteristics of liquid ammonia under various ambient pressures and temperatures were analyzed in a constant volume chamber to cover a wide range of superheat degrees. The injection pressure was set as 70 and 80 MPa with ambient pressure ranging from 0.2 [...] Read more.
The spray characteristics of liquid ammonia under various ambient pressures and temperatures were analyzed in a constant volume chamber to cover a wide range of superheat degrees. The injection pressure was set as 70 and 80 MPa with ambient pressure ranging from 0.2 to 4 MPa. The ambient temperature was 500 K. The results showed that the higher the injection pressure, the greater the kinetic energy obtained. The droplet fragmentation was enhanced, and the phenomenon of gradual separation of the gas–liquid region occurred with increasing injection pressure. Under flash boiling spray conditions, the spray developed faster than non-flash boiling and transition flash boiling spray under the same injection pressure. In addition, the flash boiling spray tip penetration of the gas and liquid increased more than that of cold spray, and the fluctuation of the late stage of the injection was relatively large. Therefore, the injection pressure has a greater effect on the spray tip penetration of flash boiling spray. Moreover, ambient pressure greatly influences the flare flash boiling spray. The spray resistance phenomenon was found during the spray development in the flare flash boiling condition. With the increase in ambient pressure, the spray tip penetration of flash boiling spray decreases due to the reduction in the pressure difference inside and outside the spray hole and the restriction of ambient gas. Meanwhile, owing to the low ambient pressure and ambient density, the liquid penetration in the initial phase of the flare flash boiling spray will be abnormally shorter than that of the non-flash boiling spray. Full article
(This article belongs to the Special Issue Green Fuels: Utilization, Production and Processing Technologies)
Show Figures

Figure 1

16 pages, 7306 KiB  
Article
Investigation of Spray Characteristics for Detonability: A Study on Liquid Fuel Injector and Nozzle Design
by Myeung Hwan Choi, Yoojin Oh and Sungwoo Park
Aerospace 2024, 11(6), 421; https://doi.org/10.3390/aerospace11060421 - 23 May 2024
Cited by 2 | Viewed by 1702
Abstract
Detonation engines are gaining prominence as next-generation propulsion systems that can significantly enhance the efficiency of existing engines. This study focuses on developing an injector utilizing liquid fuel and a gas oxidizer for application in detonation engines. In order to better understand the [...] Read more.
Detonation engines are gaining prominence as next-generation propulsion systems that can significantly enhance the efficiency of existing engines. This study focuses on developing an injector utilizing liquid fuel and a gas oxidizer for application in detonation engines. In order to better understand the spray characteristics suitable for the pulse detonation engine (PDE) system, an injector was fabricated by varying the Venturi nozzle exit diameter ratio and the geometric features of the fuel injection hole. Analysis of high-speed camera images revealed that the Venturi nozzle exit diameter ratio plays a crucial role in determining the characteristics of air-assist or air-blast atomization. Under the conditions of an exit diameter ratio of Re/Ri = 1.0, the formation of a liquid film at the exit was observed, and it was identified that the film’s length is influenced by the geometric characteristics of the fuel injection hole. The effect of the fuel injection hole and Venturi nozzle exit diameter ratio on SMD was analyzed by using droplet diameter measurement. The derived empirical correlation indicates that the atomization mechanism varies depending on the Venturi nozzle exit diameter ratio, and it also affects the distribution of SMD. The characteristics of the proposed injector, its influence on SMD, and its velocity, provide essential groundwork and data for the design of detonation engines employing liquid fuel. Full article
(This article belongs to the Special Issue Supersonic Combustion in Scramjet Engine)
Show Figures

Figure 1

Back to TopTop