Design and Performance Evaluation of a Multi-Fluid Swirling Mixing Atomizer for Efficient Generation of Ozonated Droplets in Agricultural Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Swirling Mixing Atomizer
2.1.1. Design and Computation of Throat Inner Diameter d2
2.1.2. Design and Computation of Shrinkage L1 Design Calculation
2.1.3. Design and Computation of Expansion L3 Design Calculation
2.1.4. Design of Self-Priming Hole d4
2.1.5. Design of Swirl Mixing Chamber
2.2. Computational Fluid Dynamics Simulation
2.2.1. Mass Conservation and Energy Equation
2.2.2. Multiphase Model and Turbulence Model
2.2.3. Mesh Generation
2.2.4. Boundary Conditions and Numerical Setting
2.3. Experimental System
2.3.1. Orthogonal Experiment of Atomizer Axial Nozzle
2.3.2. Particle Size Experiment and Concentration Measurement
3. Results and Discussion
3.1. Analysis of Simulation Results (Optimum Working Pressure)
3.1.1. Pressure Distribution
3.1.2. Speed Distribution
3.1.3. Turbulent Kinetic Energy
3.2. Simulation and Orthogonal Experimental Results (Optimal Structural Parameters)
3.3. Spray Characteristics and Ozone Droplet Group Concentration Test Results and Analysis
3.3.1. Gas–Liquid Ratio (GLR)
3.3.2. Droplet Size Distribution
3.3.3. Ozonated Droplet Group Concentration Detection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
P0 | The inlet pressure of the jet | T0 | The inlet temperature of the jet |
k | Adiabatic index | R | Gas constant |
Qm0 | Tube inlet air flow rate of the jet | R0 | The radius of the contraction segment |
R1 | Radius of the gas inlet | R2 | Radius of the laryngeal segment |
x | Relative coordinate | B | Import and export pressure ratio formula |
Hg | Enthalpy of gas | pg | Gas pressure |
vg | Gas velocity | ρg | density of gas |
Vg | Gas volume | Tg | Gas temperature |
ρ | Fluid density | t | Time |
µ | Fluid dynamical viscosity | Gk | Turbulent kinetic energy induced by the velocity gradient |
p | Static pressure | YM | Effect of turbulence on the overall dissipation rate |
ρgi | Gravity volume force | Gb | The turbulent kinetic energy caused by buoyancy force |
Fi | Other volume force | τ | Stress tensor |
u | velocity vector | δij | Kronecker Delta tensor |
Qg | Gas flow rate | Ql | Liquid flow rate |
References
- Wu, J.; Xiang, J.; Yi, X.; Dai, X.; Tang, C.; Liu, Y. Market Participation and Farmers’ Adoption of Green Control Techniques: Evidence from China. Agriculture 2024, 14, 1138. [Google Scholar] [CrossRef]
- Ebihara, K.; Mitsugi, F.; Ikegami, T.; Nakamura, N.; Hashimoto, Y.; Yamashita, Y.; Baba, S.; Henryka, S.D.; Pawlat, J.; Teii, S.; et al. Sterilization Characteristics of Ozone-mist Spray for Chemical Free Agriculture. Int. J. Plasma Environ. Sci. Technol. 2016, 10, 11–15. [Google Scholar]
- Tanuwidjaja, I.; Mrkonjic, M.F. Ozone in Droplets and Mist in Inhibition of Phytopathogenic Microbiota. Agriculture 2022, 12, 1875. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, S.; Feng, J.; Li, D.; Yang, S.; Zhou, X. Suitable Water-Fertilizer Management and Ozone Synergy Can Enhance Substrate-Based Lettuce Yield and Water–Fertilizer Use Efficiency. Agronomy 2024, 14, 1619. [Google Scholar] [CrossRef]
- Hu, X. Design and Experiment of a Strongly Oxidative Free Radical Synthesis Spray System. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2022. [Google Scholar]
- Liu, X.; Hou, Y.; Guo, J.; Wang, Y.; Zuo, Q.; Wang, C. Catalytic Ozone Aqueous Decomposition of Methylene Blue Using Composite Metal Oxides. IOP Conf. Ser. Mater. Sci. Eng. 2015, 87, 012031. [Google Scholar] [CrossRef]
- Brêda, A.L.M.; Conceição, M.L.S.D.; Oliveira, F.O. Evaluation of the Microbial Reduction Efficacy and Perception of Use of an Ozonized Water Spray Disinfection Technology. Sci. Rep. 2022, 12, 13019. [Google Scholar]
- Jiang, Y.; Li, H.; Chen, C.; Hua, L.; Zhang, D. Hydraulic Performance and Jet Breakup Characteristics of the Impact Sprinkler with Circular and Non-Circular Nozzles. Appl. Eng. Agric. 2019, 35, 911–924. [Google Scholar] [CrossRef]
- Lin, J.; Ma, J.; Liu, K.; Huang, X.; Xiao, L.; Ahmed, S.; Dong, X.; Qiu, B. Development and Test of an Autonomous Air-Assisted Sprayer Based on Single Hanging Track for Solar Greenhouse. Crop Prot. 2021, 142, 105502. [Google Scholar] [CrossRef]
- Choi, S.J.; Kong, M.Y. A Case Study on Sintering Characteristics of Yttria Stabilized Zirconia Powder Prepared by Two-Fluid Spray Drying. J. Korean Ceram. Soc. 2016, 53, 332–337. [Google Scholar] [CrossRef]
- Danh, V.; Akinyemi, O.S.; Taylor, C.E.; Frank, J.T.; Jiang, L. Investigators from University of Louisiana. Effect of Injector Swirl Number on Near-field Spray Characteristics of a Novel Twin-fluid Injector. J. Technol. 2019, 60, 5. [Google Scholar]
- Wang, B. Research on the Atomization Mechanism and Cooling Application of Three-Stage Atomizing Nozzles for Gas-Liquid Two-Phase Flow. Master’s Thesis, Qingdao University of Science and Technology, Qingdao, China, 2023. [Google Scholar]
- Zhang, S.; Gu, W.; Qiu, B.; Xue, X.; Zhou, L. Design and experiment of a hydraulic lifting wind field test platform for crop protection UAS. Int. J. Agric. Biol. Eng. 2021, 14, 166–174. [Google Scholar] [CrossRef]
- Yao, J.; Furusawa, S.; Kawahara, A. Influence of Some Geometrical Parameters on the Characteristics of Prefilming Twin-Fluid Atomization. Trans. Can. Soc. Mech. Eng. 2014, 38, 391–404. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Li, K.; Liu, Y. Numerical Simulation of Jet Interaction Flow Field with Different Flow Rates. J. Phys. Conf. Ser. 2022, 2364, 012065. [Google Scholar] [CrossRef]
- Mohammad, N.; Nezameddin, S.A.; Hassan, S.H.; Hamidreza, K. CFD Simulation of Drag-Reducing Fluids in a Non-Newtonian Turbulent Pipe Flow. Chem. Eng. Sci. 2024, 285, 119612. [Google Scholar]
- Yan, W. Selection and Application of Three Multiphase Flow Models Based on FLUENT. Yunnan Chem. Ind. 2020, 47, 43–44. [Google Scholar]
- Liu, J.; Hussain, Z.; Wang, X.; Li, Y. Optimization and numerical simulation of the internal flow field of water-pesticide integrated microsprinklers. Irrig. Drain. 2023, 72, 328–342. [Google Scholar] [CrossRef]
- Alexander, D.W.; Kul, P.; Balan, P.G.; Faik, H. Geometrical Optimization of a Venturi-Type Microbubble Generator Using CFD Simulation and Experimental Measurements. Design 2021, 5, 4. [Google Scholar]
- Wu, Y.; Li, H.; Zhao, M. Transient Study of the Internal Flow Field of Air Atomization Nozzles. Automot. Pract. Technol. 2023, 48, 81–84. [Google Scholar]
- Ren, W.; Du, Y.; Li, X.; Yuan, R. Design Optimization and Flow Field Analysis of the Nozzle Structure of a Foreign Fiber Sorter. Text. Res. J. 2022, 92, 1987–1998. [Google Scholar] [CrossRef]
- Chen, X. Design of Ultrasonic Electrostatic Atomization Nozzles and Experimental Study of Droplet Adhesion on Roots. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2021. [Google Scholar]
- Zhou, C. Design and Flow Field Analysis of Axial Nozzles with Adjustable Area for Rocket Engines. Master’s Thesis, Civil Aviation University of China, Tianjin, China, 2014. [Google Scholar]
- Fan, X.; Wang, Y.; Wang, X.; Zhang, S. Parameter Design and Simulation of Small Axial Nozzles. J. Liaoning Univ. (Nat. Sci. Ed.) 2023, 50, 146–153. [Google Scholar]
- Pang, C.; Huang, H. Design Optimization of Experimental Schemes and Data Analysis; Nanjing Southeast University Press: Nanjing, China, 2018. [Google Scholar]
- Levanov, V.A.; Lapina, V.A.; Isaikina, Y.O. Method for Determining the Ozone Mass Transfer Coefficient between the Gas and Liquid Phases in a Bubble Column Reactor. Russ. J. Phys. Chem. A 2024, 98, 1461–1465. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J.; Li, H.; Hua, L.; Yong, Y. Droplet Distribution Characteristics of Impact Sprinklers with Circular and Noncircular Nozzles: Effect of Nozzle Aspect Ratios and Equivalent Diameters. Biosyst. Eng. 2021, 212, 200–214. [Google Scholar] [CrossRef]
- Wu, S.; Liu, J.; Wang, J.; Hao, D.; Wang, R. The Motion of Strawberry Leaves in an Air-Assisted Spray Field and Its Influence on Droplet Deposition. Trans. ASABE 2021, 64, 83–93. [Google Scholar] [CrossRef]
- Fujiwara, K.; Fujii, T. Research Note: Effects of Ozonated Water Spray Droplet Size and Distance on the Dissolved Ozone Concentration at the Spray Target. Ozone Sci. Eng. 2004, 26, 511–516. [Google Scholar] [CrossRef]
- Appah, S.; Jia, W.; Ou, M.; Wang, P.; Gong, C. Investigation of Optimum Applied Voltage, Liquid Flow Pressure, and Spraying Height for Pesticide Application by Induction Charging. Appl. Eng. Agric. 2019, 35, 795–804. [Google Scholar] [CrossRef]
Key Structure Name | Parameter |
---|---|
Inlet inner diameter (d1) | 9 mm, 10 mm, 11 mm |
Throat inner diameter (d2) | 3 mm |
Outlet diameter (d3) | 4.5 mm |
Self-priming hole diameter (d4) | 1.0 mm, 1.5 mm, 2.0 mm |
Water inlet diameter (d5) | 2 mm |
Ozone inlet diameter (d6) | 0.5 mm |
Shrinkage length (L1) | 23 mm |
Throat length (L2) | 2 mm, 3 mm, 4 mm |
Diffuser length (L3) | 9 mm |
Angle of pinching (α) | 15° |
Angle of flare (β) | 10° |
Air Density (kg·m−3) | Air Viscosity (Pa·s) | Water Density (kg·m−3) | Water Viscosity (Pa·s) | Ozone Density (kg·m−3) | Ozone Viscosity (Pa·s) | Surface Tension (N·m−1) |
---|---|---|---|---|---|---|
1.225 | 0.001 | 997.3 | 1.789 × 10−5 | 2.14 | 1.332 × 10−7 | 0.0728 |
Factor | Inlet Inner Diameter (mm) | Throat Length (mm) | Self-Priming Hole Diameter (mm) | |
---|---|---|---|---|
Level | ||||
1 | 9 | 2 | 1 | |
2 | 10 | 3 | 1.5 | |
3 | 11 | 4 | 2 |
Factor | A | B | C | Empty Column | Evaluation Indicators | |
---|---|---|---|---|---|---|
Inlet Inner Diameter | Throat Length | Self-Priming Hole Diameter | e | Negative Pressure | ||
Sequence | (mm) | (mm) | (mm) | (Mpa) | ||
1 | 1 (9.0) | 1 (2.0) | 1 (1.0) | 1 | ** | |
2 | 1 (9.0) | 2 (3.0) | 2 (1.5) | 2 | ** | |
3 | 1 (9.0) | 3 (4.0) | 3 (2.0) | 3 | ** | |
4 | 2 (10.0) | 1 (2.0) | 2 (1.5) | 3 | ** | |
5 | 2 (10.0) | 2 (3.0) | 3 (2.0) | 1 | ** | |
6 | 2 (10.0) | 3 (4.0) | 1 (1.0) | 2 | ** | |
7 | 3 (11.0) | 1 (2.0) | 3 (2.0) | 2 | ** | |
8 | 3 (11.0) | 2 (3.0) | 1 (1.0) | 3 | ** | |
9 | 3 (11.0) | 3 (4.0) | 2 (1.5) | 1 | ** |
Factor | A | B | C | Empty | Evaluation Indicators | |
---|---|---|---|---|---|---|
Sequence | Inlet Inner Diameter (mm) | Throat Length (mm) | Self-Priming Hole Diameter (mm) | e | Negative Pressure (Mpa) | |
1 | 1(9.0) | 1(2.0) | 1(1.0) | 1 | −0.334 | |
2 | 1(9.0) | 2(3.0) | 2(1.5) | 2 | −0.423 | |
3 | 1(9.0) | 3(4.0) | 3(2.0) | 3 | −0.379 | |
4 | 2(10.0) | 1(2.0) | 2(1.5) | 3 | −0.316 | |
5 | 2(10.0) | 2(3.0) | 3(2.0) | 1 | −0.364 | |
6 | 2(10.0) | 3(4.0) | 1(1.0) | 2 | −0.348 | |
7 | 3(11.0) | 1(2.0) | 3(2.0) | 2 | −0.315 | |
8 | 3(11.0) | 2(3.0) | 1(1.0) | 3 | −0.361 | |
9 | 3(11.0) | 3(4.0) | 2(1.5) | 1 | −0.338 | |
K1n | −1.136 | −0.965 | −1.043 | −1.036 | −3.178 | |
K2n | −1.028 | −1.148 | −1.077 | −1.086 | ||
K3n | −1.014 | −1.065 | −1.058 | −1.056 | ||
K1n/N | −0.379 | −0.322 | −0.348 | −0.345 | ||
K2n/N | −0.343 | −0.383 | −0.359 | −0.362 | ||
K3n/N | −0.338 | −0.355 | −0.353 | −0.352 | ||
Range | 0.041 | 0.061 | 0.011 | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Zhang, B.; Xu, X.; Chang, Z.; Wang, X.; Wu, C. Design and Performance Evaluation of a Multi-Fluid Swirling Mixing Atomizer for Efficient Generation of Ozonated Droplets in Agricultural Applications. Agronomy 2025, 15, 1082. https://doi.org/10.3390/agronomy15051082
Hu X, Zhang B, Xu X, Chang Z, Wang X, Wu C. Design and Performance Evaluation of a Multi-Fluid Swirling Mixing Atomizer for Efficient Generation of Ozonated Droplets in Agricultural Applications. Agronomy. 2025; 15(5):1082. https://doi.org/10.3390/agronomy15051082
Chicago/Turabian StyleHu, Xinkang, Bo Zhang, Xiaohong Xu, Zhongwei Chang, Xu Wang, and Chundu Wu. 2025. "Design and Performance Evaluation of a Multi-Fluid Swirling Mixing Atomizer for Efficient Generation of Ozonated Droplets in Agricultural Applications" Agronomy 15, no. 5: 1082. https://doi.org/10.3390/agronomy15051082
APA StyleHu, X., Zhang, B., Xu, X., Chang, Z., Wang, X., & Wu, C. (2025). Design and Performance Evaluation of a Multi-Fluid Swirling Mixing Atomizer for Efficient Generation of Ozonated Droplets in Agricultural Applications. Agronomy, 15(5), 1082. https://doi.org/10.3390/agronomy15051082