Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,606)

Search Parameters:
Keywords = spray dry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1265 KiB  
Article
Enhancing Stability of Boesenbergia rotunda Bioactive Compounds: Microencapsulation via Spray-Drying and Its Physicochemical Evaluation
by Fahmi Ilman Fahrudin, Suphat Phongthai and Pilairuk Intipunya
Foods 2025, 14(15), 2699; https://doi.org/10.3390/foods14152699 - 31 Jul 2025
Viewed by 249
Abstract
This study aimed to microencapsulate Boesenbergia rotunda (fingerroot) extract using maltodextrin (MD) and gum arabic (GA) as wall materials via spray-drying to improve powder physicochemical properties and protect bioactive compounds. MD and GA were employed as wall materials in varying ratios (MD:GA of [...] Read more.
This study aimed to microencapsulate Boesenbergia rotunda (fingerroot) extract using maltodextrin (MD) and gum arabic (GA) as wall materials via spray-drying to improve powder physicochemical properties and protect bioactive compounds. MD and GA were employed as wall materials in varying ratios (MD:GA of 1:0, 0:1, 1:1, 2:1, 1:2) to evaluate their effects on the physicochemical properties of the resulting microcapsules. Spray-dried microcapsules were evaluated for morphology, flowability, particle size distribution, moisture content, hygroscopicity, solubility, encapsulation efficiency, major bioactive compound retention, and thermal stability. The extract encapsulation using MD:GA at 1:1 ratio (MD1GA1) demonstrated a favorable balance, with high solubility (98.70%), low moisture content (8.69%), low hygroscopicity (5.08%), and uniform particle morphology, despite its moderate EE (75.06%). SEM images revealed spherical particles with fewer surface indentations in MD-rich formulations. Microencapsulation effectively retained pinostrobin and pinocembrin in all formulations with pinostrobin consistently retained at a higher value, indicating its higher stability. The balanced profile of physical and functional properties of fingerroot extract with MD1GA1 microcapsule makes it a promising candidate for food and nutraceutical applications. Full article
Show Figures

Graphical abstract

30 pages, 449 KiB  
Review
Bioactive Compounds and the Performance of Proteins as Wall Materials for Their Encapsulation
by Therys Senna de Castro Oliveira, Jhonathan Valente Ferreira Gusmão, Thaís Caroline Buttow Rigolon, Daiana Wischral, Pedro Henrique Campelo, Evandro Martins and Paulo Cesar Stringheta
Micro 2025, 5(3), 36; https://doi.org/10.3390/micro5030036 - 31 Jul 2025
Viewed by 216
Abstract
The encapsulation of bioactive compounds using proteins as wall materials has emerged as an effective strategy to enhance their stability, bioavailability, and controlled release. Proteins offer unique functional properties, including amphiphilic behavior, gel-forming ability, and interactions with bioactives, making them ideal candidates for [...] Read more.
The encapsulation of bioactive compounds using proteins as wall materials has emerged as an effective strategy to enhance their stability, bioavailability, and controlled release. Proteins offer unique functional properties, including amphiphilic behavior, gel-forming ability, and interactions with bioactives, making them ideal candidates for encapsulation. Animal-derived proteins, such as whey and casein, exhibit superior performance in stabilizing lipophilic compounds, whereas plant proteins, including soy and pea protein, demonstrate greater affinity for hydrophilic bioactives. Advances in protein modification and the formation of protein–polysaccharide complexes have further improved encapsulation efficiency, particularly for heat- and pH-sensitive compounds. This review explores the physicochemical characteristics of proteins used in encapsulation, the interactions between proteins and bioactives, and the main encapsulation techniques, including spray drying, complex coacervation, nanoemulsions, and electrospinning. Furthermore, the potential applications of encapsulated bioactives in functional foods, pharmaceuticals, and nutraceuticals are discussed, highlighting the role of emerging technologies in optimizing delivery systems. Understanding the synergy between proteins, bioactives, and encapsulation methods is essential for developing more stable, bioavailable, and sustainable functional products. Full article
(This article belongs to the Section Microscale Biology and Medicines)
16 pages, 1659 KiB  
Article
Ricinus communis L. Leaf Extracts as a Sustainable Alternative for Weed Management
by Aline Mazoy Lopes, Lucas Kila Ribeiro, Maurício Ricardo de Melo Cogo, Lucas Mironuk Frescura, Marcelo Barcellos da Rosa, Alex Schulz, Flávio Dias Mayer, Ederson Rossi Abaide, Marcus Vinícius Tres and Giovani Leone Zabot
Sustainability 2025, 17(15), 6942; https://doi.org/10.3390/su17156942 - 30 Jul 2025
Viewed by 187
Abstract
Weeds pose a significant challenge to agricultural productivity, requiring control strategies that are both effective and environmentally sustainable. Therefore, this study evaluated the inhibitory potential of aqueous extracts from Ricinus communis L. leaves to manage the weeds Oryza sativa L. (weedy rice) and [...] Read more.
Weeds pose a significant challenge to agricultural productivity, requiring control strategies that are both effective and environmentally sustainable. Therefore, this study evaluated the inhibitory potential of aqueous extracts from Ricinus communis L. leaves to manage the weeds Oryza sativa L. (weedy rice) and Cyperus ferax. Extracts were obtained through pressurized liquid extraction using water as the solvent. Bioassays were conducted during pre- and post-emergence stages by foliar spraying 15 and 30 days after sowing (DAS). The effect of extraction time (1–30 min) on inhibitory efficacy was also assessed. Chemical profiles of the extracts were characterized using high-performance liquid chromatography. The extracts significantly inhibited seed germination, with suppression rates reaching 92.7%. Plant growth was also diminished, particularly with earlier treatments (at 15 DAS), resulting in reductions of up to 32% and 53% in shoot length, and 69% and 73% in total dry mass for O. sativa L. and C. ferax, respectively. Mortality rates of O. sativa L. and C. ferax reached 64% and 58%, respectively. Phenolic compounds were identified in the extracts, and higher concentrations were observed at shorter extraction times. These findings underscore the potential of R. communis L. leaf extracts as an ecologically sustainable alternative for weed management, providing an effective and natural approach that may reduce reliance on synthetic herbicides and mitigate their environmental impact. Full article
Show Figures

Figure 1

16 pages, 1872 KiB  
Article
Development of Supplements of Calcium Microencapsulated with Brewer’s Spent Yeast Mannoproteins—Study of Gastrointestinal and Colonic Bioaccessibility
by Marilin E. Aquino, Silvina R. Drago and Raúl E. Cian
Foods 2025, 14(15), 2632; https://doi.org/10.3390/foods14152632 - 27 Jul 2025
Viewed by 416
Abstract
Calcium microcapsules were developed by spray-drying using mannoproteins (MPs) extracted from brewer’s spent yeast, xanthan gum (XG), and maltodextrin as encapsulating materials. The formulas included 11 g of calcium, 24 g of MP, and 0, 2, 4, or 8 g of XG 100 [...] Read more.
Calcium microcapsules were developed by spray-drying using mannoproteins (MPs) extracted from brewer’s spent yeast, xanthan gum (XG), and maltodextrin as encapsulating materials. The formulas included 11 g of calcium, 24 g of MP, and 0, 2, 4, or 8 g of XG 100 g−1 solids, obtaining C1, C2, C3, and C4 microcapsules, respectively. Maltodextrin was added to complete 100 g of solids. Calcium intestinal (IB), colonic (CB), and total bioaccessibility (TB) were estimated after a simulated gastrointestinal digestion followed by in vitro colonic fermentation. The macromolecules of microcapsules interacted by ionic and hydrophobic forces. Microcapsules C1 and C2 showed a spherical shape. However, the addition of XG to the formulation contributed to the formation of concavities in the microcapsules. All microcapsules had higher IB than the control (CaCl2), probably due to the calcium-chelating peptides dialyzed from MP. Moreover, C1 and C2 showed the highest IB values (≈23%). However, C3 and C4 showed the highest CB values (≈11%), attributing this effect to the short-chain fatty acids produced during colonic fermentation. Finally, C1 and C2 showed the highest TB (31.8 ± 0.1 and 32.0 ± 0.4%, respectively). The use of MP allowed for obtaining a supplement with high calcium bioaccessibility. Full article
Show Figures

Graphical abstract

12 pages, 828 KiB  
Communication
Enhanced Protein Extraction from Auxenochlorella protothecoides Through Synergistic Mechanical Cell Disruption and Alkaline Solubilization
by Jun Wei Ng, Sze Ying Lee, Tong Mei Teh, Melanie Weingarten and Md. Mahabubur Rahman Talukder
Foods 2025, 14(15), 2597; https://doi.org/10.3390/foods14152597 - 24 Jul 2025
Viewed by 238
Abstract
Microalgae proteins are increasingly recognized in the food and nutraceutical industries for their functional versatility and high nutritional value. Mild alkaline treatment is commonly used for cell wall degradation and intracellular protein solubilization, consequently enhancing the protein extraction yield. The findings of this [...] Read more.
Microalgae proteins are increasingly recognized in the food and nutraceutical industries for their functional versatility and high nutritional value. Mild alkaline treatment is commonly used for cell wall degradation and intracellular protein solubilization, consequently enhancing the protein extraction yield. The findings of this study reveal that alkaline treatment alone, even at higher NaOH concentration (up to 0.3 M) and treatment time (up to 90 min), was ineffective (max. 2.4% yield) for the extraction of protein from Auxenochlorella protothecoides biomass. This challenge was significantly reduced through synergistic application of mechanical cell disruption using high-pressure homogenization (HPH) and alkaline solubilization. Single-pass HPH (35 k psi) alone without alkaline treatment led to 52.3% protein solubilization from wet biomass directly harvested from culture broth, while it was only 18.5% for spray-dried biomass. The combined effect of HPH and alkaline (0.1 M NaOH) treatment significantly increased protein extraction yield to 68.0% for a spray-dried biomass loading of 50 g L−1. Through replacing spray-dried biomass with wet biomass, the requirement of NaOH was reduced by 5-fold to 0.02 M to achieve a similar yield of 68.1%. The process integration of HPH with the mild alkaline solubilization and utilization of wet biomass from culture broth showed high potential for industrialization of microalgae protein extraction. This method achieves high extraction yield while reducing alkaline waste and eliminating the need for energy-consuming drying of biomass, thereby minimizing the environmental impact. Full article
Show Figures

Figure 1

24 pages, 4710 KiB  
Article
Preparation of Tung Oil Microcapsules Coated with Chitosan Sodium Tripolyphosphate and Their Effects on Coating Film Properties
by Yang Dong, Jinzhe Deng and Xiaoxing Yan
Coatings 2025, 15(8), 867; https://doi.org/10.3390/coatings15080867 - 23 Jul 2025
Viewed by 320
Abstract
To address the high drying temperature, low yield, and low coating rate that characterize traditional chitosan/gum arabic microcapsules, this study used chitosan/sodium tripolyphosphate (STPP) ionic crosslinking to construct a composite wall, combined with optimized emulsifier compounding (T-80/SDBS), to prepare tung oil self-healing microcapsules. [...] Read more.
To address the high drying temperature, low yield, and low coating rate that characterize traditional chitosan/gum arabic microcapsules, this study used chitosan/sodium tripolyphosphate (STPP) ionic crosslinking to construct a composite wall, combined with optimized emulsifier compounding (T-80/SDBS), to prepare tung oil self-healing microcapsules. Orthogonal testing determined the following optimal parameters: a core-to-wall ratio of 2.0:1.0, a T-80/SDBS ratio of 4.0:6.0 (HLB = 12.383), an STPP concentration of 4%, and a spray-drying temperature of 120 °C. With these parameters, a yield of 42.91% and coating rate of 68.50% were achieved. The microcapsules were spherical (1–6 μm), with chitosan–STPP electrostatic interactions forming a dense wall. Adding 5% microcapsules to the UV topcoat enabled self-healing after 60 s UV curing: the scratch-healing rate reached 25.25% (width decreased from 11.13 μm to 8.32 μm), the elongation at break increased by 110% to 9.31%, the light transmission remained >82.50%, and the color difference (ΔE = 2.16) showed no significant change versus unmodified coating. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

20 pages, 2108 KiB  
Article
Gelatin-Based Microspheres of Ciprofloxacin for Enhanced Lung Delivery and Biofilm Eradication in Pseudomonas aeruginosa Pulmonary Infections
by Luis Monrreal-Ortega, Rocío Iturriaga-Gallardo, Andrea Vilicic-Rubio, Pedro Torres, Patricio Leyton, Javier O. Morales, Tania F. Bahamondez-Canas and Daniel Moraga-Espinoza
Gels 2025, 11(8), 567; https://doi.org/10.3390/gels11080567 - 23 Jul 2025
Viewed by 312
Abstract
Chronic lung infection is the main predictor of morbidity and mortality in cystic fibrosis (CF), and current pharmacological alternatives are ineffective against Pseudomonas aeruginosa infections. We developed ciprofloxacin (CIP) for inhalation, aiming at improving its solubility through the formation of an amorphous solid [...] Read more.
Chronic lung infection is the main predictor of morbidity and mortality in cystic fibrosis (CF), and current pharmacological alternatives are ineffective against Pseudomonas aeruginosa infections. We developed ciprofloxacin (CIP) for inhalation, aiming at improving its solubility through the formation of an amorphous solid dispersion (ASD) using gelatin (GA). CIP and GA were dissolved in varying ratios and then spray-dried, obtaining CIP-GA microspheres in a single step. The dissolution rate, size distribution, morphology, and aerodynamic properties of CIP-GA microspheres were studied, as well as their antimicrobial activity on P. aeruginosa biofilms. Microspheres formulated with a higher GA ratio increased the dissolution of CIP ten-fold at 6 h compared to gelatin-free CIP. Formulations with 75% GA or more could form ASDs and improve CIP’s dissolution rate. CIP-GA microspheres outperformed CIP in eradicating P. aeruginosa biofilm at 24 h. The spray-drying process produced CIP-GA microspheres with good aerodynamic properties, as indicated by a fine particle fraction (FPF) of 67%, a D50 of 3.52 μm, and encapsulation efficiencies above 70%. Overall, this study demonstrates the potential of gelatin to enhance the solubility of poorly soluble drugs by forming ASDs. As an FDA-approved excipient for lung delivery, these findings are valuable for particle engineering and facilitating the rapid translation of technologies to the market. Full article
Show Figures

Graphical abstract

16 pages, 1006 KiB  
Article
Spray Drying of Jackfruit (Artocarpus heterophyllus Lam.) Seeds Protein Concentrate: Physicochemical, Structural, and Thermal Characterization
by Dulce María de Jesús Miss-Zacarías, Montserrat Calderón-Santoyo, Victor Manuel Zamora-Gasga, Gabriel Ascanio and Juan Arturo Ragazzo-Sánchez
Processes 2025, 13(7), 2319; https://doi.org/10.3390/pr13072319 - 21 Jul 2025
Viewed by 370
Abstract
Jackfruit seeds (Artocarpus heterophyllus Lam.) are a viable option for supporting a sustainable protein supply. The objective was to obtain protein powder from jackfruit seeds protein concentrate (JSPC) by spray drying. A central composite design was used; the independent variables were inlet [...] Read more.
Jackfruit seeds (Artocarpus heterophyllus Lam.) are a viable option for supporting a sustainable protein supply. The objective was to obtain protein powder from jackfruit seeds protein concentrate (JSPC) by spray drying. A central composite design was used; the independent variables were inlet temperature (110, 115, and 120 °C) and the solids of the JSPC solution (5, 7.5, and 10%). With the desirability function, the optimal drying parameters to maximize the process yield and achieve a low moisture content were 7.5% solids in the JSPC solution and an inlet temperature of 115 °C, resulting in a process yield of 71.51 ± 1.21%. Moisture (5.33 ± 0.11%), water activity (0.15 ± 0.02), bulk density (0.40 ± 0.01 g/mL), and color (L*: 70.56 ± 0.38, a*: 7.80 ± 0.11 and b*: 15.18 ± 0.15) were measured; these parameters are within the allowed ranges for stable food powders. Hydrosolubility (82.46 ± 1.68%), foaming capacity (48.33 ± 1.66%), and emulsifying activity (105.74 ± 10.20 m2/g) were evaluated. Glass transition temperature (129.49 °C) of the JSPC powder enables the establishment of optimal storage and processing conditions for the protein. JSPC powder could be applied to the elaboration of food products with nutritional and functional value. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Graphical abstract

22 pages, 12915 KiB  
Article
Preparation of Tung Oil Microcapsules Coated with Chitosan–Arabic Gum and Its Effect on the Properties of UV Coating
by Jinzhe Deng and Xiaoxing Yan
Polymers 2025, 17(14), 1985; https://doi.org/10.3390/polym17141985 - 19 Jul 2025
Cited by 1 | Viewed by 270
Abstract
Tung oil, as dry oil, can quickly dry and polymerize into tough and glossy waterproof coatings, with a very high application value. Tung oil was used as a core material to prepare Tung oil microcapsules coated with chitosan–Arabic gum, and the preparation process [...] Read more.
Tung oil, as dry oil, can quickly dry and polymerize into tough and glossy waterproof coatings, with a very high application value. Tung oil was used as a core material to prepare Tung oil microcapsules coated with chitosan–Arabic gum, and the preparation process of the microcapsules was optimized. The effect of adding a UV coating on the performance of the microcapsules was explored. Under the conditions of a core–wall mass ratio of 0.5:1.0, pH value of 3.5, mass ratio of chitosan to Arabic gum of 1.0:4.0, and spray drying temperature of 130 °C, Tung oil microcapsules coated with chitosan–Arabic gum had a higher yield and coverage rate, which were 32.85% and 33.20%, respectively. With the increase of the spray drying temperature during preparation, the roughness of the coating first increased and then decreased, the visible light transmittance decreased first and then increased, and the glossiness showed an overall downward trend. The self-repairing rate decreased gradually. When the microcapsules #11 were added to the UV topcoat at 5%, the coating can obtain excellent comprehensive properties; the roughness was 0.79 μm, elongation at break was 5.04%, visible light transmittance was 77.96%, gloss loss rate was 10.95%, and self-repairing rate was 20.47%. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

18 pages, 1790 KiB  
Article
Development of Co-Amorphous Systems for Inhalation Therapy—Part 1: From Model Prediction to Clinical Success
by Eleonore Fröhlich, Aurora Bordoni, Nila Mohsenzada, Stefan Mitsche, Hartmuth Schröttner and Sarah Zellnitz-Neugebauer
Pharmaceutics 2025, 17(7), 922; https://doi.org/10.3390/pharmaceutics17070922 - 16 Jul 2025
Viewed by 413
Abstract
Background/Objectives: The integration of machine learning (ML) and artificial intelligence (AI) has revolutionized the pharmaceutical industry by improving drug discovery, development and manufacturing processes. Based on literature data, an ML model was developed by our group to predict the formation of binary [...] Read more.
Background/Objectives: The integration of machine learning (ML) and artificial intelligence (AI) has revolutionized the pharmaceutical industry by improving drug discovery, development and manufacturing processes. Based on literature data, an ML model was developed by our group to predict the formation of binary co-amorphous systems (COAMSs) for inhalation therapy. The model’s ability to develop a dry powder formulation with the necessary properties for a predicted co-amorphous combination was evaluated. Methods: An extended experimental validation of the ML model by co-milling and X-ray diffraction analysis for 18 API-API (active pharmaceutical ingredient) combinations is presented. Additionally, one COAMS of rifampicin (RIF) and ethambutol (ETH), two first-line tuberculosis (TB) drugs are developed further for inhalation therapy. Results: The ML model has shown an accuracy of 79% in predicting suitable combinations for 35 APIs used in inhalation therapy; experimental accuracy was demonstrated to be 72%. The study confirmed the successful development of stable COAMSs of RIF-ETH either via spray-drying or co-milling. In particular, the milled COAMSs showed better aerosolization properties (higher ED and FPF with lower standard deviation). Further, RIF-ETH COAMSs show much more reproducible results in terms of drug quantity dissolved over time. Conclusions: ML has been shown to be a suitable tool to predict COAMSs that can be developed for TB treatment by inhalation to save time and cost during the experimental screening phase. Full article
(This article belongs to the Special Issue New Platform for Tuberculosis Treatment)
Show Figures

Graphical abstract

26 pages, 6272 KiB  
Article
Degradation of the Surface of Synthetic Layered Composites Due to Accelerated Ageing
by Cezary Strąk, Ewelina Kozikowska, Marcin Małek and Marcin Wachowski
Materials 2025, 18(14), 3342; https://doi.org/10.3390/ma18143342 - 16 Jul 2025
Viewed by 306
Abstract
This study investigates the effect of accelerated aging on the microstructure and surface properties of synthetic sports surfaces, with the goal of developing a more representative laboratory simulation method. Three common types of polyurethane-based sports surfaces were examined: (1) a dual-layer SBR base [...] Read more.
This study investigates the effect of accelerated aging on the microstructure and surface properties of synthetic sports surfaces, with the goal of developing a more representative laboratory simulation method. Three common types of polyurethane-based sports surfaces were examined: (1) a dual-layer SBR base with a thin EPDM spray topcoat; (2) a single-layer EPDM surface with a smooth finish; and (3) a dual-layer “sandwich” structure with a rough EPDM upper layer. Samples were tested for slip resistance (PTV), abrasion resistance, and surface morphology using SEM, as well as surface roughness and tensile properties before and after aging. Method combining UV radiation and water spray was introduced and evaluated. Microstructural analysis with roughness measurements revealed surface degradation in all materials, with more extensive damage observed in the UV + spray cycle. Slip resistance results showed reduced performance in dry conditions and improved values in wet conditions post-aging. The single-layer EPDM surface demonstrated the highest initial dry PTV, while the dual-layer with spray had the lowest. After aging, all surfaces exhibited smaller differences between dry and wet performance but no longer met dry condition standards. These results may guide future revisions of performance testing standards and contribute to the development of safer, longer-lasting synthetic sports surfaces. Full article
(This article belongs to the Special Issue Surface Technology and Coatings Materials)
Show Figures

Graphical abstract

18 pages, 4528 KiB  
Article
Behavior of Aqueous Medicated Inks on Porous Tablet Surfaces
by Krisztina Ludasi, Anna Sass, Katalin Kristó, András Kelemen, Klára Pintye-Hódi and Tamás Sovány
Pharmaceutics 2025, 17(7), 908; https://doi.org/10.3390/pharmaceutics17070908 - 14 Jul 2025
Viewed by 345
Abstract
Background/Objectives: Although technology has progressed and novel dosage forms have been developed, tablets are still the most used form of medication. However, the present manufacturing methods of these oral solid dosage forms offer limited capacity for personalized treatment and adaptable dosing. Personalized therapy, [...] Read more.
Background/Objectives: Although technology has progressed and novel dosage forms have been developed, tablets are still the most used form of medication. However, the present manufacturing methods of these oral solid dosage forms offer limited capacity for personalized treatment and adaptable dosing. Personalized therapy, with a few exceptions, is not yet a part of routine clinical practice. Drug printing could be a possible approach to increase the use of personalized therapy. The aim of this work was to investigate the role of surface tension and the viscosity of inks in the formation of the printing pattern and to investigate how the porosity of substrate tablets influences the behavior of inks on the surface. Methods: Spray-dried mannitol served as a binder and filler, while magnesium stearate functioned as a lubricant in the preparation of substrate tablets. Brilliant Blue dye was a model “drug”. The ink formulation was applied to the substrates in three varying quantities. Results: Increasing the viscosity enhanced the drug content, potentially improving printing speed and pattern accuracy. However, it negatively impacted the dosing accuracy due to nozzle clogging and prolonged drying time. Viscosity had a significantly higher impact on the ink behavior than surface tension. Lowering the surface tension improved the dosing accuracy and reduced the drying time but resulted in smaller drop sizes and decreases in pattern accuracy. Reducing the substrate porosity led to longer drying times and diminished pattern accuracy. Conclusions: A target surface tension of around 30 mN/m is suggested for inkjet printing. It is necessary to further investigate the applicability of the technology with solutions of inks with high viscosity and low surface tension, including the API. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

25 pages, 9865 KiB  
Article
Microencapsulation of Propolis by Complex Coacervation with Chia Mucilage and Gelatin: Antioxidant Stability and Functional Potential
by Carlos A. Ligarda-Samanez, David Choque-Quispe, Henry Palomino-Rincón, Elibet Moscoso-Moscoso, Rodrigo J. Guzmán Gutiérrez and Ismael Banda Mozo
Antioxidants 2025, 14(7), 845; https://doi.org/10.3390/antiox14070845 - 10 Jul 2025
Viewed by 460
Abstract
Propolis is a bee-derived resin rich in phenolic compounds known for their antioxidant, anti-inflammatory, and antimicrobial properties; however, its limited solubility and stability hinder its incorporation into food matrices. This study aimed to optimize the microencapsulation of ethanolic propolis extract through complex coacervation [...] Read more.
Propolis is a bee-derived resin rich in phenolic compounds known for their antioxidant, anti-inflammatory, and antimicrobial properties; however, its limited solubility and stability hinder its incorporation into food matrices. This study aimed to optimize the microencapsulation of ethanolic propolis extract through complex coacervation using chia mucilage and gelatin as wall materials, followed by spray drying. A 32 factorial design was applied to evaluate the effects of coacervate concentration and inlet temperature on various microcapsule properties. The optimal formulation (3.13% coacervate and 120 °C) exhibited high phenolic retention (15.36 mg GAE/g), notable antioxidant capacity (60.10 µmol TE/g), good solubility, thermal stability, and sustained in vitro release. Phenolic compounds were identified and quantified by UPLC-PDA-QDa, including gallic acid, catechin, epicatechin, epigallocatechin gallate, rutin, myricetin, resveratrol, quercetin, and kaempferol. Incorporating the microcapsules into functional gummy candies significantly enhanced their antioxidant activity without compromising sensory attributes. These findings support the use of complex coacervation as an effective strategy for stabilizing propolis bioactives, with promising applications in the development of functional foods that offer potential health benefits. Full article
Show Figures

Graphical abstract

21 pages, 4681 KiB  
Article
Spray-Dried Polymeric Microspheres for Lipophilic Drugs: Formulation Design, Physicochemical Characterization, and In Vitro Release Evaluation
by Felipe Nataren-Rodríguez, Jorge Pacheco-Molina, Sandra Leticia Gracia-Vásquez, Isaías Balderas-Rentería, Mónica A. Ramírez-Cabrera, Eder Arredondo-Espinoza, Karla J. Santamaría and Patricia González-Barranco
Pharmaceuticals 2025, 18(7), 1020; https://doi.org/10.3390/ph18071020 - 9 Jul 2025
Viewed by 824
Abstract
Background/Objectives: The formulation of microspheres for lipophilic drugs using aqueous methods, such as spray drying, faces significant challenges. The main objective of this study was to evaluate the effect of the process parameters and polymer selection on the production of microspheres by [...] Read more.
Background/Objectives: The formulation of microspheres for lipophilic drugs using aqueous methods, such as spray drying, faces significant challenges. The main objective of this study was to evaluate the effect of the process parameters and polymer selection on the production of microspheres by spray drying for a lipophilic drug. Methods: Lipophilic drug-loaded microspheres were developed using various polymers via the aqueous spray drying method. The effects of the factors on the yield percentage and encapsulation efficiency were analyzed. Microspheres preparation included Agave inulin, guar gum, hydroxypropyl methylcellulose, and Eudragit® S100. A 23 factorial design was performed, and the parameters were optimized. Results: Inlet temperature, feed flow, and polymer percentage showed a significant effect (p < 0.05) on the yield percentage of guar gum microspheres and encapsulation efficiency of the inulin microspheres. Inulin and guar gum microspheres showed the best yield percentage (75.41%) and encapsulation efficiency (100%), respectively. In addition, guar gum microspheres had the best morphology, and hydroxypropyl methylcellulose microspheres were smaller and had an irregular surface. Eudragit did not maintain its delayed release property due to limitations of the aqueous method; inulin released the drug immediately, and guar gum and hydroxypropyl methylcellulose microspheres prolonged release only by a few additional hours. Conclusions: The experimental design showed that optimizing the parameters (inlet temperature, feed flow, and the type and percentage of polymer) can regulate the microsphere development process to obtain improved product yield and encapsulation efficiency results. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

22 pages, 1315 KiB  
Review
Freeze and Spray Drying Technologies to Produce Solid Microbial Formulations for Sustainable Agriculture
by Luciana Luft and Marcio A. Mazutti
Processes 2025, 13(7), 2188; https://doi.org/10.3390/pr13072188 - 9 Jul 2025
Viewed by 557
Abstract
Different techniques that require specific conditions are used to increase long-term stability and facilitate the transportation of products. Solid microbial formulation gained significant attention in the scientific world for several applications due to its benefits, mainly for agriculture. The extensive applications in the [...] Read more.
Different techniques that require specific conditions are used to increase long-term stability and facilitate the transportation of products. Solid microbial formulation gained significant attention in the scientific world for several applications due to its benefits, mainly for agriculture. The extensive applications in the agricultural area, especially in the protection as a biopesticide and in the nutrition as a biofertilizer, have expanded knowledge on the production of solid bioproducts to keep up with developments in the community. Recent scientific works have disclosed different techniques, increased yields, and optimized parameters and other related procedures to produce solid microbial formulations with quality. However, the optimal protocol for solid microbial preparations differs between species and strains. The mechanisms underlying the protection and damage during drying methods and storage are, unfortunately, not clearly understood. Therefore, the current review highlights the state of the art of freeze and spray drying, both physical methods that are applied in microorganism formulations. Additionally, the study highlights the stresses these systems are exposed to during the drying process, as well as the strategies employed to ensure their stability throughout processing and storage. In summary, the information in this review provides a theoretical basis for the selection of these relevant technologies, according to the requirements demanded to obtain a sustainable bioinput. Full article
Show Figures

Figure 1

Back to TopTop