Gelatin-Based Microspheres of Ciprofloxacin for Enhanced Lung Delivery and Biofilm Eradication in Pseudomonas aeruginosa Pulmonary Infections
Abstract
1. Introduction
2. Results and Discussion
2.1. Encapsulation Efficiency (EE) of Spray-Dried Microspheres
2.2. Gelatin Encapsulation Increases CIP Dissolution
2.3. Gelatin Encapsulation of CIP Increased Biofilm Eradication Efficiency
2.4. Gelatin Encapsulation Improved the Aerodynamic Efficiency of the Formulations
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Development of CIP-Loaded GA Microspheres
4.3. Encapsulation Efficiency (EE)
4.4. Drug Quantification
4.5. Dissolution Testing
4.6. Differential Scanning Calorimetry (DSC) Assay
4.7. Biofilm Eradication Efficacy of CIP Microspheres
4.8. Morphology, Sizing, and Aerodynamic Performance of the CIP-Loaded Microspheres
4.9. Raman Spectroscopy
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASD | Amorphous solid dispersion |
CIP | Ciprofloxacin |
CF | Cystic fibrosis |
CFU | Colony-forming units |
DPI | Dry powder inhaler |
ED | Emitted dose |
FPD | Fine particle dose |
FPF | Fine particle fraction |
GA | Gelatin type A |
LB | Luria–Bertani culture media |
MMAD | Mass medium aerodynamic diameter |
NGI | Next-generation impactor |
References
- Gbian, D.L.; Omri, A. Current and Novel Therapeutic Strategies for the Management of Cystic Fibrosis. Expert Opin. Drug Deliv. 2021, 18, 535–552. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.D.; Goss, C.H. Epidemiology of CF: How Registries Can Be Used to Advance Our Understanding of the CF Population. J. Cyst. Fibros. 2018, 17, 297–305. [Google Scholar] [CrossRef]
- Scotet, V.; L’hostis, C.; Férec, C. The Changing Epidemiology of Cystic Fibrosis: Incidence, Survival and Impact of the CFTR Gene Discovery. Genes 2020, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Rowe, S.M.; Stacey, M.; Sorscher, E.J. Cystic Fibrosis. N. Engl. J. Med. 2024, 352, 1992–2001. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Cymberknoh, M.; Shoseyov, D.; Kerem, E. Managing Cystic Fibrosis: Strategies That Increase Life Expectancy and Improve Quality of Life. Am. J. Respir. Crit. Care Med. 2011, 183, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Alhajj, N.; O’Reilly, N.J.; Cathcart, H. Developing Ciprofloxacin Dry Powder for Inhalation: A Story of Challenges and Rational Design in the Treatment of Cystic Fibrosis Lung Infection. Int. J. Pharm. 2022, 613, 121388. [Google Scholar] [CrossRef]
- Pas, T.; Vergauwen, B.; Van den Mooter, G. Exploring the Feasibility of the Use of Biopolymers as a Carrier in the Formulation of Amorphous Solid Dispersions–Part I: Gelatin. Int. J. Pharm. 2018, 535, 47–58. [Google Scholar] [CrossRef]
- Kapourani, A.; Vardaka, E.; Katopodis, K.; Kachrimanis, K.; Barmpalexis, P. Crystallization Tendency of APIs Possessing Different Thermal and Glass Related Properties in Amorphous Solid Dispersions. Int. J. Pharm. 2020, 579, 119149. [Google Scholar] [CrossRef]
- Pas, T.; Struyf, A.; Vergauwen, B.; Van den Mooter, G. Ability of Gelatin and BSA to Stabilize the Supersaturated State of Poorly Soluble Drugs. Eur. J. Pharm. Biopharm. 2018, 131, 211–223. [Google Scholar] [CrossRef]
- Maurice, N.M.; Bedi, B.; Sadikot, R.T. Pseudomonas Aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections. Am. J. Respir Cell Mol. Biol. 2018, 58, 428–439. [Google Scholar] [CrossRef]
- Drenkard, E.; Ausubel, F.M. Pseudomonas Biofilm Formation and Antibiotic Resistance Are Linked to Phenotypic Variation. Nature 2002, 416, 740–743. [Google Scholar] [CrossRef] [PubMed]
- Doring, G.; Conway, S.P.; Heijerman, H.G.M.; Hodson, M.E.; Hoiby, N.; Smyth, A.; Touw, D.J. Antibiotic Therapy against Pseudomonas Aeruginosa in Cystic Fibrosis: A European Consensus. Eur. Respir. J. 2000, 16, 749–767. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Hamblett, N.; Kloster, M.; Rosenfeld, M.; Gibson, R.L.; Retsch-Bogart, G.Z.; Emerson, J.; Thompson, V.; Ramsey, B.W. Impact of Sustained Eradication of New Pseudomonas Aeruginosa Infection on Long-Term Outcomes in Cystic Fibrosis. Clin. Infect. Dis. 2015, 61, 707–715. [Google Scholar] [CrossRef]
- Shariati, A.; Arshadi, M.; Khosrojerdi, M.A.; Abedinzadeh, M.; Ganjalishahi, M.; Maleki, A.; Heidary, M.; Khoshnood, S. The Resistance Mechanisms of Bacteria against Ciprofloxacin and New Approaches for Enhancing the Efficacy of This Antibiotic. Front. Public Health 2022, 10, 1025633. [Google Scholar] [CrossRef]
- Serisier, D.J.; Bilton, D.; De Soyza, A.; Thompson, P.J.; Kolbe, J.; Greville, H.W.; Cipolla, D.; Bruinenberg, P.; Gonda, I. Inhaled, Dual Release Liposomal Ciprofloxacin in Non-Cystic Fibrosis Bronchiectasis (ORBIT-2): A Randomised, Double-Blind, Placebo-Controlled Trial. Thorax 2013, 68, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Haworth, C.S.; Bilton, D.; Chalmers, J.D.; Davis, A.M.; Froehlich, J.; Gonda, I.; Thompson, B.; Wanner, A.; O’Donnell, A.E. Inhaled Liposomal Ciprofloxacin in Patients with Non-Cystic Fibrosis Bronchiectasis and Chronic Lung Infection with Pseudomonas Aeruginosa (ORBIT-3 and ORBIT-4): Two Phase 3, Randomised Controlled Trials. Lancet Respir. Med. 2019, 7, 213–226. [Google Scholar] [CrossRef]
- Golomb, B.A.; Koslik, H.J.; Redd, A.J. Case Report: Fluoroquinolone-Induced Serious, Persistent, Multisymptom Adverse Effects. BMJ Case Rep. 2015, 2015, bcr2015209821. [Google Scholar] [CrossRef] [PubMed]
- Varanda, F.; Pratas de Melo, M.J.; Caço, A.I.; Dohrn, R.; Makrydaki, F.A.; Voutsas, E.; Tassios, D.; Marrucho, I.M. Solubility of Antibiotics in Different Solvents. 1. Hydrochloride Forms of Tetracycline, Moxifloxacin, and Ciprofloxacin. Ind. Eng. Chem. Res. 2006, 45, 6368–6374. [Google Scholar] [CrossRef]
- Caço, A.I.; Varanda, F.; Pratas de Melo, M.J.; Dias, A.M.A.; Dohrn, R.; Marrucho, I.M. Solubility of Antibiotics in Different Solvents. Part II. Non-Hydrochloride Forms of Tetracycline and Ciprofloxacin. Ind. Eng. Chem. Res. 2008, 47, 8083–8089. [Google Scholar] [CrossRef]
- Park, H.-R.; Kim, T.H.; Bark, K.-M. Physicochemical Properties of Quinolone Antibiotics in Various Environments. Eur. J. Med. Chem. 2002, 37, 443–460. [Google Scholar] [CrossRef]
- Ross, D.L.; Riley, C.M. Aqueous Solubilities of Some Variously Substituted Quinolone Antimicrobials. Int. J. Pharm. 1990, 63, 237–250. [Google Scholar] [CrossRef]
- Karimi, K.; Katona, G.; Csóka, I.; Ambrus, R. Physicochemical Stability and Aerosolization Performance of Dry Powder Inhalation System Containing Ciprofloxacin Hydrochloride. J. Pharm. Biomed. Anal. 2018, 148, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Shetty, N.; Zeng, L.; Mangal, S.; Nie, H.; Rowles, M.R.; Guo, R.; Han, Y.; Park, J.H.; Zhou, Q. Effects of Moisture-Induced Crystallization on the Aerosol Performance of Spray Dried Amorphous Ciprofloxacin Powder Formulations. Pharm. Res. 2018, 35, 1–13. [Google Scholar]
- Shetty, N.; Park, H.; Zemlyanov, D.; Mangal, S.; Bhujbal, S.; Zhou, Q.T. Influence of Excipients on Physical and Aerosolization Stability of Spray Dried High-Dose Powder Formulations for Inhalation. Int. J. Pharm. 2018, 544, 222–234. [Google Scholar] [CrossRef]
- Behrend-Keim, B.; Castro-Muñoz, A.; Monrreal-Ortega, L.; Ávalos-León, B.; Campos-Estrada, C.; Smyth, H.D.C.; Bahamondez-Canas, T.F.; Moraga-Espinoza, D. The Forgotten Material: Highly Dispersible and Swellable Gelatin-Based Microspheres for Pulmonary Drug Delivery of Cromolyn Sodium and Ipratropium Bromide. Int. J. Pharm. 2023, 644, 123331. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Inactive Ingredient Database. Available online: https://www.Accessdata.Fda.Gov/Scripts/Cder/Iig/Index.Cfm (accessed on 31 October 2017).
- Olivera, M.E.; Manzo, R.H.; Junginger, H.E.; Midha, K.K.; Shah, V.P.; Stavchansky, S.; Dressman, J.B.; Barends, D.M. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Ciprofloxacin Hydrochloride. J. Pharm. Sci. 2011, 100, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.R.C.; Loebenberg, R.; Almukainzi, M. Simulated Biological Fluids with Possible Application in Dissolution Testing. Dissolution Technol. 2011, 18, 15–28. [Google Scholar] [CrossRef]
- Hastedt, J.E.; Bäckman, P.; Cabal, A.; Clark, A.; Ehrhardt, C.; Forbes, B.; Hickey, A.J.; Hochhaus, G.; Jiang, W.; Kassinos, S. IBCS: 1. Principles and Framework of an Inhalation-Based Biopharmaceutics Classification System. Mol. Pharm. 2022, 19, 2032–2039. [Google Scholar] [CrossRef]
- Silva, D.M.; Vyas, H.K.N.; Sanderson-Smith, M.L.; Sencadas, V. Development and Optimization of Ciprofloxacin-Loaded Gelatin Microparticles by Single-Step Spray-Drying Technique. Powder Technol. 2018, 330, 201–209. [Google Scholar] [CrossRef]
- Singh, A.; Van den Mooter, G. Spray Drying Formulation of Amorphous Solid Dispersions. Adv. Drug Deliv. Rev. 2016, 100, 27–50. [Google Scholar] [CrossRef]
- Lim, H.-T.; Balakrishnan, P.; Oh, D.H.; Joe, K.H.; Kim, Y.R.; Hwang, D.H.; Lee, Y.-B.; Yong, C.S.; Choi, H.-G. Development of Novel Sibutramine Base-Loaded Solid Dispersion with Gelatin and HPMC: Physicochemical Characterization and Pharmacokinetics in Beagle Dogs. Int. J. Pharm. 2010, 397, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.K.; Biswas, P. Structural Elucidation of Levofloxacin and Ciprofloxacin Using Density Functional Theory and Raman Spectroscopy with Inexpensive Lab-Built Setup. J. Mol. Struct. 2020, 1222, 128946. [Google Scholar] [CrossRef]
- Rajalakshmi, K.; Gunasekaran, S.; Kumaresan, S. Vibrational Spectra, Electronic and Quantum Mechanical Investigations on Ciprofloxacin. Indian J. Phys. 2014, 88, 733–744. [Google Scholar] [CrossRef]
- Frushour, B.G.; Koenig, J.L. Raman Scattering of Collagen, Gelatin, and Elastin. Biopolymers 1975, 14, 379–391. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, N.; Yu, L.; Zhou, S.; Shanks, R.; Zheng, J. Imaging the Phase of Starch–Gelatin Blends by Confocal Raman Microscopy. Food Hydrocoll. 2016, 60, 7–10. [Google Scholar] [CrossRef]
- Ziaee, A.; O’Dea, S.; Howard-Hildige, A.; Padrela, L.; Potter, C.; Iqbal, J.; Albadarin, A.B.; Walker, G.; O’Reilly, E.J. Amorphous Solid Dispersion of Ibuprofen: A Comparative Study on the Effect of Solution Based Techniques. Int. J. Pharm. 2019, 572, 118816. [Google Scholar] [CrossRef]
- Hassan, M.M.; Harrington, N.E.; Sweeney, E.; Harrison, F. Predicting Antibiotic-Associated Virulence of Pseudomonas Aeruginosa Using an Ex Vivo Lung Biofilm Model. Front Microbiol. 2020, 11, 568510. [Google Scholar] [CrossRef]
- Pier, G.B. Cystic Fibrosis and Pseudomonas Infection. Lancet 1983, 2, 257–258. [Google Scholar] [CrossRef]
- Morita, Y.; Tomida, J.; Kawamura, Y. Responses of Pseudomonas Aeruginosa to Antimicrobials. Front Microbiol. 2014, 4, 422. [Google Scholar] [CrossRef]
- Fick, R.B., Jr. Pathogenesis of the Pseudomonas Lung Lesion in Cystic Fibrosis. Chest 1989, 96, 158–164. [Google Scholar] [CrossRef]
- Ciszek-Lenda, M.; Strus, M.; Walczewska, M.; Majka, G.; Machul-Żwirbla, A.; Mikołajczyk, D.; Górska, S.; Gamian, A.; Chain, B.; Marcinkiewicz, J. Pseudomonas Aeruginosa Biofilm Is a Potent Inducer of Phagocyte Hyperinflammation. Inflamm. Res. 2019, 68, 397–413. [Google Scholar] [CrossRef]
- Nixon, G.M.; Armstrong, D.S.; Carzino, R.; Carlin, J.B.; Olinsky, A.; Robertson, C.F.; Grimwood, K. Clinical Outcome after Early Pseudomonas Aeruginosa Infection in Cystic Fibrosis. J. Pediatr. 2001, 138, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Werner, E.; Roe, F.; Bugnicourt, A.; Franklin, M.J.; Heydorn, A.; Molin, S.; Pitts, B.; Stewart, P.S. Stratified Growth in Pseudomonas Aeruginosa Biofilms. Appl. Environ. Microbiol. 2004, 70, 6188–6196. [Google Scholar] [CrossRef]
- Stewart, P.S.; Costerton, J.W. Antibiotic Resistance of Bacteria in Biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Sauer, K.; Stoodley, P.; Goeres, D.M.; Hall-Stoodley, L.; Burmølle, M.; Stewart, P.S.; Bjarnsholt, T. The Biofilm Life Cycle: Expanding the Conceptual Model of Biofilm Formation. Nat. Rev. Microbiol. 2022, 20, 608–620. [Google Scholar] [CrossRef]
- Vulin, C.; Leimer, N.; Huemer, M.; Ackermann, M.; Zinkernagel, A.S. Prolonged Bacterial Lag Time Results in Small Colony Variants That Represent a Sub-Population of Persisters. Nat. Commun. 2018, 9, 4074. [Google Scholar] [CrossRef]
- Ahmed, M.N.; Abdelsamad, A.; Wassermann, T.; Porse, A.; Becker, J.; Sommer, M.O.A.; Høiby, N.; Ciofu, O. The Evolutionary Trajectories of P. Aeruginosa in Biofilm and Planktonic Growth Modes Exposed to Ciprofloxacin: Beyond Selection of Antibiotic Resistance. NPJ Biofilms Microbiomes 2020, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.N.; Porse, A.; Sommer, M.O.A.; Høiby, N.; Ciofu, O. Evolution of Antibiotic Resistance in Biofilm and Planktonic Pseudomonas Aeruginosa Populations Exposed to Subinhibitory Levels of Ciprofloxacin. Antimicrob. Agents Chemother. 2018, 62, 10–1128. [Google Scholar] [CrossRef]
- Ołdak, E.; Trafny, E.A. Secretion of Proteases by Pseudomonas Aeruginosa Biofilms Exposed to Ciprofloxacin. Antimicrob. Agents Chemother. 2005, 49, 3281–3288. [Google Scholar] [CrossRef]
- Soares, A.; Roussel, V.; Pestel-Caron, M.; Barreau, M.; Caron, F.; Bouffartigues, E.; Chevalier, S.; Etienne, M. Understanding Ciprofloxacin Failure in Pseudomonas Aeruginosa Biofilm: Persister Cells Survive Matrix Disruption. Front Microbiol. 2019, 10, 2603. [Google Scholar] [CrossRef]
- Geiser, M. Update on Macrophage Clearance of Inhaled Micro- and Nanoparticles. J. Aerosol. Med. Pulm. Drug Deliv. 2010, 23, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Mudie, D.M.; Buchanan, S.; Stewart, A.M.; Smith, A.; Shepard, K.B.; Biswas, N.; Marshall, D.; Ekdahl, A.; Pluntze, A.; Craig, C.D.; et al. A Novel Architecture for Achieving High Drug Loading in Amorphous Spray Dried Dispersion Tablets. Int. J. Pharm. X 2020, 2, 100042. [Google Scholar] [CrossRef] [PubMed]
- Lechanteur, A.; Evrard, B. Influence of Composition and Spray-Drying Process Parameters on Carrier-Free DPI Properties and Behaviors in the Lung: A Review. Pharmaceutics 2020, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Palander, A.; Mattila, T.; Karhu, M.; Muttonen, E. In Vitro Comparison of Three Salbutamol-Containing Multidose Dry Powder Inhalers: Buventol Easyhaler®, Inspiryl Turbuhaler® and Ventoline Diskus. Clin. Drug. Investig. 2000, 20, 25–33. [Google Scholar] [CrossRef]
- Ciciliani, A.-M.; Langguth, P.; Wachtel, H. In Vitro Dose Comparison of Respimat® Inhaler with Dry Powder Inhalers for COPD Maintenance Therapy. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 1565–1577. [Google Scholar] [CrossRef]
- Yildiz-Peköz, A.; Akbal, O.; Tekarslan, S.H.; Sagirli, A.O.; Mulazimoglu, L.; Morina, D.; Cevher, E. Preparation and Characterization of Doripenem-Loaded Microparticles for Pulmonary Delivery. J. Aerosol. Med. Pulm. Drug Deliv. 2018, 31, 347–357. [Google Scholar] [CrossRef]
- Demoly, P.; Hagedoorn, P.; de Boer, A.H.; Frijlink, H.W. The Clinical Relevance of Dry Powder Inhaler Performance for Drug Delivery. Respir. Med. 2014, 108, 1195–1203. [Google Scholar] [CrossRef]
- Remanan, M.K.; Zhu, F. Encapsulation of Rutin Using Quinoa and Maize Starch Nanoparticles. Food Chem. 2021, 353, 128534. [Google Scholar] [CrossRef]
- Sanna, V.; Roggio, A.M.; Pala, N.; Marceddu, S.; Lubinu, G.; Mariani, A.; Sechi, M. Effect of Chitosan Concentration on PLGA Microcapsules for Controlled Release and Stability of Resveratrol. Int. J. Biol. Macromol. 2015, 72, 531–536. [Google Scholar] [CrossRef]
- Mohamed, F.; van der Walle, C.F. PLGA Microcapsules with Novel Dimpled Surfaces for Pulmonary Delivery of DNA. Int. J. Pharm. 2006, 311, 97–107. [Google Scholar] [CrossRef]
- Yun, P.; Devahastin, S.; Chiewchan, N. Microstructures of Encapsulates and Their Relations with Encapsulation Efficiency and Controlled Release of Bioactive Constituents: A Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1768–1799. [Google Scholar] [CrossRef] [PubMed]
- Salama, R.O.; Traini, D.; Chan, H.-K.; Young, P.M. Preparation and Characterisation of Controlled Release Co-Spray Dried Drug–Polymer Microparticles for Inhalation 2: Evaluation of in Vitro Release Profiling Methodologies for Controlled Release Respiratory Aerosols. Eur. J. Pharm. Biopharm. 2008, 70, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An Add-in Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef]
- Bahamondez-Canas, T.F.; Ferrati, S.; Moraga-Espinoza, D.F.; Smyth, H.D.C. Development, Characterization, and In Vitro Testing of Co-Delivered Antimicrobial Dry Powder Formulation for the Treatment of Pseudomonas Aeruginosa Biofilms. J. Pharm. Sci. 2018, 107, 2172–2178. [Google Scholar] [CrossRef] [PubMed]
- Herigstad, B.; Hamilton, M.; Heersink, J. How to Optimize the Drop Plate Method for Enumerating Bacteria. J. Microbiol. Methods 2001, 44, 121–129. [Google Scholar] [CrossRef]
Formulation | CIP:GA Ratio |
---|---|
CIP-GA 90% | 9:1 |
CIP-GA 75% | 3:1 |
CIP-GA 50% | 1:1 |
CIP-GA 25% | 1:3 |
CIP-GA 10% | 1:9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monrreal-Ortega, L.; Iturriaga-Gallardo, R.; Vilicic-Rubio, A.; Torres, P.; Leyton, P.; Morales, J.O.; Bahamondez-Canas, T.F.; Moraga-Espinoza, D. Gelatin-Based Microspheres of Ciprofloxacin for Enhanced Lung Delivery and Biofilm Eradication in Pseudomonas aeruginosa Pulmonary Infections. Gels 2025, 11, 567. https://doi.org/10.3390/gels11080567
Monrreal-Ortega L, Iturriaga-Gallardo R, Vilicic-Rubio A, Torres P, Leyton P, Morales JO, Bahamondez-Canas TF, Moraga-Espinoza D. Gelatin-Based Microspheres of Ciprofloxacin for Enhanced Lung Delivery and Biofilm Eradication in Pseudomonas aeruginosa Pulmonary Infections. Gels. 2025; 11(8):567. https://doi.org/10.3390/gels11080567
Chicago/Turabian StyleMonrreal-Ortega, Luis, Rocío Iturriaga-Gallardo, Andrea Vilicic-Rubio, Pedro Torres, Patricio Leyton, Javier O. Morales, Tania F. Bahamondez-Canas, and Daniel Moraga-Espinoza. 2025. "Gelatin-Based Microspheres of Ciprofloxacin for Enhanced Lung Delivery and Biofilm Eradication in Pseudomonas aeruginosa Pulmonary Infections" Gels 11, no. 8: 567. https://doi.org/10.3390/gels11080567
APA StyleMonrreal-Ortega, L., Iturriaga-Gallardo, R., Vilicic-Rubio, A., Torres, P., Leyton, P., Morales, J. O., Bahamondez-Canas, T. F., & Moraga-Espinoza, D. (2025). Gelatin-Based Microspheres of Ciprofloxacin for Enhanced Lung Delivery and Biofilm Eradication in Pseudomonas aeruginosa Pulmonary Infections. Gels, 11(8), 567. https://doi.org/10.3390/gels11080567