Freeze and Spray Drying Technologies to Produce Solid Microbial Formulations for Sustainable Agriculture
Abstract
1. Introduction
2. Solid Microbial Formulation
2.1. Selecting Microorganisms
2.2. Selecting Encapsulation Materials
2.3. Selecting Microencapsulation Techniques
2.3.1. Freeze Drying
2.3.2. Spray Drying
3. Development Challenges in the Scale-Up Process
3.1. Scalability of the Microencapsulation Processes
3.2. Stability and Viability of Solid Microbial Formulation
3.3. Rules, Regulations, and Commercialization
4. Microencapsulation in Agriculture
5. Recent Applications of Microencapsulated Materials in Agriculture
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CAGR | Compound annual growth rate |
CFU | Colony forming units |
CMC | Carboxymethyl cellulose |
DMSO | Dimethyl sulfoxide |
DWPI | Whey protein isolate denatured |
EPS | Exopolysaccharides |
FAO | Food and Agriculture Organization of the United Nations |
FOS | Fructooligosaccharide |
HPMC | Hydroxypropyl methylcellulose |
IMZ | Trisaccharide isomelezitose |
SA | Sodium alginate |
WDGs | Water dispersible granules |
WGs | Wettable granules |
WPs | Wettable powders |
WPI | Whey protein isolate |
References
- Food and Agriculture Organization of the United Nations (FAO). Building a Common Vision for Sustainable Food and Agriculture Principles and Approaches; FAO: Rome, Italy, 2014. [Google Scholar]
- Wigley, P.; Turner, S.; George, C.; Williams, T.; Roberts, K.; Sheamus, G.; Lowe, K. Agriculturally Advantageous Microorganisms, Microbial Compositions, and Consortia. Patent CN108430222B, 22 October 2021. [Google Scholar]
- Alford, B.; Wilk, D.; Zhu, H. Agriculturally Beneficial Microbes, Microbial Compositions, and Consortia. Patent AU2023222089A1, 15 August 2024. [Google Scholar]
- Luo, L.; Zhao, C.; Wang, E.; Raza, A.; Yin, C. Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: An overview for its mechanisms. Microbiol Res. 2022, 259, 127016. [Google Scholar] [CrossRef] [PubMed]
- Future Market Insights Inc. Microencapsulation Market Analysis—Size, Share & Forecast 2024–2034. 2024. Available online: https://www.futuremarketinsights.com/reports/microencapsulation-market (accessed on 15 February 2025).
- Panichikkal, J.; Puthiyattil, N.; Raveendran, A.; Nair, R.A.; Krishnankutty, R.E. Application of Encapsulated Bacillus licheniformis Supplemented with Chitosan Nanoparticles and Rice Starch for the Control of Sclerotium rolfsii in Capsicum annuum (L.) Seedlings. Curr. Microbiol. 2021, 78, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Cybulska, J.; Frąc, M.; Zdunek, A. Application of polysaccharides for the encapsulation of beneficial microorganisms for agricultural purposes: A review. Int. J. Biol. Macromol. 2023, 244, 125366. [Google Scholar] [CrossRef] [PubMed]
- Xie, A.; Zhao, S.; Liu, Z.; Yue, X.; Shao, J.; Li, M.; Li, Z. Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. Int. J. Biol. Macromol. 2023, 242, 124784. [Google Scholar] [CrossRef] [PubMed]
- Braga, A.B.A.C.; Costa, C.J.M.; Pomella, A.W.V.; Ribeiro, E.J.; Santos, L.D.; Zotarelli, M.F. Evaluation of lethality temperature and use of different wall materials in the microencapsulation process of Trichoderma asperellum conidias by spray drying. Powder Technol. 2019, 347, 199–206. [Google Scholar] [CrossRef]
- Obradović, N.; Volić, M.; Nedović, V.; Rakin, M.; Bugarski, B. Microencapsulation of probiotic starter culture in protein–carbohydrate carriers using spray and freeze-drying processes: Implementation in whey-based beverages. J. Food Eng. 2022, 321, 110948. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, M.; Liu, Y.; Wang, Y.; Chen, Y.; Guan, W.; Li, X.; Wang, Y. Improved viability of Lactobacillus plantarum embedded in whey protein concentrate/pullulan/trehalose hydrogel during freeze drying. Carbohydr. Polym. 2021, 260, 117843. [Google Scholar] [CrossRef]
- Martinez, Y.; Ribera, J.; Schwarze, F.W.M.R.; De France, K. Biotechnological development of Trichoderma-based formulations for biological control. Appl. Microbiol. Biotechnol. 2023, 107, 5595–5612. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, L.; Shao, Y.; Wang, L.; He, J.; He, Y. Microencapsulation of Monascus red pigments by emulsification/internal gelation with freeze/spray-drying: Process optimization, morphological characteristics, and stability. LWT 2023, 173, 114227. [Google Scholar] [CrossRef]
- Bejarano, A.; Puopolo, G. Bioformulation of Microbial Biocontrol Agents for a Sustainable Agriculture. In How Research Can Stimulate the Development of Commercial Biological Control Against Plant Diseases; De Cal, A., Melgarejo, P., Magan, N., Eds.; Progress in Biological Control; Springer: Cham, Switzerland, 2020; Volume 21, pp. 275–293. [Google Scholar]
- Sansone, F.; Esposito, T.; Mencherini, T.; Del Prete, F.; Cannoniere, A.L.; Aquino, R.P. Exploring microencapsulation potential: Multicomponent spray dried delivery systems for improvement of Chlorella vulgaris extract preservation and solubility. Powder Technol. 2023, 429, 118882. [Google Scholar] [CrossRef]
- Singh, V.; Kumar, B. A review of agricultural microbial inoculants and their carriers in bioformulation. Rhizosphere 2024, 29, 100843. [Google Scholar] [CrossRef]
- Balla, A.; Silini, A.; Cherif-Silini, H.; Bouket, A.C.; Alenezi, F.N.; Belbahri, L. Recent Advances in Encapsulation Techniques of Plant Growth-Promoting Microorganisms and Their Prospects in the Sustainable Agriculture. Appl. Sci. 2022, 12, 9020. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Dubey, S.; Sharma, S. “Next-Generation Bioformulations” for Plant Growth Promotion and Stress Mitigation: A Promising Approach for Sustainable Agriculture. J. Plant Growth Regul. 2023, 42, 6741–6759. [Google Scholar] [CrossRef]
- Baker, C.A.; Brooks, A.A.; Henis, J.M. Encapsulation of Biological Material in Non-Ionic Polymer Beads. Patent US5089407A, 18 February 1992. [Google Scholar]
- Han, L.; Pu, T.; Wang, X.; Liu, B.; Wang, Y.; Feng, J.; Zhang, X. Optimization of a protective medium for enhancing the viability of freeze-dried Bacillus amyloliquefaciens B1408 based on response surface methodology. Cryobiology 2018, 81, 101–106. [Google Scholar] [CrossRef]
- Mejía-Avellaneda, L.F.; Suárez, H.; Jiménez, H.; Mesa, L. Challenges and opportunities for the production of lactic acid bacteria inoculants aimed for ensiling processes. Crit. Rev. Biotechnol. 2021, 42, 1028–1044. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.J.; Cedran, M.F.; Bicas, J.L.; Sato, H.H. Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications—A narrative review. Food Res. Int. 2020, 137, 109682. [Google Scholar] [CrossRef]
- Slininger, P.J.; Côté, G.L.; Shea-Andersh, M.A.; Dien, B.S.; Skory, C.D. Application of isomelezitose as an osmoprotectant for biological control agent preservation during drying and storage. Biocontrol Sci. Technol. 2021, 31, 132–152. [Google Scholar] [CrossRef]
- Bellali, S.; Bou Khalil, J.; Fontanini, A.; Raoult, D.; Lagier, J.-C. A new protectant medium preserving bacterial viability after freeze drying. Microbiol. Res. 2020, 236, 126454. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Cahoon, E.; Zhang, Y.; Ciftci, O.N. Extraction of astaxanthin from engineered Camelina sativa seed using ethanol-modified supercritical carbon dioxide. J. Supercrit. Fluids 2019, 143, 171–178. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Jackson, M.A.; Behle, R.W.; Kobori, N.N.; Delalibera, I., Jr. Improved shelf life of dried Beauveria bassiana blastospores using convective drying and active packaging processes. Appl. Microbiol. Biotechnol. 2016, 100, 8359–8370. [Google Scholar] [CrossRef]
- Luft, L.; Confortin, T.C.; Todero, I.; Zabot, G.L.; Mazutti, M.A. An overview of fungal biopolymers: Bioemulsifiers and biosurfactants compounds production. Crit. Rev. Biotechnol. 2020, 40, 1059–1080. [Google Scholar] [CrossRef]
- Zhang, M.; Che, Y.; Wu, C. A novel exopolysaccharide produced by Zygosaccharomyces rouxii with cryoprotective and freeze-drying protective activities. Food Chem. 2022, 392, 133304. [Google Scholar] [CrossRef] [PubMed]
- Toegel, S.; Salar-Behzadi, S.; Horaczek-Clausen, A.; Viernstein, H. Preservation of aerial conidia and biomasses from entomopathogenic fungi Beauveria brongniartii and Metarhizium anisopliae during lyophilization. J. Invertebr. Pathol. 2010, 105, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Rajam, R.; Anandharamakrishnan, C. Spray freeze drying method for microencapsulation of Lactobacillus plantarum. J. Food Eng. 2015, 166, 95–103. [Google Scholar] [CrossRef]
- Rishabh, D.; Athira, A.; Preetha, R.; Nagamaniammai, G. Freeze dried probiotic carrot juice powder for better storage stability of probiotic. J. Food Sci. Technol. 2023, 60, 916–924. [Google Scholar] [CrossRef]
- Friuli, M.; Nitti, P.; Aneke, C.I.; Demitri, C.; Cafarchia, C.; Otranto, D. Freeze-drying of Beauveria bassiana suspended in Hydroxyethyl cellulose based hydrogel as possible method for storage: Evaluation of survival, growth and stability of conidial concentration before and after processing. Results Eng. 2021, 12, 100283. [Google Scholar] [CrossRef]
- Cabrefiga, J.; Francés, J.; Montesinos, E.; Bonaterra, A. Improvement of a dry formulation of Pseudomonas fluorescens EPS62e for fire blight disease biocontrol by combination of culture osmoadaptation with a freeze-drying lyoprotectant. J. Appl. Microbiol. 2014, 117, 1122–1131. [Google Scholar] [CrossRef]
- Stephan, D.; Da Silva, A.P.M.; Bisutti, I.L. Optimization of a freeze-drying process for the biocontrol agent Pseudomonas spp. and its influence on viability, storability and efficacy. Biol. Control. 2016, 94, 74–81. [Google Scholar] [CrossRef]
- Muñoz-Celaya, A.L.; Ortiz-García, M.; Vernon-Carter, E.J.; Jauregui-Rincón, J.; Galindo, E.; Serrano-Carreón, L. Spray-drying microencapsulation of Trichoderma harzianum conidias in carbohydrate polymers matrices. Carbohydr. Polym. 2012, 88, 1141–1148. [Google Scholar] [CrossRef]
- Liu, C.P.; Liu, S.D. Low-temperature spray drying for the microencapsulation of the fungus Beauveria bassiana. Dry. Technol. 2009, 27, 747–753. [Google Scholar] [CrossRef]
- Horaczek, A.; Viernstein, H. Beauveria brongniartii subjected to spray-drying in a composite carrier matrix system. J. Microencapsul. 2004, 21, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Yánez-Mendizábal, V.; Viñas, I.; Usall, J.; Torres, R.; Solsona, C.; Abadias, M.; Teixidó, N. Formulation development of the biocontrol agent Bacillus subtilis strain CPA-8 by spray-drying. J. Appl. Microbiol. 2012, 112, 954–965. [Google Scholar] [CrossRef]
- Saberi-Riseh, R.; Moradi-Pour, M. A novel encapsulation of Streptomyces fulvissimus Uts22 by spray drying and its biocontrol efficiency against Gaeumannomyces graminis, the causal agent of take-all disease in wheat. Pest. Manag. Sci. 2021, 77, 4357–4364. [Google Scholar] [CrossRef] [PubMed]
- Vignesh, M.; Shankar, S.R.M.; Subramani, N.; Vendhahari, B.N.; Ramyadevi, D. Study on spray-drying of Bacillus velezensis NKMV-3 strain, its formulation and bio efficacy against early blight of tomato. Biocatal. Agric. Biotechnol. 2022, 45, 102483. [Google Scholar] [CrossRef]
- Campos, D.C.; Acevedo, F.; Morales, E.; Aravena, J.; Amiard, V.; Jorquera, M.A.; Inostroza, M.G.; Rubilar, M. Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules. World J. Microbiol. Biotechnol. 2014, 30, 2371–2378. [Google Scholar] [CrossRef]
- Meena, K.K.; Taneja, N.K.; Ojha, A.; Meena, S. Application of spray-drying and freeze-drying for microencapsulation of lactic acid bacteria: A review. Ann. Phytomed. Int. J. 2023, 12, 706–716. [Google Scholar] [CrossRef]
- Abla, K.K.; Mehanna, M.M. Freeze-drying: A flourishing strategy to fabricate stable pharmaceutical and biological products. Int. J. Pharm. 2022, 628, 122233. [Google Scholar] [CrossRef]
- Tchessalov, S.; Maglio, V.; Kazarin, P.; Alexeenko, A.; Bhatnagar, B.; Sahni, E.; Shalaev, E. Practical Advice on Scientific Design of Freeze-Drying Process: 2023 Update. Pharm. Res. 2023, 40, 2433–2455. [Google Scholar] [CrossRef]
- Muhoza, B.; Yuyang, H.; Uriho, A.; Harindintwali, J.D.; Liu, Q.; Li, Y. Spray-and freeze-drying of microcapsules prepared by complex coacervation method: A review. Food Hydrocoll. 2023, 140, 108650. [Google Scholar] [CrossRef]
- Andreana, I.; Bincoletto, V.; Manzoli, M.; Rodà, F.; Giarraputo, V.; Milla, P.; Arpicco, S.; Stella, B. Freeze Drying of Polymer Nanoparticles and Liposomes Exploiting Different Saccharide-Based Approaches. Materials 2023, 16, 1212. [Google Scholar] [CrossRef]
- Kumar, S.; Gokhale, R.; Burgess, D.J. Sugars as bulking agents to prevent nano-crystal aggregation during spray or freeze-drying. Int. J. Pharm. 2014, 471, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Tonnis, W.F.; Mensink, M.A.; De Jager, A.; van der Voort Maarschalk, K.; Frijlink, H.W.; Hinrichs, W.L.J. Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins. Mol. Pharm. 2015, 12, 684–694. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Abla, K.K. Recent advances in freeze-drying: Variables, cycle optimization, and innovative techniques. Pharm. Dev. Technol. 2022, 27, 904–923. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Rocha, F.; Santos, L.; Alves, A. Microencapsulation with chitosan by spray drying for industry applications—A review. Trends Food Sci. Technol. 2013, 31, 138–155. [Google Scholar] [CrossRef]
- Samborska, K.; Boostani, S.; Geranpour, M.; Hosseini, H.; Dima, C.; Khoshnoudi-Nia, S.; Rostamabadi, H.; Falsafi, S.R.; Shaddel, R.; Akbari-Alavijeh, S.; et al. Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends Food Sci. Technol. 2021, 108, 297–325. [Google Scholar] [CrossRef]
- Santos, D.; Maurício, A.C.; Sencadas, V.; Santos, J.D.; Fernandes, M.H.; Gomes, P.S. Spray Drying: An Overview. In Biomaterials-Physics and Chemistry-New Edition; Pignatello, R., Musumeci, T., Eds.; InTech: Rijeka, Croatia, 2018; pp. 9–35. [Google Scholar]
- Jose, N.; Ray, D.P.; Misra, S.; Nayak, L.; Ammayappan, L. Microencapsulation and nanoencapsulation of fungicidal and insecticidal agents for grain packaging and storage. J. Stored Prod. Res. 2024, 109, 102468. [Google Scholar] [CrossRef]
- John, R.P.; Tyagi, R.D.; Brar, S.K.; Surampalli, L.Y.; Prevóst, D. Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit. Rev. Biotechnol. 2010, 31, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Rathore, S.; Desai, P.M.; Liew, C.V.; Chan, L.W.; Heng, P.W.S. Microencapsulation of microbial cells. J. Food Eng. 2013, 116, 369–381. [Google Scholar] [CrossRef]
- Jayaprakash, P.; Gaiani, C.; Edorh, J.M.; Borges, F.; Beaupeux, E.; Maudhuit, A.; Desobry, S. Comparison of Electrostatic Spray Drying, Spray Drying, and Freeze Drying for Lacticaseibacillus rhamnosus GG Dehydration. Foods 2023, 12, 3117. [Google Scholar] [CrossRef]
- Tatasciore, S.; Santarelli, V.; Neri, L.; Di Mattia, C.D.; Di Michele, A.; Mastrocola, D.; Pittia, P. Microencapsulation of hop bioactive compounds by spray drying: Role of inlet temperature and wall material. Curr. Res. Food Sci. 2024, 8, 100769. [Google Scholar] [CrossRef]
- Laureanti, E.J.G.; Paiva, T.S.; de Matos Jorge, L.M.; de Matos Jorge, R.M. Microencapsulation of bioactive compound extracts using maltodextrin and gum arabic by spray and freeze-drying techniques. Int. J. Biol. Macromol. 2023, 253, 126969. [Google Scholar] [CrossRef] [PubMed]
- Toprakçı, İ.; Güngör, K.K.; Torun, M.; Şahin, S. Spray-drying microencapsulation of plum peel bioactives using Arabic gum and maltodextrin as coating matrix. Food Biosci. 2024, 61, 104824. [Google Scholar] [CrossRef]
- Khem, S.; Woo, M.W.; Small, D.M.; Chen, X.D.; May, B.K. Agent selection and protective effects during single droplet drying of bacteria. Food Chem. 2015, 166, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Custom Market Insights. Global Microencapsulation Market 2024–2033. 2024. Available online: https://www.custommarketinsights.com/report/microencapsulation-market/ (accessed on 15 February 2025).
- Patel, S.M.; Pikal, M.J. Emerging freeze-drying process development and scale-up issues. Aaps Pharmscitech 2011, 12, 372–378. [Google Scholar] [CrossRef]
- de Melo Carvalho, T. Consistent Scale-Up of the Freeze-Drying Process. Ph.D. Thesis, Tecnical University of Denmark, Kongens Lyngby, Denmark, 2018. [Google Scholar]
- Fuchs, M.; Turchiuli, C.; Bohin, M.; Cuvelier, M.E.; Ordonnaud, C.; Peyrat-Maillard, M.N.; Dumoulin, E. Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. J. Food Eng. 2006, 75, 27–35. [Google Scholar] [CrossRef]
- Sosnik, A.; Seremeta, K.P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 2015, 223, 40–54. [Google Scholar] [CrossRef]
- Ståhl, K.; Claesson, M.; Lilliehorn, P.; Lindén, H.; Bäckström, K. The effect of process variables on the degradation and physical properties of spray dried insulin intended for inhalation. Int. J. Pharm. 2002, 233, 227–237. [Google Scholar] [CrossRef]
- Khan, A.; Singh, A.V.; Gautam, S.S.; Agarwal, A.; Punetha, A.; Upadhayay, V.K.; Kukreti, B.; Bundela, V.; Jugran, A.K.; Goel, R. Microbial bioformulation: A microbial assisted biostimulating fertilization technique for sustainable agriculture. Front. Plant Sci. 2023, 14, 1270039. [Google Scholar] [CrossRef]
- Bettiol, W.; da Silva, J.C.; de Castro, M.L.M.P. Uso atual e perspectivas do Trichoderma no Brasil. In Trichoderma Uso na Agricultura; Meyer, M.C., Mazaro, S.M., da Silva, J.C., Eds.; Embrapa: Brasília, Brazil, 2019; pp. 21–43. [Google Scholar]
- Mascarin, G.M.; Lopes, R.B.; Delalibera, Í., Jr.; Fernandes, É.K.K.; Luz, C.; Faria, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J. Invertebr. Pathol. 2019, 165, 46–53. [Google Scholar] [CrossRef]
- Oliveira DGPde Lopes, R.B.; Rezende, J.M.; Delalibera, Í., Jr. Increased tolerance of Beauveria bassiana and Metarhizium anisopliae conidia to high temperature provided by oil-based formulations. J. Invertebr. Pathol. 2018, 151, 151–157. [Google Scholar] [CrossRef]
- Kakvan, N.; Heydari, A.; Zamanizadeh, H.R.; Rezaee, S.; Naraghi, L. Development of new bioformulations using Trichoderma and Talaromyces fungal antagonists for biological control of sugar beet damping-off disease. Crop Prot. 2013, 53, 80–84. [Google Scholar] [CrossRef]
- Liu, C.P.; Da Liu, S. Formulation and characterization of the microencapsulated entomopathogenic fungus Metarhizium anisopliae MA126. J. Microencapsul. 2009, 26, 377–384. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, L.; Qin, S.; Li, C. Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. J. Ind. Microbiol. Biotechnol. 2012, 39, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-N.; Chen, C.-Y.; Lin, Y.-C.; Chen, M.-J. Formulation of a novel antagonistic bacterium based biopesticide using microencapsulated techniques in fungal disease control. J. Agric. Sci. 2013, 5, p153. [Google Scholar] [CrossRef]
- Ma, X.; Wang, X.; Cheng, J.; Nie, X.; Yu, X.; Zhao, Y.; Wang, W. Microencapsulation of Bacillus subtilis B99-2 and its biocontrol efficiency against Rhizoctonia solani in tomato. Biol. Control 2015, 90, 34–41. [Google Scholar] [CrossRef]
- Krell, V.; Jakobs-Schoenwandt, D.; Vidal, S.; Patel, A.V. Cellulase enhances endophytism of encapsulated Metarhizium brunneum in potato plants. Fungal Biol. 2018, 122, 373–378. [Google Scholar] [CrossRef]
- Mancera-López, M.E.; Izquierdo-Estévez, W.F.; Escalante-Sánchez, A.; Ibarra, J.E.; Barrera-Cortés, J. Encapsulation of Trichoderma harzianum conidia as a method of conidia preservation at room temperature and propagation in submerged culture. Biocontrol Sci. Technol. 2019, 29, 107–130. [Google Scholar] [CrossRef]
- Aguirre-Güitrón, L.; Calderón-Santoyo, M.; Ortiz-Basurto, R.I.; Bautista-Rosales, P.U.; Ragazzo-Sánchez, J.A. Optimisation of the spray drying process of formulating the post-harvest biocontrol agent Meyerozyma caribbica. Biocontrol Sci. Technol. 2018, 28, 574–590. [Google Scholar] [CrossRef]
- Jurić, S.; Đermić, E.; Topolovec-Pintarić, S.; Bedek, M.; Vinceković, M. Physicochemical properties and release characteristics of calcium alginate microspheres loaded with Trichoderma viride spores. J. Integr. Agric. 2019, 18, 2534–2548. [Google Scholar] [CrossRef]
- Pour, M.M.; Saberi-Riseh, R.; Mohammadinejad, R.; Hosseini, A. Investigating the formulation of alginate-gelatin encapsulated Pseudomonas fluorescens (VUPF5 and T17-4 strains) for controlling Fusarium solani on potato. Int. J. Biol. Macromol. 2019, 133, 603–613. [Google Scholar] [CrossRef]
- Locatelli, G.O.; dos Santos, G.F.; Botelho, P.S.; Finkler, C.L.L.; Bueno, L.A. Development of Trichoderma sp. formulations in encapsulated granules (CG) and evaluation of conidia shelf-life. Biol. Control 2018, 117, 21–29. [Google Scholar] [CrossRef]
- Qiu, H.L.; Fox, E.G.P.; Qin, C.S.; Zhao, D.Y.; Yang, H.; Xu, J.Z. Microcapsuled entomopathogenic fungus against fire ants, Solenopsis invicta. Biol. Control 2019, 134, 141–149. [Google Scholar] [CrossRef]
- Saberi-Rise, R.; Moradi-Pour, M. The effect of Bacillus subtilis Vru1 encapsulated in alginate—Bentonite coating enriched with titanium nanoparticles against Rhizoctonia solani on bean. Int. J. Biol. Macromol. 2020, 152, 1089–1097. [Google Scholar] [CrossRef]
- Meftah Kadmiri, I.; El Mernissi, N.; Azaroual, S.E.; Mekhzoum, M.E.M.; Qaiss, A.E.K.; Bouhfid, R. Bioformulation of Microbial Fertilizer Based on Clay and Alginate Encapsulation. Curr. Microbiol. 2021, 78, 86–94. [Google Scholar] [CrossRef]
- Felizatti, A.P.; Manzano, R.M.; Rodrigues, I.M.W.; da Silva, M.F.G.F.; Fernandes, J.B.; Forim, M.R. Encapsulation of B. bassiana in Biopolymers: Improving Microbiology of Insect Pest Control. Front Microbiol. 2021, 12, 704812. [Google Scholar] [CrossRef]
- Hungria, M.; Nogueira, M.A.; Araujo, R.S. Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment-friendly component in the reclamation of degraded pastures in the tropics. Agric. Ecosyst. Environ. 2016, 221, 125–131. [Google Scholar] [CrossRef]
- Brondi, M.; Florencio, C.; Mattoso, L.; Ribeiro, C.; Farinas, C. Encapsulation of Trichoderma harzianum with nanocellulose/carboxymethyl cellulose nanocomposite. Carbohydr. Polym. 2022, 295, 119876. [Google Scholar] [CrossRef]
- Hamrouni, R.; Regus, F.; Farnet Da Silva, A.M.; Orsiere, T.; Boudenne, J.L.; Laffont-Schwob, I.; Christen, P.; Dupuy, N. Current status and future trends of microbial and nematode-based biopesticides for biocontrol of crop pathogens. Crit. Rev. Biotechnol. 2024, 45, 333–352. [Google Scholar] [CrossRef]
- Prasad, B.; Sharma, D.; Kumar, P.; Dubey, R.C. Biocontrol potential of Bacillus spp. for resilient and sustainable agricultural systems. Physiol. Mol. Plant Pathol. 2023, 128, 102173. [Google Scholar] [CrossRef]
- Ahmed, A.; He, P.; He, Y.; Singh, B.K.; Wu, Y.; Munir, S.; He, P. Biocontrol of plant pathogens in omics era-with special focus on Endophytic bacilli. Crit. Rev. Biotechnol. 2023, 44, 562–580. [Google Scholar] [CrossRef]
- Keshmirshekan, A.; de Souza Mesquita, L.M.; Ventura, S.P.M. Biocontrol manufacturing and agricultural applications of Bacillus velezensis. Trends Biotechnol. 2024, 42, 986–1001. [Google Scholar] [CrossRef] [PubMed]
- Markets and Markets. Microencapsulation Market. 2025. Available online: https://www.marketsandmarkets.com/Market-Reports/microencapsulation-market-83597438.html (accessed on 28 February 2025).
- dos Santos, J.P.; de Oliveira, A.L.P.; Putti, F.F. Bioinputs in agriculture: Techological overview of biological patents. GeSec 2024, 15, 01–18. [Google Scholar]
- Cutcliffe, C.; Eid, J.S.; Bullard, J.; Schicklberger, M.F.; Cheng, A.; Kolterman, O.; Altman, T. Methods and Compositions Relating to Isolated and Purified Microbes. Patent US20200121738A1, 23 April 2020. [Google Scholar]
- Harel, M.; Drewes, R.; Brian, C.; Artimovich, E. Stable Dry Powder Composition Comprising Biologically Active Microorganisms and/or Bioactive Materials and Methods of Making. Patent US20190194259A1, 27 June 2019. [Google Scholar]
- Harrel, M.; Scarbrow, J.; Drewes, R. Dry Glassy Composition Containing a Bioactive Substance. Patent JP5886763B2, 16 March 2016. [Google Scholar]
- Thompson, B.; Thompson, K.; Angle, B. Plant Growth-Promoting Bacteria and Methods of Use. Patent US20140274691A1, 18 September 2014. [Google Scholar]
- Harrel, M.; Tang, Q.; Drewes, R.; Rice, T.; Carpenter, B.; Raditsis, E. Stabilizing Composition for Biological Materials. Patent KR102062645B1, 6 January 2020. [Google Scholar]
- Ackerson, R.; Cantor, S.; Reap, J.J.; Tang, Q. Stabilizing Methods for Coating Seeds with Biological Materials. Patent AU2017219895, 16 August 2018. [Google Scholar]
- Jonner, P.S.; Palmer, S.; Alibek, K.; Ibragimova, S. Microbial-Based Products to Promote Plant Root and Immune Health. Patent KR20200142081A, 21 December 2020. [Google Scholar]
- Farmer, S.; Alibek, K.; Milovanovic, M.; Ibragimova, S. Materials and Methods for Treating Bacterial Infections in Plants. Patent BR112020014469A2, 1 December 2020. [Google Scholar]
- Bobeck, D.; Pearce, C. Microbial Inoculant Compositions and Uses Thereof in Agriculture. Patent AU2016270813B2, 15 February 2018. [Google Scholar]
- Shakeel, A.H.; Davis, Z.G.; Frank, J.T.; Zomorodi, S.; Pourtaheri, P. Compositions and Methods for Scalable Production and Delivery of Biologicals. Patent US20200267971A1, 27 August 2020. [Google Scholar]
- Bruck, D.; Burns, F.; Presnail, J. Fungal Entomopathogen Biocides and Their Use in Plants. Patent CA2998391C, 12 September 2023. [Google Scholar]
- Tamsil, A.; Blog, S.; Higgins, D. Methods and Compositions for Improving Engineered Microorganisms That Fix Nitrogen. Patent JP7420712B2, 23 January 2024. [Google Scholar]
- Embry, M.; Tarasova, J.; Pidgeon, L.; Gogul, G.; van der Linden, K. Method for Improving Agricultural Production of Poultry by Applying Microbial Consortia or Purified Strains Thereof. Patent CN109874294B, 20 June 2020. [Google Scholar]
- Chiatello, M.L.; Oman, M. Polymer-Based Antimicrobial Composition, and Using Method Thereof. Patent JP2022070983A, 13 May 2022. [Google Scholar]
- Rocha, T.M.; Marcelino, P.R.F.; de Souza, P.V.R.; dos Santos, J.C.; da Silva, S.S. Bioinput Based on T. harzianum and Sophorolipids, Kit, Use, Processes for Preparation of Sophorolipids and the Said Bioinput, and Methods for Inducing Growth and Protection Against Pests. Patent BR 102023003698-8 A2, 10 September 2024. [Google Scholar]
- Farmer, S.; Alibek, K. Materials and Methods for Control of Insect Pests Using Entomopathogenic Fungi. Patent US20200390106A1, 17 December 2020. [Google Scholar]
- Keller, F. Biofertilizer Composition Comprising Thermophosphate Dispersed in Emulsified Oil. Patent BR102022024883A2, 18 June 2024. [Google Scholar]
- De Oliveira, A.L.M.; Moreira, A.A.; de Oliveira, S.M. Method of Immobilization of Plant Growth-Promoting Bacteria on Organic Surfaces. Patent BR102022012809A2, 9 January 2024. [Google Scholar]
- Kellar, K.E.; Kan, Y.; Pelligra, C.; Barnett, E.; Burclev, C.; Vysinski, A.; Leland, J.; Dohan, B.; Fetkhe, M.H.; Trahan, A.D.; et al. Stable Compositions with Inoculant and Methods for Production Thereof. Patent RU2739954C2, 30 December 2020. [Google Scholar]
- Santiago-Ortiz, J.; Williams, T.; Wilk, D.; Zhu, H.; Patri, A.; Hymus, G. Agriculturally Beneficial Microbes, Microbial Compositions, and Consortia. Patent US20220264892A1, 25 August 2022. [Google Scholar]
- Bywater-Ekegard, M. Microbial Compositions and methods for Bioprotection. Patent CA2984075C, 23 January 2024. [Google Scholar]
- Goormachtig, S.; Viaene, T. Means and Methods for Plant Yield Enhancement. Patent US11071302B2, 27 July 2014. [Google Scholar]
- Montenegro, E.A.; Pinedamijangos, W.G.; Dutton-Forrest de Avaros, E.M.; Ramazzini-Santos, H.R.; Garcia-Garonte, I.V.; Vitus Alora, F.; Delgado Hernandez, V.M. An Agricultural Formulation Comprising at Least ONE bacterial Strain Bacillus safoci RGM 2450 and/or Bacterial Strain Bacillus siamensis RGM 2529 and an Agricultural Excipient; Use of Formulations and Methods for Stimulating Growth and/or Increasing Crop Yield and/or Protecting Crops Against Diseases and Pests. Patent CN116724107A, 8 September 2023. [Google Scholar]
- Kumar, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Hassan, A.A.; Kim, K.-H. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J. Control. Release 2019, 294, 131–153. [Google Scholar] [CrossRef] [PubMed]
Microorganism | Encapsulated Material | Operating Parameters | Reference |
---|---|---|---|
Freeze drying | |||
Beauveria brongniartii and Metarhizium anisopliae | Fructose, glucose, and saccharose | Frozen at −80 °C for 24 h; within 20 h, the temperature was gradually raised from −35 °C to 25 °C (0.090 mbar) | [29] |
Lactobacillus plantarum | Whey protein isolate (WPI) with sodium alginate (SA), WPI with fructooligosaccharide (FOS), denatured-WPI (DWPI) with SA, and DWPI with FOS | −40 to 30 °C and the entire freeze drying process was carried out for 20 h | [30] |
Escherichia coli and Akkermansia muciniphila | Sucrose, trehalose, skimmed milk and antioxidants (uric acid, ascorbic acid and glutathione) | Frozen at −80 °C for 5 h; chamber pressure of 0.63 mbar for 12 h at 0 °C, followed by 3 h at +30 °C | [24] |
Lactobacillus plantarum | Whey protein concentrate/pullulan/trehalose | Pre-frozen for 12 h; freeze drying for 48 h | [11] |
Lactobacillus delbrueckii, Bifidobacterium bifidum, Streptococcus salivarius, and Lactobacillus acidophilus | Whey protein concentrate, whey, and sodium alginate | Frozen at −80 °C for 1 h. Main drying was carried out at −60 °C for 24 h (0.011 mbar) and final drying at −75 °C for 1 h (0.012 mbar) | [10] |
Enterococcus faecalis | Maltodextrin and gum arabic | Pre-freezing overnight at −4 °C. Freeze drying was done at −40 °C for 72 h | [31] |
Beauveria bassiana | Hydroxyethyl cellulose | Frozen at −15 °C and freeze-dried for 24 h | [32] |
Lactococcus lactis | Exopolysaccharide | Frozen at −80 °C for 7 days; freeze drying (indeterminate) | [28] |
Pseudomonas fluorescens | Lactose | Frozen at −70 °C overnight; primary drying for 24 h at −10 °C followed by 8 h of secondary drying at 15 °C (10 Pa) | [33] |
Pseudomonas spp. | Saccharose, glucose, lactose, skimmed milk and ligninosulfonic acid | Frozen from +5 °C to −40 °C in 40 min (0.2 mbar) | [34] |
Spray drying | |||
Trichoderma harzianum | Maltodextrin and gum arabic | Air flow of 8.82 m3/min; pressure differential of 58.9 kPa; inlet air temperature (Ti) to 120 °C, 135 °C or 150 °C; outlet air temperature (To) to 70 °C, 80 °C or 90 °C | [35] |
Beauveria bassiana | Skimmed milk, chitosan and sodium alginate | Ti/To 100/60 °C and 80/30 °C, feed rate of 0.45/0.24 L/h; air pressure of 5/7.5 kg/cm2 | [36] |
Beauveria brongniartii | Skim milk and polyvinylpyrrolidone | Air-flow of 700 NL/h and aspirator setting to 35 m3/h; Ti of 40, 60, 80, 100 and 120 °C; feeding rate varied from 1–4 mL/min | [37] |
Bacillus subtilis | Skimmed milk, skimmed milk plus MgSO4 | 500 mL/h; Ti of 150 °C and to of 80 °C | [38] |
Streptomyces fulvissimus | Gellan gum and chitosan | 4 L/h; Ti of 110 °C and to of 60–80 °C | [39] |
Lactobacillus delbrueckii, Bifidobacterium bifidum, Streptococcus salivarius, Lactobacillus acidophilus | Whey protein concentrate, whey, and sodium alginate | Ti of 130 ± 3 °C; To of 72 ± 1 °C; drying; air flow rate of 35 m3/h; air pressure of 0.6 MPa; and feed flow was 8 mL/min | [10] |
Bacillus velezensis | MgSO4, Whey protein, SiO2 | Ti of 140 °C; To of 65 °C; flow rate of 300 mL/h and the atomization pressure of 1.3 kg/cm2 | [40] |
Enterobacter sp. | Sodium alginate/maltodextrin | Ti of 100 °C; To of 65 °C; drying air flow of 73 m3/h and a feed rate of 5.3 g/min | [41] |
Trichoderma asperellum | Sucrose, maltodextrin DE20, gum arabic, whey powder and lactose | Ti/To of 60/35, 70/44, 80/53, 90/65, 100/71, 110/80 and 120/88; feed rate 0.6 L/h; air flow rate of 5.94 × 106 L/h and the drying air flow rate of 2400 L/h | [9] |
Carriers | Microorganism | Purpose | Reference |
---|---|---|---|
Cellulose, alginate, chitosan, HPMC, dextrin, or HPMC/chitosan | Metarhizium anisopliae | To obtain an optimum condition for the preparation of insect pathogenic fungi | [72] |
Alginate-starch-bentonite | Raoultella planticola | To improve shelf life and protect the bacterial cells from acidic conditions-controlled release of bacterial fertilizers | [73] |
Gum arabic and maltodextrin | Bacillus cereus | To increase the viability survival rate of the cells | [74] |
Maltodextrin and gum arabic | Bacillus subtilis | To control Rhizoctonia solani in tomato | [75] |
Skim milk and ascorbic acid | Beauveria bassiana | To evaluate mortality to whitefly nymphs (Bemisia tabaci) | [26] |
Pectin and alginate | Metarhizium brunneum | To manage both plant pathogens and pests | [76] |
Alginate | Trichoderma harzianum | To keep cell viability was maintained after 2 years of storage at room temperature | [77] |
Trehalose, corn starch and maltodextrin | Meyerozyma caribbica | To evaluate the in vivo control efficacy of anthracnose on mango fruit | [78] |
Alginate | Trichoderma viride | To develop agroformulations to be used for plant protection and nutrition | [79] |
Alginate-gelatin | Pseudomonas fluorescens | To control Fusarium solani on potato | [80] |
Alginate | Trichoderma sp. | To increase the viability survival rate of the cells | [81] |
Gelatin and gum arabic | Metarhizium anisopliae | To prepare an active against the red imported fire and Solenopsis invicta | [82] |
Alginate-starch-bentonite | Bacillus subtilis | To enhance its antagonistic potential against Rhizoctonia solani and maintained cell viability after 40 days of storage at 27 °C | [83] |
Alginate, chitosan and rice starch | Bacillus licheniformis | Enhancement of plant growth and the suppression of the soil-borne pathogen Sclerotium rolfsii | [6] |
Gellan gum and chitosan | Streptomyces fulvissimus | The encapsulated strain suggested that 75% of wheat’s take-all pathogen control | [39] |
Alginate and clay minerals | Pseudomonas fluorescens Azospirillum brasilense | To retain the viability of cells after 90 days of storage at 4 °C and also enhanced plant growth | [84] |
Cellulose, alginate, and starch | Beauveria bassiana | To optimize B. bassiana formulations by spray dryer and evaluate its stability and biological activity against Spodoptera cosmioides compared to ionic gelatinization formulations | [85] |
Isomelezitose | Pseudomonas fluorescens | To suppress Fusarium dry rot disease | [23] |
Mannitol, glycerol and trehalose | Beauveria bassiana | To evaluate its stability and biological activity | [86] |
Cellulose and carboxymethyl cellulose (CMC) | Trichoderma harzianum | To increase shelf life and to be used as a biofertilizer and biopesticide in the form of an inoculant in agriculture | [87] |
Title | Patent Number | Reference |
---|---|---|
Methods and compositions relating to isolated and purified microbes | US2020/0121738-A1 | [94] |
Stable dry powder composition comprising biologically active microorganisms and/or bioactive materials and methods of making | US2019/0194259-A1 | [95] |
Dry glassy composition containing a bioactive substance | JP5886763-B2 | [96] |
Plant growth-promoting bacteria and methods of use | US2014/0274691-A1 | [97] |
Stabilizing composition for biological materials | KR102062645-B1 | [98] |
Stabilizing methods for coating seeds with biological materials | AU2017/219895-A1 | [99] |
Agriculturally advantageous microorganisms, microbial compositions, and consortia | CN108430222-B | [2] |
Microbial-based products to promote plant root and immune health | KR2020/0142081-A | [100] |
Materials and methods for treating bacterial infections in plants | BR112020/014469-A2 | [101] |
Microbial inoculant compositions and uses thereof in agriculture | AU2016/270813-B2 | [102] |
Compositions and methods for scalable production and delivery of biologicals | US2020/0267971-A1 | [103] |
Fungal entomopathogen biocides and their use in plants | CA2998391-C | [104] |
Methods and compositions for improving engineered microorganisms that fix nitrogen | JP7420712-B2 | [105] |
Method for improving agricultural production of poultry by administering a microbial consortium or purified strain thereof | CN109874294-B | [106] |
Polymer-based antimicrobial composition, and using method thereof | JP2022/070983-A | [107] |
Bioinputs based on T. harzianum and sophorolipids, kit, use, processes for preparing sophorolipids and the mentioned bioinputs, and methods for inducing growth and protecting against pests | BR102023/003698-A2 | [108] |
Materials and Methods for Control of Insect Pests Using Entomopathogenic Fungi | US2020/0390106-A1 | [109] |
Biofertilizer composition comprising thermophosphate dispersed in emulsified oil | BR102022/024883-A2 | [110] |
Method for immobilizing bacteria promoting plant growth on organic surfaces | BR102022/012809-A2 | [111] |
Stable compositions with inoculant and methods for production thereof | RU2739954-C2 | [112] |
Agriculturally beneficial microbes, microbial compositions, and consortia | US2022/0264892-A1 | [113] |
Microbial compositions and methods for bioprotection | CA2984075-C | [114] |
Means and methods for plant yield enhancement | US11071302-B2 | [115] |
An agricultural formulation comprising at least one bacterial strain Bacillus safoci RGM 2450 and/or bacterial strain Bacillus siamensis RGM 2529 and an agricultural excipient; use of formulations and methods for stimulating growth and/or increasing crop yield and/or protecting crops against diseases and pests | CN116724107-A | [116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luft, L.; Mazutti, M.A. Freeze and Spray Drying Technologies to Produce Solid Microbial Formulations for Sustainable Agriculture. Processes 2025, 13, 2188. https://doi.org/10.3390/pr13072188
Luft L, Mazutti MA. Freeze and Spray Drying Technologies to Produce Solid Microbial Formulations for Sustainable Agriculture. Processes. 2025; 13(7):2188. https://doi.org/10.3390/pr13072188
Chicago/Turabian StyleLuft, Luciana, and Marcio A. Mazutti. 2025. "Freeze and Spray Drying Technologies to Produce Solid Microbial Formulations for Sustainable Agriculture" Processes 13, no. 7: 2188. https://doi.org/10.3390/pr13072188
APA StyleLuft, L., & Mazutti, M. A. (2025). Freeze and Spray Drying Technologies to Produce Solid Microbial Formulations for Sustainable Agriculture. Processes, 13(7), 2188. https://doi.org/10.3390/pr13072188