Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (229)

Search Parameters:
Keywords = spillover infection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 11606 KiB  
Article
Emerging Highly Pathogenic Avian Influenza H5N1 Clade 2.3.4.4b Causes Neurological Disease and Mortality in Scavenging Ducks in Bangladesh
by Rokshana Parvin, Sumyea Binta Helal, Md Mohi Uddin, Shadia Tasnim, Md. Riabbel Hossain, Rupaida Akter Shila, Jahan Ara Begum, Mohammed Nooruzzaman, Ann Kathrin Ahrens, Timm Harder and Emdadul Haque Chowdhury
Vet. Sci. 2025, 12(8), 689; https://doi.org/10.3390/vetsci12080689 - 23 Jul 2025
Viewed by 499
Abstract
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular [...] Read more.
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular epidemiology and pathology of HPAI H5N1 viruses in unvaccinated scavenging ducks in Bangladesh, with the goal of assessing viral evolution and associated disease outcomes. Between June 2022 and March 2024, 40 scavenging duck flocks were investigated for HPAI outbreaks. Active HPAIV H5N1 infection was detected in 35% (14/40) of the flocks using RT-qPCR. Affected ducks exhibited clinical signs of incoordination, torticollis, and paralysis. Pathological examination revealed prominent meningoencephalitis, encephalopathy and encephalomalacia, along with widespread lesions in the trachea, lungs, liver, and spleen, indicative of systemic HPAIV infection. A phylogenetic analysis of full-genome sequences confirmed the continued circulation of clade 2.3.2.1a genotype G2 in these ducks. Notably, two samples of 2022 and 2023 harbored HPAIV H5N1 of clade 2.3.4.4b, showing genetic similarity to H5N1 strains circulating in Korea and Vietnam. A mutation analysis of the HA protein in clade 2.3.4.4b viruses revealed key substitutions, including T156A (loss of an N-linked glycosylation site), S141P (antigenic site A), and E193R/K (receptor-binding pocket), indicating potential antigenic drift and receptor-binding adaptation compared to clade 2.3.2.1a. The emergence of clade 2.3.4.4b with the first report of neurological and systemic lesions suggests ongoing viral evolution with increased pathogenic potential for ducks. These findings highlight the urgent need for enhanced surveillance and biosecurity to control HPAI spread in Bangladesh. Full article
Show Figures

Figure 1

10 pages, 1166 KiB  
Article
Avian Influenza Virus Strain Specificity in the Volatile Metabolome
by Young Eun Lee, Richard A. Bowen and Bruce A. Kimball
Metabolites 2025, 15(7), 468; https://doi.org/10.3390/metabo15070468 - 9 Jul 2025
Viewed by 328
Abstract
Background/Objectives: Outbreaks of highly pathogenic avian influenza virus (AIV) result in significant financial losses and the death or depopulation of millions of domestic birds. Early and rapid detection and surveillance are needed to slow the spread of AIV and prevent its spillover to [...] Read more.
Background/Objectives: Outbreaks of highly pathogenic avian influenza virus (AIV) result in significant financial losses and the death or depopulation of millions of domestic birds. Early and rapid detection and surveillance are needed to slow the spread of AIV and prevent its spillover to humans. The volatile metabolome (i.e., the pattern of volatile metabolites emitted by a living subject) represents one such source of health information that can be monitored for disease diagnosis. Indeed, dogs have been successfully trained to recognize patterns of “body odors” associated with many diseases. Because little is known regarding the mechanisms involved in the alteration of the volatile metabolome in response to health perturbation, questions still arise regarding the specificity, or lack thereof, of these alterations. Methods: To address this concern, we experimentally infected twenty mallard ducks with one of two different strains of low-pathogenic AIV (ten ducks per strain) and collected cloacal swabs at various time points before and after infection. Results: Headspace analyses revealed that four volatiles were significantly altered following infection, with distinct profiles associated with each viral strain. The volatiles that differed between strains among post-infection sampling periods included ethylbenzyl ether (p = 0.00006), 2-phenoxyethanol (p = 0.00017), 2-hydroxybenzaldehyde (p = 0.00022), and 6-methyl-5-hepten-2-one (p = 0.00034). Conclusions: These findings underscore that AIV-induced changes to the volatile metabolome are strain-specific, emphasizing the need for disease-specific profiling in diagnostic development. Full article
Show Figures

Figure 1

23 pages, 3759 KiB  
Review
Highly Pathogenic Avian Influenza (H5N1) Clade 2.3.4.4b in Cattle: A Rising One Health Concern
by Ivan Camilo Sanchez-Rojas, D. Katterine Bonilla-Aldana, Catherin Lorena Solarte-Jimenez, Jorge Luis Bonilla-Aldana, Jaime David Acosta-España and Alfonso J. Rodriguez-Morales
Animals 2025, 15(13), 1963; https://doi.org/10.3390/ani15131963 - 3 Jul 2025
Viewed by 1022
Abstract
Highly pathogenic avian influenza (HPAI) H5N1, particularly clade 2.3.4.4b, has demonstrated an unprecedented capacity for cross-species transmission, with recent reports confirming its presence in dairy cattle in the United States of America (USA) in 2024. This unexpected spillover challenges traditional understanding of the [...] Read more.
Highly pathogenic avian influenza (HPAI) H5N1, particularly clade 2.3.4.4b, has demonstrated an unprecedented capacity for cross-species transmission, with recent reports confirming its presence in dairy cattle in the United States of America (USA) in 2024. This unexpected spillover challenges traditional understanding of the virus’s host range and raises serious public health and veterinary concerns. Infected cattle presented with clinical signs such as decreased milk production, thickened or discolored milk, respiratory issues, and lethargy. Pathological findings revealed inflammation of the mammary glands and the detection of a virus in nasal secretions and raw milk, suggesting a potential for both intra- and interspecies transmission. While the current risk of human-to-human transmission remains low, the detection of H5N1 in a human exposed to infected cattle highlights the need for heightened surveillance and protective measures. Moreover, the presence of infectious viruses in the food chain, particularly in unpasteurized milk, introduces a new dimension of zoonotic risk. This review synthesizes emerging evidence on the epidemiology, pathology, diagnostic findings, and zoonotic implications of HPAI H5N1 infection in cattle. It also highlights the importance of genomic surveillance, intersectoral collaboration, and One Health approaches in managing this evolving threat. As the virus continues to circulate and adapt across diverse hosts, including wild birds, domestic poultry, and now mammals, the potential for reassortment and emergence of novel strains remains a significant concern. Immediate actions to strengthen biosecurity, monitor viral evolution, and protect both animal and human populations are critical to mitigate the global risk posed by this expanding panzootic. Full article
(This article belongs to the Special Issue Infection Immunity, Diagnosis and Prevention of Avian Influenza)
Show Figures

Figure 1

12 pages, 2323 KiB  
Article
Designing Sandwich ELISA with Broadly Reactive Anti-Nucleocapsid Monoclonal Antibodies to Detect Bat-Borne Merbecoviruses
by Kong Yen Liew, Yaju Wang, Sneha Sree Mullapudi, Dinah binte Aziz, Wenjie Fan, Min Luo, Paul Anantharajah Tambyah and Yee-Joo Tan
Viruses 2025, 17(7), 886; https://doi.org/10.3390/v17070886 - 24 Jun 2025
Cited by 1 | Viewed by 406
Abstract
At least three betacoronaviruses have spilled over from bats to humans and caused severe diseases, highlighting the threat of zoonotic transmission. Thus, it is important to enhance surveillance capabilities by developing tools capable of detecting a broad spectrum of bat-borne betacoronaviruses. Three monoclonal [...] Read more.
At least three betacoronaviruses have spilled over from bats to humans and caused severe diseases, highlighting the threat of zoonotic transmission. Thus, it is important to enhance surveillance capabilities by developing tools capable of detecting a broad spectrum of bat-borne betacoronaviruses. Three monoclonal antibodies (mAbs) targeting the nucleocapsid (N) protein were generated using recombinant N proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The cross-reactivities of these mAbs were evaluated against a panel of betacoronaviruses. Sandwich ELISAs (sELISAs) were subsequently developed to detect bat-borne betacoronaviruses that have high zoonotic potential. Among the mAbs, 7A7 demonstrated the broadest cross-reactivity, recognizing betacoronaviruses from the Sarbecovirus, Merbecovirus and Hibecovirus subgenera. The first sELISA, based on mAbs 7A7 and 6G10, successfully detected N protein in all clinical swab samples from COVID-19 patients with cycle threshold (Ct) values < 25, achieving 75% positivity overall (12/16). Using this as a reference, a second sELISA was established by pairing mAb 7A7 with mAb 8E2, which binds to multiple merbecoviruses. This assay detected the N protein of two merbecoviruses, namely the human MERS-CoV and bat-borne HKU5-CoV, at high sensitivity and has a limit of detection (LOD) that is comparable to the first sELISA used successfully to detect COVID-19 infection. These broadly reactive mAbs could be further developed into rapid antigen detection kits for surveillance in high-risk populations with close contact with wild bats to facilitate the early detection of potential zoonotic spillover events. Full article
(This article belongs to the Special Issue Emerging Microbes, Infections and Spillovers, 2nd Edition)
Show Figures

Figure 1

42 pages, 2526 KiB  
Review
Arthropod-Borne Zoonotic Parasitic Diseases in Africa: Existing Burden, Diversity, and the Risk of Re-Emergence
by Ayman Ahmed, Emmanuel Edwar Siddig and Nouh Saad Mohamed
Parasitologia 2025, 5(3), 29; https://doi.org/10.3390/parasitologia5030029 - 20 Jun 2025
Cited by 1 | Viewed by 998
Abstract
Vector-borne parasitic diseases represent a critical public health challenge in Africa, disproportionately impacting vulnerable populations and linking human, animal, and environmental health through the One Health framework. In this review, we explore the existing burden of these diseases, particularly those that are underreported. [...] Read more.
Vector-borne parasitic diseases represent a critical public health challenge in Africa, disproportionately impacting vulnerable populations and linking human, animal, and environmental health through the One Health framework. In this review, we explore the existing burden of these diseases, particularly those that are underreported. Climate change, urbanization, the introduction of alien species, and deforestation exacerbate the emergence and reemergence of arthropod-borne zoonotic parasitic diseases like malaria, leishmaniasis, and trypanosomiasis, complicating control and disease elimination efforts. Despite progress in managing certain diseases, gaps in surveillance and funding hinder effective responses, allowing many arthropod zoonotic parasitic infections to persist unnoticed. The increased interactions between humans and wildlife, driven by environmental changes, heighten the risk of spillover events. Leveraging comprehensive data on disease existence and distribution coupled with a One Health approach is essential for developing adaptive surveillance systems and sustainable control strategies. This review emphasizes the urgent need for interdisciplinary collaboration among medical professionals, veterinarians, ecologists, and policymakers to effectively address the challenges posed by vector-borne zoonotic parasitic diseases in Africa, ensuring improved health outcomes for both humans and animals. Full article
Show Figures

Figure 1

21 pages, 2702 KiB  
Article
Avian Influenza Virus: Comparative Evolution as the Key for Predicting Host Tropism Expansion
by Matteo Mellace, Carlotta Ceniti, Marielda Cataldi, Luca Borrelli and Bruno Tilocca
Pathogens 2025, 14(7), 608; https://doi.org/10.3390/pathogens14070608 - 20 Jun 2025
Viewed by 804
Abstract
The avian influenza virus poses an emerging public health risk due to its ability to cross the species barrier and infect a broad spectrum of hosts, including humans. The aim of this study was to investigate the molecular mechanisms and evolutionary dynamics underlying [...] Read more.
The avian influenza virus poses an emerging public health risk due to its ability to cross the species barrier and infect a broad spectrum of hosts, including humans. The aim of this study was to investigate the molecular mechanisms and evolutionary dynamics underlying the spillover, using a bioinformatics approach to viral sequences. Eight viral proteins involved in the process of adaptation to new hosts were selected, and 156 amino acid mutations potentially associated with interspecies transmission were analyzed. The sequences, obtained from the NCBI Virus database, were aligned with the BLASTP1.4.0 tool and compared through phylogenetic analysis. The results show significant evolutionary proximity between human and animal viral strains, and the identification of shared mutations suggests the presence of conserved mechanisms in spillover. The identification of hosts that share mutations with human strains highlights the potential role of these animals as reservoirs or vectors. This study contributes to the understanding of viral adaptation and provides a starting point for targeted preventive strategies, including molecular surveillance and the development of containment and prevention measures. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

27 pages, 1689 KiB  
Review
Occupational Risk from Avian Influenza Viruses at Different Ecological Interfaces Between 1997 and 2019
by Maria Alessandra De Marco, Alessandra Binazzi, Paola Melis, Claudia Cotti, Michela Bonafede, Mauro Delogu, Paola Tomao and Nicoletta Vonesch
Microorganisms 2025, 13(6), 1391; https://doi.org/10.3390/microorganisms13061391 - 14 Jun 2025
Viewed by 646
Abstract
Unprotected exposures to infected poultry or wild birds, and/or to the related avian influenza virus (AIV)-contaminated environments, could account for AIV infection in workers. This study was aimed at highlighting the ecological interfaces related to domestic poultry and wild birds posing an occupational [...] Read more.
Unprotected exposures to infected poultry or wild birds, and/or to the related avian influenza virus (AIV)-contaminated environments, could account for AIV infection in workers. This study was aimed at highlighting the ecological interfaces related to domestic poultry and wild birds posing an occupational risk regarding AIV. A search of all the articles investigating the possible presence of AIV in workers attested through virological and serological techniques and published up to August 2019 was performed on PubMed and Scopus electronic databases. Ninety-four articles consisting of 11 virological, 67 serological, and 16 mixed (both virological and serological) studies were obtained. Both virological and serological evidences of AIV infection were mainly related to H5, H7, and H9 subtypes. In addition, one piece of virological evidence for H10 subtype was reported, whereas seropositivity to all hemagglutinin subtypes from H4 to H11 was detected by serological studies. The number of AIV subtype exposures inferred from serological results showed that workers from large-scale industrial poultry farms and markets were the most represented, whereas workers from small-scale and backyard poultry farms showed seropositivity to a greater number of AIV subtypes. Workers exposed to wild bird habitats tested seropositive to H5, H9, and H11. In the occupational settings, direct contact with infected poultry or wild birds could account for AIV infection in workers. This AIV spillover can result in severe health complications for the workers, also posing a potential pandemic risk to the general population. From a public health perspective, the surveillance and early detection of AIV in workplaces should be a priority faced by a one-health approach. Full article
(This article belongs to the Special Issue Ecology of Influenza A Viruses: 2nd Edition)
Show Figures

Graphical abstract

60 pages, 6483 KiB  
Review
The Challenge of Lyssavirus Infections in Domestic and Other Animals: A Mix of Virological Confusion, Consternation, Chagrin, and Curiosity
by Charles E. Rupprecht, Aniruddha V. Belsare, Florence Cliquet, Philip P. Mshelbwala, Janine F. R. Seetahal and Vaughn V. Wicker
Pathogens 2025, 14(6), 586; https://doi.org/10.3390/pathogens14060586 - 13 Jun 2025
Viewed by 2355
Abstract
Lyssaviruses are RNA viruses in the Family Rhabdoviridae, Genus Lyssavirus. They represent the causative agents of acute, progressive encephalitis, known historically as rabies. Regardless of specific etiology, their collective viral morphology, biochemistry, pathobiology, associated clinical signs, diagnosis, epizootiology, and management are essentially [...] Read more.
Lyssaviruses are RNA viruses in the Family Rhabdoviridae, Genus Lyssavirus. They represent the causative agents of acute, progressive encephalitis, known historically as rabies. Regardless of specific etiology, their collective viral morphology, biochemistry, pathobiology, associated clinical signs, diagnosis, epizootiology, and management are essentially the same. Despite centuries of clinical recognition, these quintessential neurotropic agents remain significant pathogens today, with substantive consequences to agriculture, public health, and conservation biology. Notably, the singular morbidity caused by lyssaviruses is incurable and constitutes the highest case fatality of any viral disease. All warm-blooded vertebrates are believed to be susceptible. The dog is the only domestic animal that serves as a reservoir, vector, and victim. In contrast, felids are effective vectors, but not reservoirs. All other rabid domestic species, such as livestock, constitute spillover infections, as a bellwether to local lyssavirus activity. Frequently, professional confusion abounds among the veterinary community, because although the viral species Lyssavirus rabies is inarguably the best-known representative in the Genus, at least 20 other recognized or putative members of this monophyletic group are known. Frequently, this is simply overlooked. Moreover, often the ‘taxonomic etiology’ (i.e., ‘Lyssavirus x’) is mistakenly referenced in a biopolitcal context, instead of the obvious clinical illness (i.e., ‘rabies’). Global consternation persists, if localities believe they are ‘disease-free’, when documented lyssaviruses circulate or laboratory-based surveillance is inadequate to support such claims. Understandably, professional chagrin develops when individuals mistake the epidemiological terminology of control, prevention, elimination, etc. Management is not simple, given that the only licensed veterinary and human vaccines are against rabies virus, sensu lato. There are no adequate antiviral drugs for any lyssaviruses or cross-reactive biologics developed against more distantly related viral members. While representative taxa among the mammalian Orders Chiroptera, Carnivora, and Primates exemplify the major global reservoirs, which mammalian species are responsible for the perpetuation of other lyssaviruses remains a seemingly academic curiosity. This zoonosis is neglected. Clearly, with such underlying characteristics as a fundamental ‘disease of nature’, rabies, unlike smallpox and rinderpest, is not a candidate for eradication. With the worldwide zeal to drive human fatalities from canine rabies viruses to zero by the rapidly approaching year 2030, enhanced surveillance and greater introspection of the poorly appreciated burden posed by rabies virus and diverse other lyssaviruses may manifest as an epidemiological luxury to the overall global program of the future. Full article
(This article belongs to the Special Issue Current Challenges in Veterinary Virology)
Show Figures

Figure 1

17 pages, 1237 KiB  
Article
Serological Surveillance of Betacoronaviruses in Bat Guano Collectors: Pre-COVID-19 Pandemic and Post-SARS-CoV-2 Emergence
by Sasiprapa Ninwattana, Spencer L. Sterling, Khwankamon Rattanatumhi, Nattakarn Thippamom, Piyapha Hirunpatrawong, Pakamas Sangsub, Thaniwan Cheun-Arom, Dominic Esposito, Chee Wah Tan, Wee Chee Yap, Feng Zhu, Lin-Fa Wang, Eric D. Laing, Supaporn Wacharapluesadee and Opass Putcharoen
Viruses 2025, 17(6), 837; https://doi.org/10.3390/v17060837 - 10 Jun 2025
Viewed by 1110
Abstract
Community-based serosurveillance for emerging zoonotic viruses can provide a powerful and cost-effective measurement of cryptic spillovers. Betacoronaviruses, including SARS-CoV, SARS-CoV-2 and MERS-CoV, are known to infect bats and can cause severe respiratory illness in humans, yet remain under-surveyed in high-risk populations. This study [...] Read more.
Community-based serosurveillance for emerging zoonotic viruses can provide a powerful and cost-effective measurement of cryptic spillovers. Betacoronaviruses, including SARS-CoV, SARS-CoV-2 and MERS-CoV, are known to infect bats and can cause severe respiratory illness in humans, yet remain under-surveyed in high-risk populations. This study aimed to determine the seroprevalence of betacoronaviruses in an occupational cohort in contact with bats before and after the emergence of SARS-CoV-2. Serum samples from pre- and post-COVID-19 pandemic were screened using antigen-based multiplex microsphere immunoassays (MMIAs) and a multiplex surrogate virus neutralization test (sVNT). Pre-pandemic samples showed no SARS-CoV-2 antibodies, while post-pandemic samples from vaccinated participants displayed binding and neutralizing antibodies against SARS-CoV-2 and a related bat CoV. Furthermore, one participant (1/237, 0.43%) had persistent antibodies against MERS-CoV in 2017, 2018 and 2021 but was seronegative in 2023, despite reporting no history of traveling abroad or severe pneumonia. The observed sustained antibody levels indicate a possible exposure to MERS-CoV or a MERS-CoV-like virus, although the etiology and clinical relevance of this finding remains unclear. Ongoing surveillance in high-risk populations remains crucial for understanding virus epidemiology and mitigating zoonotic transmission risk. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

23 pages, 3143 KiB  
Article
Immune Responses Against West Nile Virus and Mosquito Salivary Proteins in Wild Birds from St. Tammany Parish, Louisiana
by Alyssa R. Schwinn, Sara Harris, Zoe Jacobs, Jane de Verges, Samuel B. Jameson, Dawn M. Wesson, Sarah R. Michaels, Kevin A. Caillouët and Berlin Londoño-Renteria
Zoonotic Dis. 2025, 5(2), 11; https://doi.org/10.3390/zoonoticdis5020011 - 6 May 2025
Viewed by 661
Abstract
Though a variety of methods are used to conduct West Nile virus (WNV) surveillance, accurate prediction and prevention of outbreaks remain a global challenge. Previous studies have established that the concentration of antibodies to mosquito saliva is directly related to the intensity of [...] Read more.
Though a variety of methods are used to conduct West Nile virus (WNV) surveillance, accurate prediction and prevention of outbreaks remain a global challenge. Previous studies have established that the concentration of antibodies to mosquito saliva is directly related to the intensity of exposure to mosquito bites and can be a good proxy to determine risk of infection in human populations. To assess exposure characteristics and transmission dynamics among avian communities, we tested the levels of IgY antibodies against whole salivary glands of Aedes albopictus and Culex quinquefasciatus, as well as WNV antigen, in 300 Northern cardinals sampled from April 2019 to October 2019 in St. Tammany Parish, Louisiana. Though there were no significant differences in antibody responses among sex or age groups, exposure to Ae. albopictus bites was more positively associated with exposure to WNV compared with Cx. quinquefasciatus exposure (ρ = 0.2525, p < 0.001; ρ = 0.1752, p = 0.02437). This association was more pronounced among female birds (ρ = 0.3004, p = 0.0075), while no significant relationship existed between exposure to either mosquito vector and WNV among male birds in the study. In general, two seasonal trends in exposure were found, noting that exposure to Ae. albopictus becomes less intense throughout the season (ρ = −0.1529, p = 0.04984), while recaptured birds in the study were found to have increased exposure to Cx. quinquefasciatus by the end of the season (ρ = 0.277, p = 0.0468). Additionally, we report the identification of several immunogenic salivary proteins, including D7 family proteins, from both mosquito vectors among the birds. Our results suggest that Ae. albopictus may have a role in early-season transmission of WNV, particularly among brooding females and hatchling cardinals. However, bloodmeal analysis was not included in this work and further studies are needed to verify this assumption. Yet, broad circulation of WNV in nesting avian communities could enhance risk of infection among Cx. quinquefasciatus mosquitoes in the late season, with the potential to contribute to human disease incidence and epizootic spillover in the environment. Full article
Show Figures

Figure 1

41 pages, 1230 KiB  
Review
Human T-Lymphotropic Virus (HTLV): Epidemiology, Genetic, Pathogenesis, and Future Challenges
by Francesco Branda, Chiara Romano, Grazia Pavia, Viola Bilotta, Chiara Locci, Ilenia Azzena, Ilaria Deplano, Noemi Pascale, Maria Perra, Marta Giovanetti, Alessandra Ciccozzi, Andrea De Vito, Angela Quirino, Nadia Marascio, Giovanni Matera, Giordano Madeddu, Marco Casu, Daria Sanna, Giancarlo Ceccarelli, Massimo Ciccozzi and Fabio Scarpaadd Show full author list remove Hide full author list
Viruses 2025, 17(5), 664; https://doi.org/10.3390/v17050664 - 1 May 2025
Cited by 1 | Viewed by 1748
Abstract
Human T-lymphotropic viruses (HTLVs) are deltaretroviruses infecting millions of individuals worldwide, with HTLV-1 and HTLV-2 being the most widespread and clinically relevant types. HTLV-1 is associated with severe diseases such as adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), while HTLV-2 [...] Read more.
Human T-lymphotropic viruses (HTLVs) are deltaretroviruses infecting millions of individuals worldwide, with HTLV-1 and HTLV-2 being the most widespread and clinically relevant types. HTLV-1 is associated with severe diseases such as adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), while HTLV-2 shows a lower pathogenic potential, with occasional links to neurological disorders. HTLV-3 and HTLV-4, identified in Central Africa, remain poorly characterized but are genetically close to their simian counterparts, indicating recent zoonotic transmission events. HTLVs replicate through a complex cycle involving cell-to-cell transmission and clonal expansion of infected lymphocytes. Viral persistence is mediated by regulatory and accessory proteins, notably Tax and HBZ in HTLV-1, which alter host cell signaling, immune responses, and genomic stability. Integration of proviral DNA into transcriptionally active regions of the host genome may contribute to oncogenesis and long-term viral latency. Differences in viral protein function and intracellular localization contribute to the distinct pathogenesis observed between HTLV-1 and HTLV-2. Geographically, HTLV-1 shows endemic clusters in southwestern Japan, sub-Saharan Africa, the Caribbean, South America, and parts of the Middle East and Oceania. HTLV-2 is concentrated among Indigenous populations in the Americas and people who inject drugs in Europe and North America. Transmission occurs primarily via breastfeeding, sexual contact, contaminated blood products, and, in some regions, zoonotic spillover. Diagnostic approaches include serological screening (ELISA, Western blot, LIA) and molecular assays (PCR, qPCR), with novel biosensor and AI-based methods under development. Despite advances in understanding viral biology, therapeutic options remain limited, and preventive strategies focus on transmission control. The long latency period, lack of effective treatments, and global neglect complicate public health responses, underscoring the need for increased awareness, research investment, and targeted interventions. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

13 pages, 1593 KiB  
Article
Occurrence of Echinococcus felidis in Apex Predators and Warthogs in Tanzania: First Molecular Evidence of Leopards as a New, Definitive Host and Implications for Ecosystem Health
by Barakaeli Abdieli Ndossi, Eblate Ernest Mjingo, Mary Wokusima Zebedayo, Seongjun Choe, Hansol Park, Lee Dongmin, Keeseon S. Eom and Mohammed Mebarek Bia
Pathogens 2025, 14(5), 443; https://doi.org/10.3390/pathogens14050443 - 30 Apr 2025
Viewed by 458
Abstract
(1) Background: Limited information on Echinococcus species among the wildlife in Tanzania has created a significant knowledge gap regarding their distribution, host range, and zoonotic potential. This study aimed to enhance the understanding of Echinococcus felidis transmission dynamics within the great Serengeti ecosystem. [...] Read more.
(1) Background: Limited information on Echinococcus species among the wildlife in Tanzania has created a significant knowledge gap regarding their distribution, host range, and zoonotic potential. This study aimed to enhance the understanding of Echinococcus felidis transmission dynamics within the great Serengeti ecosystem. (2) Methods: A total of 37 adult Echinococcus specimens were collected from a leopard (Panthera pardus) (n = 1) in Maswa Game Reserve and 7 from a lion (Panthera leo) (n = 1) in Loliondo. Two hydatid cysts were also obtained from warthogs (n = 2) in the Serengeti National Park. (3) Results: Morphological examination revealed infertile cysts in warthogs that were molecularly identified as E. felidis. This marks the first molecular evidence of E. felidis in leopards and warthogs in Tanzania. Pairwise similarity analysis showed 98.7%–99.5% identity between Tanzanian, Ugandan, and South African isolates. Thirteen unique haplotypes were identified, with a haplotype diversity of (Hd = 0.9485) indicating genetic variability. Phylogenetic analysis grouped E. felidis into a single lineage, with the leopard isolate forming a distinct haplotype, suggesting leopards as an emerging host. Lion and warthog isolates shared multiple mutational steps, suggesting possible genetic divergence. (4) Conclusions: This study confirms African lions and leopards as definitive hosts and warthogs as potential intermediate hosts of E. felidis in the Serengeti ecosystem. Our findings highlight disease spillover risks and stress the importance of ecosystem-based conservation in wildlife–livestock overlap areas. Although E. felidis is believed to be confined to wildlife, the proximity of infected animals to pastoralist communities raises concerns for spillover. These findings highlight the importance of ecosystem-based surveillance, especially in wildlife–livestock–human interface areas. Full article
(This article belongs to the Special Issue Zoonotic Cestodoses: Echinococcosis and Taeniosis)
Show Figures

Figure 1

10 pages, 1882 KiB  
Brief Report
Human Herpesvirus 1 Associated with Epizootics in Belo Horizonte, Minas Gerais, Brazil
by Gabriela Fernanda Garcia-Oliveira, Mikaelly Frasson Biccas, Daniel Jacob, Marcelle Alves Oliveira, Ana Maria de Oliveira Paschoal, Pedro Augusto Alves, Cecília Barreto, Daniel Ambrósio da Rocha Vilela, Érika Procópio Tostes Teixeira, Thiago Lima Stehling, Thais Melo Mendes, Marlise Costa Silva, Munique Guimarães Almeida, Ivan Vieira Sonoda, Érica Munhoz Mello, Francisco Elias Nogueira Gama, Kathryn A. Hanley, Nikos Vasilakis and Betania Paiva Drumond
Viruses 2025, 17(5), 660; https://doi.org/10.3390/v17050660 - 30 Apr 2025
Cited by 1 | Viewed by 433
Abstract
Human activity in sylvatic environments and resulting contact with wildlife, such as non-human primates (NHPs), can lead to pathogen spillover or spillback. Both NHPs and humans host a variety of herpesviruses. While these viruses typically cause asymptomatic infections in their natural hosts, they [...] Read more.
Human activity in sylvatic environments and resulting contact with wildlife, such as non-human primates (NHPs), can lead to pathogen spillover or spillback. Both NHPs and humans host a variety of herpesviruses. While these viruses typically cause asymptomatic infections in their natural hosts, they can lead to severe disease or even death when they move into novel hosts. In early 2024, deaths of Callithrix penicillata, the black-tufted marmoset, were reported in an urban park in Belo Horizonte, Minas Gerais, Brazil. The epizootic was investigated in collaboration with CETAS/IBAMA and the Zoonoses Department of Belo Horizonte. Nine marmoset carcasses and four sick marmosets were found in the park; the latter exhibited severe neurological symptoms and systemic illness before succumbing within 48 h. Carcasses were tested for rabies virus and were all negative, and necropsy findings revealed widespread organ damage. In addition, the samples were tested for yellow fever virus, with negative results. Finally, molecular testing, viral isolation, and phylogenetic analysis demonstrated human herpesvirus 1 (HHV-1) as the causative agent. The likely source of infection was human-to-marmoset transmission, facilitated by close interactions such as feeding and handling. This study highlights the risks of pathogen spillover between humans and nonhuman primates, emphasizing the need for enhanced surveillance and public awareness to mitigate future epizootics. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

13 pages, 4686 KiB  
Article
Blood Parasite Diversity and Zoonotic Risk in Captive Sun-Tailed Monkeys from Gabon
by Sarah Parfaite Ambourouet, Franck Mounioko, Patrice Makouloutou-Nzassi, Monique Nzale, Barthelemy Ngoubangoye and Larson Boundenga
Acta Microbiol. Hell. 2025, 70(2), 16; https://doi.org/10.3390/amh70020016 - 28 Apr 2025
Viewed by 540
Abstract
The present study investigates the prevalence and diversity of Plasmodium and Trypanosoma infections in Allochrocebus solatus, a vulnerable primate species native to Gabon. Using molecular techniques like nested PCR and phylogenetic analysis, we found 34.0% infection rate for malaria parasites infection, 21.3% [...] Read more.
The present study investigates the prevalence and diversity of Plasmodium and Trypanosoma infections in Allochrocebus solatus, a vulnerable primate species native to Gabon. Using molecular techniques like nested PCR and phylogenetic analysis, we found 34.0% infection rate for malaria parasites infection, 21.3% for Trypanosoma spp., and 12.8% co-infections. Additionally, Hepatocystis was exclusively detected among malaria parasites, while Trypanosoma brucei brucei, T. vivax, and T. congolense were identified. These results underscore the complex host–parasite interactions influenced by captivity and the ecological and immunological consequences of such infections, particularly the increased susceptibility associated with captivity-induced stress. This preliminary study highlights the need for ongoing surveillance to mitigate health risks in primates and prevent potential zoonotic spillovers, providing critical data for conservation efforts. Full article
Show Figures

Figure 1

46 pages, 6442 KiB  
Review
Stress Responses and Mechanisms of Phytopathogens Infecting Humans: Threats, Drivers, and Recommendations
by Md. Motaher Hossain, Farjana Sultana, Mahabuba Mostafa, Humayra Ferdus, Mrinmoy Kundu, Shanta Adhikary, Nabela Akter, Ankita Saha and Md. Abdullah Al Sabbir
Stresses 2025, 5(2), 28; https://doi.org/10.3390/stresses5020028 - 18 Apr 2025
Cited by 1 | Viewed by 3188
Abstract
Cross-kingdom infections, where pathogens from one kingdom infect organisms of another, were historically regarded as rare anomalies with minimal concern. However, emerging evidence reveals their increasing prevalence and potential to disrupt the delicate balance between plant, animal, and human health systems. Traditionally recognized [...] Read more.
Cross-kingdom infections, where pathogens from one kingdom infect organisms of another, were historically regarded as rare anomalies with minimal concern. However, emerging evidence reveals their increasing prevalence and potential to disrupt the delicate balance between plant, animal, and human health systems. Traditionally recognized as plant-specific, a subset of phytopathogens, including certain fungi, bacteria, viruses, and nematodes, have demonstrated the capacity to infect non-plant hosts, particularly immunocompromised individuals. These pathogens exploit conserved molecular mechanisms, such as immune evasion strategies, stress responses, and effector proteins, to breach host-specific barriers and establish infections. Specifically, fungal pathogens like Fusarium spp. and Colletotrichum spp. employ toxin-mediated cytotoxicity and cell-wall-degrading enzymes, while bacterial pathogens, such as Pseudomonas syringae, utilize type III secretion systems to manipulate host immune responses. Viral and nematode phytopathogens also exhibit molecular mimicry and host-derived RNA silencing suppressors to facilitate infections beyond plant hosts. This review features emerging cases of phytopathogen-driven animal and human infections and dissects the key molecular and ecological determinants that facilitate such cross-kingdom transmission. It also highlights critical drivers, including pathogen plasticity, horizontal gene transfer, and the convergence of environmental and anthropogenic stressors that breach traditional host boundaries. Furthermore, this review focuses on the underlying molecular mechanisms that enable host adaptation and the evolutionary pressures shaping these transitions. To address the complex threats posed by cross-kingdom phytopathogens, a comprehensive One Health approach that bridges plant, animal, and human health strategies is advocated. Integrating molecular surveillance, pathogen genomics, AI-powered predictive modeling, and global biosecurity initiatives is essential to detect, monitor, and mitigate cross-kingdom infections. This interdisciplinary approach not only enhances our preparedness for emerging zoonoses and phytopathogen spillovers but also strengthens ecological resilience and public health security in an era of increasing biological convergence. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

Back to TopTop