Serological Surveillance of Betacoronaviruses in Bat Guano Collectors: Pre-COVID-19 Pandemic and Post-SARS-CoV-2 Emergence
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval, Participant Recruitment and Informed Consent
2.2. Human Biological Samples and Data Collection
2.3. Serological Assays
2.3.1. The β-CoV MMIA
2.3.2. The SC2/HCoV MMIA
2.3.3. Multiplex Surrogate Virus Neutralization (sVNT)
2.4. Conventional Family-Wide PCR Assays to Detect Betacoronavirus RNA
2.5. Statistical Analysis
3. Results
3.1. Study Population and Samples
3.2. Pre-Pandemic Cohort
3.3. Post-COVID-19 Emergence Cohort
3.4. PCR Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Abbreviations
MMIA | Multiplex microsphere immunoassay |
Multiplex sVNT | Multiplex surrogate virus neutralization test |
HCoV(s) | Human coronavirus(es) |
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.Y.; Li, J.L.; Yang, X.L.; Chmura, A.A.; Zhu, G.; Epstein, J.H.; Mazet, J.K.; Hu, B.; Zhang, W.; Peng, C.; et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013, 503, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.L.; Hu, B.; Wang, B.; Wang, M.N.; Zhang, Q.; Zhang, W.; Wu, L.J.; Ge, X.Y.; Zhang, Y.Z.; Daszak, P.; et al. Isolation and Characterization of a Novel Bat Coronavirus Closely Related to the Direct Progenitor of Severe Acute Respiratory Syndrome Coronavirus. J. Virol. 2015, 90, 3253–3256. [Google Scholar] [CrossRef] [PubMed]
- Latinne, A.; Hu, B.; Olival, K.J.; Zhu, G.; Zhang, L.-B.; Li, H.; Chmura, A.A.; Field, H.E.; Zambrana-Torrelio, C.; Epstein, J.H.; et al. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 2024, 15, 10705. [Google Scholar] [CrossRef]
- Lytras, S.; Hughes, J.; Martin, D.; Swanepoel, P.; de Klerk, A.; Lourens, R.; Kosakovsky Pond, S.L.; Xia, W.; Jiang, X.; Robertson, D.L. Exploring the natural origins of SARS-CoV-2 in the light of recombination. Genome Biol. Evol. 2022, 14, evac018. [Google Scholar] [CrossRef]
- Delaune, D.; Hul, V.; Karlsson, E.A.; Hassanin, A.; Ou, T.P.; Baidaliuk, A.; Gámbaro, F.; Prot, M.; Tu, V.T.; Chea, S.; et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nat. Commun. 2021, 12, 6563. [Google Scholar] [CrossRef]
- Temmam, S.; Vongphayloth, K.; Baquero, E.; Munier, S.; Bonomi, M.; Regnault, B.; Douangboubpha, B.; Karami, Y.; Chrétien, D.; Sanamxay, D. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature 2022, 604, 330–336. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- Wacharapluesadee, S.; Tan, C.W.; Maneeorn, P.; Duengkae, P.; Zhu, F.; Joyjinda, Y.; Kaewpom, T.; Chia, W.N.; Ampoot, W.; Lim, B.L.; et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat. Commun. 2021, 12, 1430. [Google Scholar] [CrossRef]
- Wacharapluesadee, S.; Sintunawa, C.; Kaewpom, T.; Khongnomnan, K.; Olival, K.J.; Epstein, J.H.; Rodpan, A.; Sangsri, P.; Intarut, N.; Chindamporn, A. Group C betacoronavirus in bat guano fertilizer, Thailand. Emerg. Infect. Dis. 2013, 19, 1349. [Google Scholar] [CrossRef]
- Yadana, S.; Cheun-Arom, T.; Li, H.; Hagan, E.; Mendelsohn, E.; Latinne, A.; Martinez, S.; Putcharoen, O.; Homvijitkul, J.; Sathaporntheera, O. Behavioral–biological surveillance of emerging infectious diseases among a dynamic cohort in Thailand. BMC Infect. Dis. 2022, 22, 472. [Google Scholar] [CrossRef] [PubMed]
- Esposito, D.; Mehalko, J.; Drew, M.; Snead, K.; Wall, V.; Taylor, T.; Frank, P.; Denson, J.-P.; Hong, M.; Gulten, G. Optimizing high-yield production of SARS-CoV-2 soluble spike trimers for serology assays. Protein Expr. Purif. 2020, 174, 105686. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.; Klumpp-Thomas, C.; Kalish, H.; Shunmugavel, A.; Mehalko, J.; Denson, J.-P.; Snead, K.R.; Drew, M.; Corbett, K.S.; Graham, B.S. Serologic cross-reactivity of SARS-CoV-2 with endemic and seasonal Betacoronaviruses. J. Clin. Immunol. 2021, 41, 906–913. [Google Scholar] [CrossRef]
- Laing, E.D.; Sterling, S.L.; Richard, S.A.; Epsi, N.J.; Samuels, E.C.; Phogat, S.; Yan, L.; Moreno, N.; Coles, C.L.; Drew, M.; et al. Antigen-based multiplex strategies to discriminate SARS-CoV-2 natural and vaccine induced immunity from seasonal human coronavirus humoral responses. MedRxiv 2021, 02.10.21251518. [Google Scholar] [CrossRef]
- Evans, T.S.; Tan, C.W.; Aung, O.; Phyu, S.; Lin, H.; Coffey, L.L.; Toe, A.T.; Aung, P.; Aung, T.H.; Aung, N.T. Exposure to diverse sarbecoviruses indicates frequent zoonotic spillover in human communities interacting with wildlife. Int. J. Infect. Dis. 2023, 131, 57–64. [Google Scholar] [CrossRef]
- Tan, C.-W.; Chia, W.-N.; Young, B.E.; Zhu, F.; Lim, B.-L.; Sia, W.-R.; Thein, T.-L.; Chen, M.I.-C.; Leo, Y.-S.; Lye, D.C. Pan-sarbecovirus neutralizing antibodies in BNT162b2-immunized SARS-CoV-1 survivors. N. Engl. J. Med. 2021, 385, 1401–1406. [Google Scholar] [CrossRef]
- Wang, L.-F.; Tan, C.W.; Chia, W.N.; Zhu, F.; Young, B.; Chantasrisawad, N.; Hwa, S.-H.; Yeoh, A.Y.-Y.; Lim, B.L.; Yap, W.C. Differential escape of neutralizing antibodies by SARS-CoV-2 Omicron and pre-emergent sarbecoviruses. Res. Sq. 2022, rs.3.rs-1362541. [Google Scholar] [CrossRef]
- Tan, C.W.; Chia, W.N.; Qin, X.; Liu, P.; Chen, M.I.C.; Tiu, C.; Hu, Z.; Chen, V.C.-W.; Young, B.E.; Sia, W.R.; et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction. Nat. Biotechnol. 2020, 38, 1073–1078. [Google Scholar] [CrossRef]
- Quan, P.-L.; Firth, C.; Street, C.; Henriquez, J.A.; Petrosov, A.; Tashmukhamedova, A.; Hutchison, S.K.; Egholm, M.; Osinubi, M.O.; Niezgoda, M. Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. MBio 2010, 1, 10–1128. [Google Scholar] [CrossRef]
- Zhou, H.; Ji, J.; Chen, X.; Bi, Y.; Li, J.; Wang, Q.; Hu, T.; Song, H.; Zhao, R.; Chen, Y. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 2021, 184, 4380–4391.e14. [Google Scholar] [CrossRef]
- Anderson, E.M.; Goodwin, E.C.; Verma, A.; Arevalo, C.P.; Bolton, M.J.; Weirick, M.E.; Gouma, S.; McAllister, C.M.; Christensen, S.R.; Weaver, J. Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell 2021, 184, 1858–1864.e10. [Google Scholar] [CrossRef] [PubMed]
- Borrega, R.; Nelson, D.K.; Koval, A.P.; Bond, N.G.; Heinrich, M.L.; Rowland, M.M.; Lathigra, R.; Bush, D.J.; Aimukanova, I.; Phinney, W.N. Cross-reactive antibodies to SARS-CoV-2 and MERS-CoV in pre-COVID-19 blood samples from Sierra Leoneans. Viruses 2021, 13, 2325. [Google Scholar] [CrossRef] [PubMed]
- Tso, F.Y.; Lidenge, S.J.; Peña, P.B.; Clegg, A.A.; Ngowi, J.R.; Mwaiselage, J.; Ngalamika, O.; Julius, P.; West, J.T.; Wood, C. High prevalence of pre-existing serological cross-reactivity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in sub-Saharan Africa. Int. J. Infect. Dis. 2021, 102, 577–583. [Google Scholar] [CrossRef]
- Wong, L.S.Y.; Loo, E.X.L.; Huang, C.-H.; Yap, G.C.; Tay, M.J.Y.; Chua, R.X.Y.; Kang, A.Y.H.; Lu, L.; Lee, B.W.; Shek, L.P.-C. Early seasonal coronavirus seroconversion did not produce cross-protective SARS-CoV-2 antibodies. J. Infect. 2023, 86, e10. [Google Scholar] [CrossRef]
- Lau, S.K.P.; Woo, P.C.Y.; Yip, C.C.Y.; Tse, H.; Tsoi, H.-w.; Cheng, V.C.C.; Lee, P.; Tang, B.S.F.; Cheung, C.H.Y.; Lee, R.A.; et al. Coronavirus HKU1 and Other Coronavirus Infections in Hong Kong. J. Clin. Microbiol. 2006, 44, 2063–2071. [Google Scholar] [CrossRef]
- Dijkman, R.; Jebbink, M.F.; Gaunt, E.; Rossen, J.W.; Templeton, K.E.; Kuijpers, T.W.; Van der Hoek, L. The dominance of human coronavirus OC43 and NL63 infections in infants. J. Clin. Virol. 2012, 53, 135–139. [Google Scholar] [CrossRef]
- Dare, R.K.; Fry, A.M.; Chittaganpitch, M.; Sawanpanyalert, P.; Olsen, S.J.; Erdman, D.D. Human coronavirus infections in rural Thailand: A comprehensive study using real-time reverse-transcription polymerase chain reaction assays. J. Infect. Dis. 2007, 196, 1321–1328. [Google Scholar] [CrossRef]
- Suwannakarn, K.; Chieochansin, T.; Vichiwattana, P.; Korkong, S.; Theamboonlers, A.; Poovorawan, Y. Prevalence and genetic characterization of human coronaviruses in southern Thailand from July 2009 to January 2011. Southeast Asian J. Trop. Med. Public Health 2014, 45, 326. [Google Scholar]
- Joyjinda, Y.; Rodpan, A.; Chartpituck, P.; Suthum, K.; Yaemsakul, S.; Cheun-Arom, T.; Bunprakob, S.; Olival, K.J.; Stokes, M.M.; Hemachudha, T. First complete genome sequence of human coronavirus HKU1 from a nonill bat Guano Miner in Thailand. Microbiol. Resour. Announc. 2019, 8, e01457-18. [Google Scholar] [CrossRef]
- Suwannarong, K.; Janetanakit, T.; Kanthawee, P.; Suwannarong, K.; Theamboonlers, A.; Poovorawan, Y.; Tun, H.M.; Chanabun, S.; Amonsin, A. Coronavirus seroprevalence among villagers exposed to bats in Thailand. Zoonoses Public Health 2021, 68, 464–473. [Google Scholar] [CrossRef]
- Mohammed, M.E.A. The percentages of SARS-CoV-2 protein similarity and identity with SARS-CoV and BatCoV RaTG13 proteins can be used as indicators of virus origin. J. Proteins Proteom. 2021, 12, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Srisutthisamphan, K.; Saenboonrueng, J.; Wanitchang, A.; Viriyakitkosol, R.; Jongkaewwattana, A. Cross-Neutralization of SARS-CoV-2-Specific Antibodies in Convalescent and Immunized Human Sera against the Bat and Pangolin Coronaviruses. Viruses 2022, 14, 1793. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-Q.; Jiang, R.-D.; Guo, J.; Chen, Y.; Yang, D.-S.; Wang, X.; Lin, H.-F.; Li, A.; Li, B.; Hu, B.; et al. Inactivated SARS-CoV-2 Vaccine Shows Cross-Protection against Bat SARS-Related Coronaviruses in Human ACE2 Transgenic Mice. J. Virol. 2022, 96, e00169-22. [Google Scholar] [CrossRef] [PubMed]
- Sterling, S. Evaluation of the humoral immune response as a potential indicator of disease severity for patients hospitalized with COVID-19. Capstone Exp. 2020, 121. Available online: https://digitalcommons.unmc.edu/coph_slce/121 (accessed on 27 May 2025).
- Plipat, T.; Wacharapluesadee, S.; Siriarayapon, P.; Pittayawonganon, C.; Sangsajja, C.; Kaewpom, T.; Petcharat, S.; Ponpinit, T.; Jumpasri, J.; Joyjinda, Y. Imported case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection from Oman to Thailand, June 2015. Eurosurveillance 2017, 22, 30598. [Google Scholar] [CrossRef]
- Mohd, H.A.; Al-Tawfiq, J.A.; Memish, Z.A. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir. Virol. J. 2016, 13, 87. [Google Scholar] [CrossRef]
Number of Enrolments | Number of Participants | Gender | Number of Collected Samples | ||||
---|---|---|---|---|---|---|---|
Female | Male | 2017 | 2018 | 2021 | 2023 | ||
Single | 159 | 87 | 72 | 63 | 66 | 7 | 23 |
Multiple enrollments | |||||||
Two | 49 | 28 | 21 | 26 | 26 | 20 | 26 |
Three | 17 | 4 | 13 | 12 | 11 | 16 | 12 |
Four | 12 | 5 | 7 | 12 | 12 | 12 | 12 |
Total | 237 | 124 | 113 | 113 | 115 | 55 | 73 |
Characteristics | Pre-COVID-19 Pandemic | Post-SARS-CoV-2 Emergence | ||
---|---|---|---|---|
2017 (n = 113) | 2018 (n = 115) | 2021 (n = 55) | 2023 (n = 73) | |
Gender | ||||
Female | 57 (50.44%) | 70 (60.87%) | 18 (32.73%) | 30 (41.10%) |
Male | 56 (49.56%) | 45 (39.13%) | 37 (67.27%) | 43 (58.90%) |
Age group | ||||
12–17 years | 3 (2.65%) | 4 (3.48%) | 0 (0.00%) | 1 (1.37%) |
18–35 years | 24 (21.24%) | 19 (16.52%) | 7 (12.73%) | 11 (15.07%) |
36–55 years | 53 (46.90%) | 47 (40.87%) | 27 (49.09%) | 35 (47.95%) |
>55 years | 33 (29.20%) | 45 (39.13%) | 21 (38.18%) | 26 (35.62%) |
Median (range) | 47 (14–82) | 50 (12–89) | 52 (23–99) | 52 (16–91) |
Residence time | ||||
<1 year | 4 (3.54%) | 2 (1.74%) | 1 (1.82%) | 1 (1.37%) |
1–5 years | 6 (5.31%) | 3 (2.61%) | 3 (5.45%) | 4 (5.48%) |
6–10 years | 45 (39.82%) | 3 (2.61%) | 3 (5.45%) | 7 (9.59%) |
>10 years | 58 (51.33%) | 107 (93.04%) | 48 (87.27%) | 61 (83.56%) |
Primary livelihood | ||||
Crop Production | 22 (19.47%) | 17 (14.78%) | 6 (10.91%) | 10 (13.70%) |
Forest ranger | 13 (11.50%) | 13 (11.30%) | 11 (20.00%) | 14 (19.18%) |
Bat guano harvesting | 30 (26.55%) | 22 (19.13%) | 18 (32.73%) | 15 (20.55%) |
Other | 46 (40.71%) | 63 (54.78%) | 18 (32.73%) | 33 (45.21%) |
Unemployed/retired | 2 (1.77%) | 0 (0.00%) | 2 (3.64%) | 1 (1.37%) |
Animal contact last year | ||||
Scratched/bitten by animal | 34 (30.09%) | 9 (7.83%) | 14 (25.45%) | 10 (13.70%) |
Contact with rodents | 12 (10.62%) | 18 (15.65%) | 16 (29.09%) | 13 (17.81%) |
Contact with bats/bat products | 13 (11.50%) | 4 (3.48%) | 43 (78.18%) | 51 (69.86%) |
Contact with non-human primates | 1 (0.88%) | 1 (0.87%) | 10 (18.18%) | 8 (10.96%) |
COVID-19 vaccination | Not Applicable | Not Applicable | 48 (87.27%) | 66 (90.41%) |
COVID-19 history of infection | Not Applicable | Not Applicable | 0 (0.00%) | 28 (38.36%) |
Year of Enrolment | Specimen Type | Number of Samples | Detected Coronavirus * (Number) | |
---|---|---|---|---|
Tested Samples | Positive Samples (%) | |||
2017 | OS, NPS | 113 | 0 | Not applicable |
2018 | NS | 115 | 0 | Not applicable |
2021 | NPS | 55 | 0 | Not applicable |
2023 | NPS | 73 | 7 (9.59%) | SARS-CoV-2 (4) |
HCoV-OC43 (1) | ||||
HCoV-229E (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ninwattana, S.; Sterling, S.L.; Rattanatumhi, K.; Thippamom, N.; Hirunpatrawong, P.; Sangsub, P.; Cheun-Arom, T.; Esposito, D.; Tan, C.W.; Yap, W.C.; et al. Serological Surveillance of Betacoronaviruses in Bat Guano Collectors: Pre-COVID-19 Pandemic and Post-SARS-CoV-2 Emergence. Viruses 2025, 17, 837. https://doi.org/10.3390/v17060837
Ninwattana S, Sterling SL, Rattanatumhi K, Thippamom N, Hirunpatrawong P, Sangsub P, Cheun-Arom T, Esposito D, Tan CW, Yap WC, et al. Serological Surveillance of Betacoronaviruses in Bat Guano Collectors: Pre-COVID-19 Pandemic and Post-SARS-CoV-2 Emergence. Viruses. 2025; 17(6):837. https://doi.org/10.3390/v17060837
Chicago/Turabian StyleNinwattana, Sasiprapa, Spencer L. Sterling, Khwankamon Rattanatumhi, Nattakarn Thippamom, Piyapha Hirunpatrawong, Pakamas Sangsub, Thaniwan Cheun-Arom, Dominic Esposito, Chee Wah Tan, Wee Chee Yap, and et al. 2025. "Serological Surveillance of Betacoronaviruses in Bat Guano Collectors: Pre-COVID-19 Pandemic and Post-SARS-CoV-2 Emergence" Viruses 17, no. 6: 837. https://doi.org/10.3390/v17060837
APA StyleNinwattana, S., Sterling, S. L., Rattanatumhi, K., Thippamom, N., Hirunpatrawong, P., Sangsub, P., Cheun-Arom, T., Esposito, D., Tan, C. W., Yap, W. C., Zhu, F., Wang, L.-F., Laing, E. D., Wacharapluesadee, S., & Putcharoen, O. (2025). Serological Surveillance of Betacoronaviruses in Bat Guano Collectors: Pre-COVID-19 Pandemic and Post-SARS-CoV-2 Emergence. Viruses, 17(6), 837. https://doi.org/10.3390/v17060837