Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,677)

Search Parameters:
Keywords = speed gain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6688 KiB  
Article
Integrated Additive Manufacturing of TGV Interconnects and High-Frequency Circuits via Bipolar-Controlled EHD Jetting
by Dongqiao Bai, Jin Huang, Hongxiao Gong, Jianjun Wang, Yunna Pu, Jiaying Zhang, Peng Sun, Zihan Zhu, Pan Li, Huagui Wang, Pengbing Zhao and Chaoyu Liang
Micromachines 2025, 16(8), 907; https://doi.org/10.3390/mi16080907 (registering DOI) - 2 Aug 2025
Viewed by 159
Abstract
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to [...] Read more.
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to drive ink into deep and narrow vias; sufficiently high ink viscosity to prevent gravity-induced leakage; and stable meniscus dynamics to avoid satellite droplets and charge accumulation on the glass surface. By coupling electrostatic field analysis with transient level-set simulations, we establish a dimensionless regime map that delineates stable cone-jetting regime; these predictions are validated by high-speed imaging and surface profilometry. Operating within this window, the platform achieves complete, void-free filling of 200 µm × 1.52 mm TGVs and continuous 10 µm-wide traces in a single print pass. Demonstrating its capabilities, we fabricate transparent Ku-band substrate-integrated waveguide antennas on borosilicate glass: the printed vias and arc feed elements exhibit a reflection coefficient minimum of −18 dB at 14.2 GHz, a −10 dB bandwidth of 12.8–16.2 GHz, and an 8 dBi peak gain with 37° beam tilt, closely matching full-wave predictions. This physics-driven, all-in-one EHD approach provides a scalable route to high-performance, glass-integrated RF devices and transparent electronics. Full article
Show Figures

Figure 1

36 pages, 17913 KiB  
Article
Manufacturing, Microstructure, and Mechanics of 316L SS Biomaterials by Laser Powder Bed Fusion
by Zhizhou Zhang, Paul Mativenga and Shi-Qing Huang
J. Funct. Biomater. 2025, 16(8), 280; https://doi.org/10.3390/jfb16080280 - 31 Jul 2025
Viewed by 223
Abstract
Laser powder bed fusion (LPBF) is an advanced additive manufacturing technology that is gaining increasing interest for biomedical implants because it can produce dense, patient-specific metallic components with controlled microstructures. This study investigated the LPBF fabrication of 316L stainless steel, which is widely [...] Read more.
Laser powder bed fusion (LPBF) is an advanced additive manufacturing technology that is gaining increasing interest for biomedical implants because it can produce dense, patient-specific metallic components with controlled microstructures. This study investigated the LPBF fabrication of 316L stainless steel, which is widely used in orthopedic and dental implants, and examined the effects of laser power and scanning speed on the microstructure and mechanical properties relevant to biomedical applications. The study achieved 99.97% density and refined columnar and cellular austenitic grains, with optimized molten pool morphology. The optimal LPBF parameters, 190 W laser power and 700 mm/s, produced a tensile strength of 762.83 MPa and hardness of 253.07 HV0.2, which exceeded the values of conventional cast 316L stainless steel. These results demonstrated the potential of optimized LPBF 316L stainless steel for functional biomedical applications that require high mechanical integrity and biocompatibility. Full article
(This article belongs to the Special Issue Bio-Additive Manufacturing in Materials Science)
Show Figures

Figure 1

24 pages, 13347 KiB  
Article
Efficient Modeling of Underwater Target Radiation and Propagation Sound Field in Ocean Acoustic Environments Based on Modal Equivalent Sources
by Yan Lv, Wei Gao, Xiaolei Li, Haozhong Wang and Shoudong Wang
J. Mar. Sci. Eng. 2025, 13(8), 1456; https://doi.org/10.3390/jmse13081456 - 30 Jul 2025
Viewed by 211
Abstract
The equivalent source method (ESM) is a core algorithm in integrated radiation-propagation acoustic field modeling. However, in challenging marine environments, including deep-sea and polar regions, where sound speed profiles exhibit strong vertical gradients, the ESM must increase waveguide stratification to maintain accuracy. This [...] Read more.
The equivalent source method (ESM) is a core algorithm in integrated radiation-propagation acoustic field modeling. However, in challenging marine environments, including deep-sea and polar regions, where sound speed profiles exhibit strong vertical gradients, the ESM must increase waveguide stratification to maintain accuracy. This causes computational costs to scale exponentially with the number of layers, compromising efficiency and limiting applicability. To address this, this paper proposes a modal equivalent source (MES) model employing normal modes as basis functions instead of free-field Green’s functions. This model constructs a set of normal mode bases using full-depth hydroacoustic parameters, incorporating water column characteristics into the basis functions to eliminate waveguide stratification. This significantly reduces the computational matrix size of the ESM and computes acoustic fields in range-dependent waveguides using a single set of normal modes, resolving the dual limitations of inadequate precision and low efficiency in such environments. Concurrently, for the construction of basis functions, this paper also proposes a fast computation method for eigenvalues and eigenmodes in waveguide contexts based on phase functions and difference equations. Furthermore, coupling the MES method with the Finite Element Method (FEM) enables integrated computation of underwater target radiation and propagation fields. Multiple simulations demonstrate close agreement between the proposed model and reference results (errors < 4 dB). Under equivalent accuracy requirements, the proposed model reduces computation time to less than 1/25 of traditional ESM, achieving significant efficiency gains. Additionally, sea trial verification confirms model effectiveness, with mean correlation coefficients exceeding 0.9 and mean errors below 5 dB against experimental data. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

32 pages, 18111 KiB  
Article
Across-Beam Signal Integration Approach with Ubiquitous Digital Array Radar for High-Speed Target Detection
by Le Wang, Haihong Tao, Aodi Yang, Fusen Yang, Xiaoyu Xu, Huihui Ma and Jia Su
Remote Sens. 2025, 17(15), 2597; https://doi.org/10.3390/rs17152597 - 25 Jul 2025
Viewed by 203
Abstract
Ubiquitous digital array radar (UDAR) extends the integration time of moving targets by deploying a wide transmitting beam and multiple narrow receiving beams to cover the entire observed airspace. By exchanging time for energy, it effectively improves the detection ability for weak targets. [...] Read more.
Ubiquitous digital array radar (UDAR) extends the integration time of moving targets by deploying a wide transmitting beam and multiple narrow receiving beams to cover the entire observed airspace. By exchanging time for energy, it effectively improves the detection ability for weak targets. Nevertheless, target motion introduces severe across-range unit (ARU), across-Doppler unit (ADU), and across-beam unit (ABU) effects, dispersing target energy across the range–Doppler-beam space. This paper proposes a beam domain angle rotation compensation and keystone-matched filtering (BARC-KTMF) algorithm to address the “three-crossing” challenge. This algorithm first corrects ABU by rotating beam–domain coordinates to align scattered energy into the final beam unit, reshaping the signal distribution pattern. Then, the KTMF method is utilized to focus target energy in the time-frequency domain. Furthermore, a special spatial windowing technique is developed to improve computational efficiency through parallel block processing. Simulation results show that the proposed approach achieves an excellent signal-to-noise ratio (SNR) gain over the typical single-beam and multi-beam long-time coherent integration (LTCI) methods under low SNR conditions. Additionally, the presented algorithm also has the capability of coarse estimation for the target incident angle. This work extends the LTCI technique to the beam domain, offering a robust framework for high-speed weak target detection. Full article
Show Figures

Graphical abstract

32 pages, 3198 KiB  
Review
Shining the Path of Precision Diagnostic: Advancements in Photonic Sensors for Liquid Biopsy
by Paola Colapietro, Giuseppe Brunetti, Carlotta Panciera, Aurora Elicio and Caterina Ciminelli
Biosensors 2025, 15(8), 473; https://doi.org/10.3390/bios15080473 - 22 Jul 2025
Viewed by 317
Abstract
Liquid biopsy (LB) has gained attention as a valuable approach for cancer diagnostics, providing a minimally invasive option compared to conventional tissue biopsies and helping to overcome issues related to patient discomfort and procedural invasiveness. Recent advances in biosensor technologies, particularly photonic sensors, [...] Read more.
Liquid biopsy (LB) has gained attention as a valuable approach for cancer diagnostics, providing a minimally invasive option compared to conventional tissue biopsies and helping to overcome issues related to patient discomfort and procedural invasiveness. Recent advances in biosensor technologies, particularly photonic sensors, have improved the accuracy, speed, and real-time capabilities for detecting circulating biomarkers in biological fluids. Incorporating these tools into clinical practice facilitates more informed therapeutic choices and contributes to tailoring treatments to individual patient profiles. This review highlights the clinical potential of LB, examines technological limitations, and outlines future research directions. Departing from traditional biosensor focused reviews, it adopts a reverse-mapping approach grounded in clinically relevant tumor biomarkers. Specifically, biomarkers associated with prevalent cancers, such as breast, prostate, and lung cancers, serve as the starting point for identifying the most suitable photonic sensing platforms. The analysis underscores the need to align sensor design with the physicochemical properties of each biomarker and the operational requirements of the application. No photonic platform is universally optimal; rather, each exhibits specific strengths depending on performance metrics such as sensitivity, limit of detection, and easy system integration. Within this framework, the review provides a comprehensive assessment of emerging photonic biosensors and outlines key priorities to support their effective clinical translation in cancer diagnostics. Full article
(This article belongs to the Special Issue Lab-on-a-Chip Devices for Point-of-Care Diagnostics)
Show Figures

Figure 1

17 pages, 1494 KiB  
Article
All-Optical Encryption and Decryption at 120 Gb/s Using Carrier Reservoir Semiconductor Optical Amplifier-Based Mach–Zehnder Interferometers
by Amer Kotb, Kyriakos E. Zoiros and Wei Chen
Micromachines 2025, 16(7), 834; https://doi.org/10.3390/mi16070834 - 21 Jul 2025
Viewed by 512
Abstract
Encryption and decryption are essential components in signal processing and optical communication systems, providing data confidentiality, integrity, and secure high-speed transmission. We present a novel design and simulation of an all-optical encryption and decryption system operating at 120 Gb/s using carrier reservoir semiconductor [...] Read more.
Encryption and decryption are essential components in signal processing and optical communication systems, providing data confidentiality, integrity, and secure high-speed transmission. We present a novel design and simulation of an all-optical encryption and decryption system operating at 120 Gb/s using carrier reservoir semiconductor optical amplifiers (CR-SOAs) embedded in Mach–Zehnder interferometers (MZIs). The architecture relies on two consecutive exclusive-OR (XOR) logic gates, implemented through phase-sensitive interference in the CR-SOA-MZI structure. The first XOR gate performs encryption by combining the input data signal with a secure optical key, while the second gate decrypts the encoded signal using the same key. The fast gain recovery and efficient carrier dynamics of CR-SOAs enable a high-speed, low-latency operation suitable for modern photonic networks. The system is modeled and simulated using Mathematica Wolfram, and the output quality factors of the encrypted and decrypted signals are found to be 28.57 and 14.48, respectively, confirming excellent signal integrity and logic performance. The influence of key operating parameters, including the impact of amplified spontaneous emission noise, on system behavior is also examined. This work highlights the potential of CR-SOA-MZI-based designs for scalable, ultrafast, and energy-efficient all-optical security applications. Full article
(This article belongs to the Special Issue Integrated Photonics and Optoelectronics, 2nd Edition)
Show Figures

Figure 1

36 pages, 7426 KiB  
Article
PowerLine-MTYOLO: A Multitask YOLO Model for Simultaneous Cable Segmentation and Broken Strand Detection
by Badr-Eddine Benelmostafa and Hicham Medromi
Drones 2025, 9(7), 505; https://doi.org/10.3390/drones9070505 - 18 Jul 2025
Viewed by 536
Abstract
Power transmission infrastructure requires continuous inspection to prevent failures and ensure grid stability. UAV-based systems, enhanced with deep learning, have emerged as an efficient alternative to traditional, labor-intensive inspection methods. However, most existing approaches rely on separate models for cable segmentation and anomaly [...] Read more.
Power transmission infrastructure requires continuous inspection to prevent failures and ensure grid stability. UAV-based systems, enhanced with deep learning, have emerged as an efficient alternative to traditional, labor-intensive inspection methods. However, most existing approaches rely on separate models for cable segmentation and anomaly detection, leading to increased computational overhead and reduced reliability in real-time applications. To address these limitations, we propose PowerLine-MTYOLO, a lightweight, one-stage, multitask model designed for simultaneous power cable segmentation and broken strand detection from UAV imagery. Built upon the A-YOLOM architecture, and leveraging the YOLOv8 foundation, our model introduces four novel specialized modules—SDPM, HAD, EFR, and the Shape-Aware Wise IoU loss—that improve geometric understanding, structural consistency, and bounding-box precision. We also present the Merged Public Power Cable Dataset (MPCD), a diverse, open-source dataset tailored for multitask training and evaluation. The experimental results show that our model achieves up to +10.68% mAP@50 and +1.7% IoU compared to A-YOLOM, while also outperforming recent YOLO-based detectors in both accuracy and efficiency. These gains are achieved with a smaller model memory footprint and a similar inference speed compared to A-YOLOM. By unifying detection and segmentation into a single framework, PowerLine-MTYOLO offers a promising solution for autonomous aerial inspection and lays the groundwork for future advances in fine-structure monitoring tasks. Full article
Show Figures

Figure 1

22 pages, 14847 KiB  
Article
Formation Control of Underactuated AUVs Using a Fractional-Order Sliding Mode Observer
by Long He, Mengting Xie, Ya Zhang, Shizhong Li, Bo Li, Zehui Yuan and Chenrui Bai
Fractal Fract. 2025, 9(7), 465; https://doi.org/10.3390/fractalfract9070465 - 18 Jul 2025
Viewed by 325
Abstract
This paper proposes a control method that combines a fractional-order sliding mode observer and a cooperative control strategy to address the problem of path-following for underactuated autonomous underwater vehicles (AUVs) in complex marine environments. First, a fractional-order sliding mode observer is designed, combining [...] Read more.
This paper proposes a control method that combines a fractional-order sliding mode observer and a cooperative control strategy to address the problem of path-following for underactuated autonomous underwater vehicles (AUVs) in complex marine environments. First, a fractional-order sliding mode observer is designed, combining fractional calculus and double-power convergence laws to enhance the estimation accuracy of high-frequency disturbances. An adaptive gain mechanism is introduced to avoid dependence on the upper bound of disturbances. Second, a formation cooperative control strategy based on path parameter coordination is proposed. By setting independent reference points for each AUV and exchanging path parameters, formation consistency is achieved with low communication overhead. For the followers’ speed control problem, an error-based expected speed adjustment mechanism is introduced, and a hyperbolic tangent function is used to replace the traditional arctangent function to improve the response speed of the system. Numerical simulation results show that this control method performs well in terms of path-following accuracy, formation maintenance capability, and disturbance suppression, verifying its effectiveness and robustness in complex marine environments. Full article
Show Figures

Figure 1

31 pages, 6172 KiB  
Article
Shipping Decarbonisation: Financial and Business Strategies for UK Shipowners
by Eleni I. Avaritsioti
J. Risk Financial Manag. 2025, 18(7), 391; https://doi.org/10.3390/jrfm18070391 - 16 Jul 2025
Viewed by 319
Abstract
The maritime sector faces urgent decarbonisation pressures due to regulatory instruments, such as the International Maritime Organization’s (IMO) Carbon Intensity Indicator (CII), which mandates reductions in greenhouse gas emissions per transport work. This paper investigates the challenge of identifying CII-compliant strategies that are [...] Read more.
The maritime sector faces urgent decarbonisation pressures due to regulatory instruments, such as the International Maritime Organization’s (IMO) Carbon Intensity Indicator (CII), which mandates reductions in greenhouse gas emissions per transport work. This paper investigates the challenge of identifying CII-compliant strategies that are also financially viable for UK shipowners. To address this, operational and technical data from UK-flagged vessels over 5000 GT are analysed using a capital budgeting framework. This includes scenario-based evaluation of speed reduction, payload limitation, and retrofitting with dual-fuel LNG and methanol engines. The analysis integrates carbon taxation, and pilot fuel use to assess impacts on emissions and profitability. The findings reveal that while the short-term operational measures examined offer modest gains, long-term compliance and financial performance are best achieved through targeted retrofitting supported by carbon taxes and favourable market conditions. The study provides actionable insights for shipowners and policymakers seeking to align commercial viability with regulatory obligations under the evolving CII framework. Full article
(This article belongs to the Special Issue Featured Papers in Climate Finance)
Show Figures

Figure 1

20 pages, 3464 KiB  
Article
Methodology of Determining the Intensity of Heat Exchange in a Polytunnel: A Case Study of Synergy Between the Polytunnel and a Stone Heat Accumulator
by Sławomir Kurpaska, Paweł Kiełbasa, Jarosław Knaga, Stanisław Lis and Maciej Gliniak
Energies 2025, 18(14), 3738; https://doi.org/10.3390/en18143738 - 15 Jul 2025
Viewed by 232
Abstract
This paper presents the results of laboratory tests on the intensity of mass and heat exchange in a polytunnel, with a focus on the synergy between the polytunnel and a stone accumulator. The subject of study was a standard polytunnel made of double [...] Read more.
This paper presents the results of laboratory tests on the intensity of mass and heat exchange in a polytunnel, with a focus on the synergy between the polytunnel and a stone accumulator. The subject of study was a standard polytunnel made of double polythene sheathing. In the process of selecting the appropriate working conditions for such a polytunnel, the characteristic operating parameters were modeled and verified. They were related to the process of mass and energy exchange, which takes place in regular controlled-environment agriculture (CEA). Then, experimental tests of a heat accumulator on a fixed stone bed were carried out. The experiments were carried out for various accumulator surfaces ranging from 18.7 m2 to 74.8 m2, which was measured perpendicularly to the heat medium. To standardize the results obtained, the analysis included the unit area of the accumulator and the unit time of the experiment. In this way, 835 heat and mass exchange events were analyzed, including 437 accumulator charging processes and 398 discharging processes from April to October, which is a standard period of polytunnel use in the Polish climate. During the tests, internal and external parameters of the process were recorded, such as temperature, relative humidity, solar radiation, wind speed and air flow speed in the accumulator system. Based on the parameters, a set of empirical relationships was developed using mathematical modeling. This provided the foundation for calculating heat gains as a result of its storage in a stone accumulator and its discharging process. The research results, including the developed dependencies, not only fill the scientific gap in the field of heat storage, but can also be used in engineering design of polytunnels supported by a heat storage system on a stone bed. In addition, the proposed methodology can be used in the study of other heat accumulators, not only in plant production facilities. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

37 pages, 2921 KiB  
Article
A Machine-Learning-Based Data Science Framework for Effectively and Efficiently Processing, Managing, and Visualizing Big Sequential Data
by Alfredo Cuzzocrea, Islam Belmerabet, Abderraouf Hafsaoui and Carson K. Leung
Computers 2025, 14(7), 276; https://doi.org/10.3390/computers14070276 - 14 Jul 2025
Viewed by 638
Abstract
In recent years, the open data initiative has led to the willingness of many governments, researchers, and organizations to share their data and make it publicly available. Healthcare, disease, and epidemiological data, such as privacy statistics on patients who have suffered from epidemic [...] Read more.
In recent years, the open data initiative has led to the willingness of many governments, researchers, and organizations to share their data and make it publicly available. Healthcare, disease, and epidemiological data, such as privacy statistics on patients who have suffered from epidemic diseases such as the Coronavirus disease 2019 (COVID-19), are examples of open big data. Therefore, huge volumes of valuable data have been generated and collected at high speed from a wide variety of rich data sources. Analyzing these open big data can be of social benefit. For example, people gain a better understanding of disease by analyzing and mining disease statistics, which can inspire them to participate in disease prevention, detection, control, and combat. Visual representation further improves data understanding and corresponding results for analysis and mining, as a picture is worth a thousand words. In this paper, we present a visual data science solution for the visualization and visual analysis of large sequence data. These ideas are illustrated by the visualization and visual analysis of sequences of real epidemiological data of COVID-19. Through our solution, we enable users to visualize the epidemiological data of COVID-19 over time. It also allows people to visually analyze data and discover relationships between popular features associated with COVID-19 cases. The effectiveness of our visual data science solution in improving the user experience of visualization and visual analysis of large sequence data is demonstrated by the real-life evaluation of these sequenced epidemiological data of COVID-19. Full article
(This article belongs to the Special Issue Computational Science and Its Applications 2024 (ICCSA 2024))
Show Figures

Figure 1

44 pages, 14734 KiB  
Article
Influence of Zn Content on the Corrosion and Mechanical Properties of Cast and Friction Stir-Welded Al-Si-Mg-Fe-Zn Alloys
by Xiaomi Chen, Kun Liu, Quan Liu, Jing Kong, Valentino A. M. Cristino, Kin-Ho Lo, Zhengchao Xie, Zhi Wang, Dongfu Song and Chi-Tat Kwok
Materials 2025, 18(14), 3306; https://doi.org/10.3390/ma18143306 - 14 Jul 2025
Viewed by 431
Abstract
With the ongoing development of lightweight automobiles, research on new aluminum alloys and welding technology has gained significant attention. Friction stir welding (FSW) is a solid-state joining technique for welding aluminum alloys without melting. In this study, novel squeeze-cast Al-Si-Mg-Fe-Zn alloys with different [...] Read more.
With the ongoing development of lightweight automobiles, research on new aluminum alloys and welding technology has gained significant attention. Friction stir welding (FSW) is a solid-state joining technique for welding aluminum alloys without melting. In this study, novel squeeze-cast Al-Si-Mg-Fe-Zn alloys with different Zn contents (0, 3.4, 6.5, and 8.3 wt%) were friction stir welded (FSWed) at a translational speed of 200 mm/min and a rotational speed of 800 rpm. These parameters were chosen based on the observations of visually sound welds, defect-free and fine-grained microstructures, homogeneous secondary phase distribution, and low roughness. Zn can affect the microstructure of Al-Si-Mg-Fe-Zn alloys, including the grain size and the content of secondary phases, leading to different mechanical and corrosion behavior. Adding different Zn contents with Mg forms the various amount of MgZn2, which has a significant strengthening effect on the alloys. Softening observed in the weld zones of the alloys with 0, 3.4, and 6.5 wt% Zn is primarily attributed to the reduction in Kernel Average Misorientation (KAM) and a decrease in the Si phase and MgZn2. Consequently, the mechanical strengths of the FSWed joints are lower as compared to the base material. Conversely, the FSWed alloy with 8.3 wt% Zn exhibited enhanced mechanical properties, with hardness of 116.3 HV0.2, yield strength (YS) of 184.4 MPa, ultimate tensile strength (UTS) of 226.9 MP, percent elongation (EL%) of 1.78%, and a strength coefficient exceeding 100%, indicating that the joint retains the strength of the as-cast one, due to refined grains and more uniformly dispersed secondary phases. The highest corrosion resistance of the FSWed alloy with 6.5%Zn is due to the smallest grain size and KAM, without MgZn2 and the highest percentage of {111} texture (24.8%). Full article
(This article belongs to the Special Issue Study on Electrochemical Behavior and Corrosion of Materials)
Show Figures

Graphical abstract

14 pages, 2087 KiB  
Article
A 28-nm CMOS Low-Power/Low-Voltage 60-GHz LNA for High-Speed Communication
by Minoo Eghtesadi, Andrea Ballo, Gianluca Giustolisi, Salvatore Pennisi and Egidio Ragonese
Electronics 2025, 14(14), 2819; https://doi.org/10.3390/electronics14142819 - 13 Jul 2025
Viewed by 485
Abstract
This paper presents a wideband low-power/low-voltage 60-GHz low-noise amplifier (LNA) in a 28-nm bulk CMOS technology. The LNA has been designed for high-speed millimeter-wave (mm-wave) communications. It consists of two pseudo-differential amplifying stages and a buffer stage included for 50-Ohm on-wafer measurements. Two [...] Read more.
This paper presents a wideband low-power/low-voltage 60-GHz low-noise amplifier (LNA) in a 28-nm bulk CMOS technology. The LNA has been designed for high-speed millimeter-wave (mm-wave) communications. It consists of two pseudo-differential amplifying stages and a buffer stage included for 50-Ohm on-wafer measurements. Two integrated input/output baluns guarantee both simultaneous 50-ohm input–noise/output matching at input/output radio frequency (RF) pads. A power-efficient design strategy is adopted to make the LNA suitable for low-power applications, while minimizing the noise figure (NF). Thanks to the adopted design strategy, the post-layout simulation results show an excellent trade-off between power gain and 3-dB bandwidth (BW3dB) with 13.5 dB and 7 GHz centered at 60 GHz, respectively. The proposed LNA consumes only 11.6 mA from a 0.9-V supply voltage with an NF of 8.4 dB at 60 GHz, including the input transformer loss. The input 1 dB compression point (IP1dB) of −15 dBm at 60 GHz confirms the first-rate linearity of the proposed amplifier. Human body model (HBM) electrostatic discharge (ESD) protection is guaranteed up to 2 kV at the RF input/output pads thanks to the input/output integrated transformers. Full article
(This article belongs to the Special Issue 5G Mobile Telecommunication Systems and Recent Advances, 2nd Edition)
Show Figures

Figure 1

21 pages, 7297 KiB  
Article
FGS-YOLOv8s-seg: A Lightweight and Efficient Instance Segmentation Model for Detecting Tomato Maturity Levels in Greenhouse Environments
by Dongfang Song, Ping Liu, Yanjun Zhu, Tianyuan Li and Kun Zhang
Agronomy 2025, 15(7), 1687; https://doi.org/10.3390/agronomy15071687 - 12 Jul 2025
Viewed by 386
Abstract
In a greenhouse environment, the application of artificial intelligence technology for selective tomato harvesting still faces numerous challenges, including varying lighting, background interference, and indistinct fruit surface features. This study proposes an improved instance segmentation model called FGS-YOLOv8s-seg, which achieves accurate detection and [...] Read more.
In a greenhouse environment, the application of artificial intelligence technology for selective tomato harvesting still faces numerous challenges, including varying lighting, background interference, and indistinct fruit surface features. This study proposes an improved instance segmentation model called FGS-YOLOv8s-seg, which achieves accurate detection and maturity grading of tomatoes in greenhouse environments. The model incorporates a novel SegNext_Attention mechanism at the end of the backbone, while simultaneously replacing Bottleneck structures in the neck layer with FasterNet blocks and integrating Gaussian Context Transformer modules to form a lightweight C2f_FasterNet_GCT structure. Experiments show that this model performs significantly better than mainstream segmentation models in core indicators such as precision (86.9%), recall (76.3%), average precision (mAP@0.5 84.8%), F1-score (81.3%), and GFLOPs (35.6 M). Compared with the YOLOv8s-seg baseline model, these metrics show improvements of 2.6%, 3.8%, 5.1%, 3.3%, and 6.8 M, respectively. Ablation experiments demonstrate that the improved architecture contributes significantly to performance gains, with combined improvements yielding optimal results. The analysis of detection performance videos under different cultivation patterns demonstrates the generalizability of the improved model in complex environments, achieving an optimal balance between detection accuracy (86.9%) and inference speed (53.2 fps). This study provides a reliable technical solution for the selective harvesting of greenhouse tomatoes. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

42 pages, 5715 KiB  
Article
Development and Fuel Economy Optimization of Series–Parallel Hybrid Powertrain for Van-Style VW Crafter Vehicle
by Ahmed Nabil Farouk Abdelbaky, Aminu Babangida, Abdullahi Bala Kunya and Péter Tamás Szemes
Energies 2025, 18(14), 3688; https://doi.org/10.3390/en18143688 - 12 Jul 2025
Viewed by 493
Abstract
The presence of toxic gas emissions from conventional vehicles is worrisome globally. Over the past few years, there has been a broad adoption of electric vehicles (EVs) to reduce energy usage and mitigate environmental emissions. The EVs are characterized by limited range, cost, [...] Read more.
The presence of toxic gas emissions from conventional vehicles is worrisome globally. Over the past few years, there has been a broad adoption of electric vehicles (EVs) to reduce energy usage and mitigate environmental emissions. The EVs are characterized by limited range, cost, and short range. This prompts the need for hybrid electric vehicles (HEVs). This study describes the conversion of a 2022 Volkswagen Crafter (VW) 35 TDI 340 delivery van from a conventional diesel powertrain into a hybrid electric vehicle (HEV) augmented with synchronous electrical machines (motor and generator) and a BMW i3 60 Ah battery pack. A downsized 1.5 L diesel engine and an electric motor–generator unit are integrated via a planetary power split device supported by a high-voltage lithium-ion battery. A MATLAB (R2024b) Simulink model of the hybrid system is developed, and its speed tracking PID controller is optimized using genetic algorithm (GA) and particle swarm optimization (PSO) methods. The simulation results show significant efficiency gains: for example, average fuel consumption falls from 9.952 to 7.014 L/100 km (a 29.5% saving) and CO2 emissions drop from 260.8 to 186.0 g/km (a 74.8 g reduction), while the vehicle range on a 75 L tank grows by ~40.7% (from 785.7 to 1105.5 km). The optimized series–parallel powertrain design significantly improves urban driving economy and reduces emissions without compromising performance. Full article
Show Figures

Figure 1

Back to TopTop