Shining the Path of Precision Diagnostic: Advancements in Photonic Sensors for Liquid Biopsy
Abstract
1. Introduction
2. Tumor Biomarkers as Indicators in Cancer Diagnosis
Biomarker | Associated Cancer Type | Biological Fluid | Typical Concentration | Diagnostic Technology | LoD | Refs. |
---|---|---|---|---|---|---|
CTC |
| Peripheral whole blood | 1–5 cells per 7.5 mL | CTC-chip | 5–1281 CTCs/mL | [25] |
| Peripheral whole blood | 500 CTCs per 7.5 mL | NP-HBCTC-Chip | 6–12 CTCs/mL | [26,27] | |
| Peripheral whole blood | 1–5 cells per 7.5 mL | CellSearch system | 60 ± 693 CTCs per 7.5 mL | [28] | |
EVs |
| Urine | ~1010 EVs per mL | Ultracentrifugation | 4.13 ± 3 × 1011 particles/mL | [29,30] |
| Plasma | ~1010 EVs per mL | DNA aptamer-based system | 0.21–1.87 × 109 particles/mL | [30,31] | |
Exosome |
| Plasma | ~1010 EVs per mL | newExoChip | 2.79 × 108 particles/mL | [30,31] |
| Plasma | ~1010 EVs per mL | newExoChip | 2.89 × 108 particles/mL | [30,32] | |
ctDNA |
| Plasma | 0.01–0.1% allele frequency | BEAMin TAm-Seq CAPP-Seq ddPCR | 0.01% allele frequency (ddPCR) | [33] |
miRNA |
| Serum, plasma | ~pg–ng/mL | Immunomagnetic Exosomal RNA (iMER) technology | ~pg–ng/mL | [34] |
2.1. CTCs
2.2. Extracellular Vesicles
2.3. Circulating Tumor DNA (ctDNA)
2.4. Circulating miRNA
2.5. Main Approaches for Detecting Cancer Biomarkers: From Gold Standards to Liquid Biopsy
2.6. Liquid Biopsy Sampling Techniques and Their Integration with Photonic Biosensors
3. Prevalent Cancer Types and Associated Biomarkers
3.1. Breast Cancer
3.2. Prostate Cancer
3.3. Lung Cancer
4. Photonic Biosensor Technologies for Liquid Biopsy Applications
Transducer Type | Key Characteristics | Strengths | Limitations | Performance |
---|---|---|---|---|
Electrochemical |
|
|
| |
Mechanical |
|
|
| |
Optical/photonic |
|
|
|
4.1. Photonic Biosensors: Principles and Technologies
4.2. Photonic Biosensors for Circulating Biomarkers
Photonic Biosensor Technologies | LB Biomarkers | Performance | Ref. |
---|---|---|---|
1D defective ternary photonic crystal | CTCs (glioblastoma) | Bulk sensitivity = 4170.34 nm/RIU | [121] |
SERS sensors | CTCs | LoD < 1 cell mL−1 | [122] |
SPR sensors | miRNA | LoD = 1 × 10−18 M | [123] |
SPR sensors | Exosomes | LoD ranging from 5000 to 10,000 exosomes per µL | [124,125] |
LSPR | Exosome | Single exosome detection | [126] |
WGM/PhC optical resonators | cfRNA | LoD = 10 × 10−12 M | [127] |
LSPR | cfRNA | LoD~10 × 10−15 M | [128] |
4.3. Photonic Biosensors for Detection of HER2
4.4. Photonic Biosensors for Detection of CEA
4.5. Photonic Biosensors for Detection of PSA
5. Comparative Analysis of Photonic Biosensing Platforms
6. From Technological Innovation to Clinical Applicability: Current Challenges and Future Prospective
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LB | Liquid Biopsy |
WHO | World Health Organization |
CT | Computed Tomography |
MRI | Magnetic Resonance Imaging |
cfDNA | Circulating Cell-Free DNA |
cfRNA | Circulating Cell-Free RNA |
CTCs | Circulating Tumor Cells |
cfmiRNAs | Cell-Free MicroRNAs |
EVs | Extracellular Vesicles |
TEPs | Tumor Educated Platelets |
PoC | Point of Care |
FP | Fabry–Perot |
SOI | Silicon on Insulator |
PCM | Phase-Changing Material |
VO2 | Vanadium Dioxide |
PET | Positron Emission Tomography |
FDA | Food and Drug Administration |
MVs | Microvesicles |
dPCR | Digital Polymerase Chain Reaction |
BEAMing | Bead Emulsion Amplification Magnetics |
TAmSeq | Tagged Amplicon Deep Sequencing |
NGS | Next Generation Sequencing |
miRNA | microRNA |
mRNA | Messenger RNA |
LOC | Lab-on-Chip |
µTASs | Micro Total Analysis Systems |
ddPCR | Droplet Digital PCR |
DBS | Dried Blood Spot |
VAMS | Volumetric Absorptive Microsampling |
NAATs | Nucleic Acid Amplification Tests |
CSF | Cerebrospinal Fluid |
qRT-PCR | Real-Time Polymerase Chain Reaction |
IVD | In Vitro Diagnostics |
ACS | American Cancer Society |
CDC | Centers for Disease Control and Prevention |
NCI | National Cancer Institute |
NAACCR | North American Association of Central Cancer Registries |
PSA | Prostate Specific Antigen |
CEA | Carcinoembryonic Antigen |
HER 2 | Epidermal Growth Factor Receptor 2 |
BC | Breast Cancer |
IHC | Immunohistochemical |
ER | Estrogen Receptor |
PR | Progesterone Receptor |
ELISA | Enzyme-Linked ImmunoSorbent Assay |
MCF-7 | Michigan Cancer Foundation-7 |
PAI-1 | Plasminogen Activtor- 1 |
NAF | Nipple Aspirate Fluid |
PC | Prostate Cancer |
DRE | Digital Rectal Examination |
NSCLS | Non-Small-Cell Lung Cancer |
SCLC | Small-Cell Lung Cancer |
BASs | Bronchial Aspirates |
BAL | Bronchial Lavage |
DR | Dynamic Range |
KRAS | Kirsten Rat Sarcoma |
PCR | Polymerase Chain Reaction |
HPLC | High-Performance Liquid Chromatography |
GFP | Green Fluorescent Protein |
IgG | Immunoglobulin G |
LoD | Limit of Detection |
HAS | Human Serum Albumin |
LSPR | Localized Surface Plasmon Resonance |
Tg | Thyroglobulin |
CRP | C-Reactive Protein |
CK-MB | Creatine Kinase-MB |
MRR | Microring Resonator |
SPR | Surface Plasmon Resonance |
NHAs | Nanohole Arrays |
EOT | Extraordinary Optical Transmission |
WGM | Whispering Gallery Mode |
FPIs | Fabry–Perot Interferometers |
PCSMs | Photonic Crystal Surface Modes |
MOFs | Metal–Organic Frameworks |
STF | S-Tapered Optical Fiber |
mAb | Monoclonal Antibody |
Nb | Nanobody |
SRRs | Split-Ring Resonators |
AFP | Alpha-Fetoprotein |
STF | Surface Thin Film |
SEM | Scanning Electron Microscope |
SNR | Signal-to-Noise Ratio |
OMC | Optical Microfiber Coupler |
GO | Graphene Oxide |
GNP | Gold Nanoparticle |
SA-GNPs | Streptavidin-Modified Gold Nanoparticles |
LMR | Lossy Mode Resonance |
WDM | Wavelength Division Multiplexing |
OSA | Optical Spectrum Analyzer |
MIM | Metal–Insulator–Metal |
FOM | Figure of Merit |
f-PSA | Free Prostate-Specific Antigen |
EBL | Electron Beam Lithography |
CAGR | Compound Annual Growth Rate |
ELBS | European Liquid Biopsy Society |
AI | Artificial Intelligence |
MTV | Metabolic Tumor Volume |
NSCLC | Non-Small-Cell Lung Cancer |
CRISPR-Cas9 | Clustered Regularly Interspaced Short Palindromic Repeats |
S | Sensitivity |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [PubMed]
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 29 October 2024).
- Bizuayehu, H.M.; Dadi, A.F.; Ahmed, K.Y.; Tegegne, T.K.; Hassen, T.A.; Kibret, G.D.; Belachew, S.A. Burden of 30 cancers among men: Global statistics in 2022 and projections for 2050 using population-based estimates. Cancer 2022, 130, 3708–3723. [Google Scholar] [CrossRef] [PubMed]
- Bellassai, N.; Spoto, G. Biosensors for liquid biopsy: Circulating nucleic acids to diagnose and treat cancer. Anal. Bioanal. Chem. 2016, 408, 7255–7264. [Google Scholar] [CrossRef] [PubMed]
- Sturgeon, C. Practice guidelines for tumor marker use in the clinic. Clin. Chem. 2002, 48, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Sailer, V.; Schiffman, M.H.; Kossai, M.; Cyrta, J.; Beg, S.; Sullivan, B.; Mosquera, J.M. Bone biopsy protocol for advanced prostate cancer in the era of precision medicine. Cancer 2018, 124, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Diamantis, A.; Magiorkinis, E.; Koutselini, H. Fine-needle aspiration (FNA) biopsy: Historical aspects. Folia Histochem. Cytobiol. 2009, 47, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Benbrahim-Tallaa, L.; Bouvard, V.; Bianchini, F.; Straif, K. Breast-Cancer Screening—Viewpoint of the IARC Working Group. N. Engl. J. Med. 2015, 372, 2353–2358. [Google Scholar] [CrossRef] [PubMed]
- Pavlidis, N.; Briasoulis, E.; Hainsworth, J.; Greco, F.A. Diagnostic and therapeutic management of cancer of an unknown primary. Eur. J. Cancer 2003, 39, 1990–2005. [Google Scholar] [CrossRef] [PubMed]
- Najafi, M.; Majidpoor, J.; Toolee, H.; Mortezaee, K. The current knowledge concerning solid cancer and therapy. J. Biochem. Mol. Toxicol. 2021, 35, e22900. [Google Scholar] [CrossRef] [PubMed]
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Pantel, K.; Alix-Panabières, C. Circulating tumour cells in cancer patients: Challenges and perspectives. Trends. Mol. Med. 2010, 16, 398–406. [Google Scholar] [CrossRef] [PubMed]
- De Rubis, G.; Krishnan, S.R.; Bebawy, M. Circulating tumor DNA–Current state of play and future perspectives. Pharmacol. Res. 2018, 136, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, L.; Lin, H.; Zhu, Y.; Huang, D.; Lai, M.; Zhong, T. Research progress of CTC, ctDNA, and EVs in cancer liquid biopsy. Front. Oncol. 2024, 14, 1303335. [Google Scholar] [CrossRef] [PubMed]
- Preethi, K.A.; Selvakumar, S.C.; Ross, K.; Jayaraman, S.; Tusubira, D.; Sekar, D. Liquid biopsy: Exosomal microRNAs as novel diagnostic and prognostic biomarkers in cancer. Mol. Cancer 2022, 21, 54. [Google Scholar] [CrossRef] [PubMed]
- Toden, S.; Goel, A. Non-coding RNAs as liquid biopsy biomarkers in cancer. Br. J. Cancer 2022, 126, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Antunes-Ferreira, M.; Koppers-Lalic, D.; Würdinger, T. Circulating platelets as liquid biopsy sources for cancer detection. Mol. Oncol. 2021, 15, 1727–1743. [Google Scholar] [CrossRef] [PubMed]
- Ciminelli, C.; Colapietro, P.; Brunetti, G.; Armenise, M.N. Lab-on-chip for liquid biopsy: A new approach for the detection of biochemical targets. In Proceedings of the 23rd International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 2–6 July 2023. [Google Scholar]
- Kuderer, N.M.; Burton, K.A.; Blau, S.; Rose, A.L.; Parker, S.; Lyman, G.H.; Blau, C.A. Comparison of 2 commercially available next-generation sequencing platforms in oncology. JAMA Oncol. 2017, 3, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Das, J.; Kelley, S.O. High-performance nucleic acid sensors for liquid biopsy applications. Angew. Chem. 2020, 132, 2574–2584. [Google Scholar] [CrossRef]
- Kelley, S.O.; Mirkin, C.A.; Walt, D.R.; Ismagilov, R.F.; Toner, M.; Sargent, E.H. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. Nat. Nanotechnol. 2014, 9, 969–980. [Google Scholar] [CrossRef] [PubMed]
- Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Chakravorty, A. Recent progress and growth in biosensors technology: A critical review. J. Ind. Eng. Chem. 2022, 109, 21–51. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Saaem, I.; Wu, P.C.; Brown, A.S. Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine. Crit. Rev. Biotechnol. 2014, 34, 180–196. [Google Scholar] [CrossRef] [PubMed]
- Ciminelli, C.; Dell’Olio, F.; Conteduca, D.; Armenise, M.N. Silicon photonic biosensors. IET Optoelectron. 2019, 13, 48–54. [Google Scholar] [CrossRef]
- Nagrath, S.; Sequist, L.V.; Maheswaran, S.; Bell, D.W.; Irimia, D.; Ulkus, L.; Toner, M. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007, 450, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Reátegui, E.; Li, W.; Tessier, S.N.; Wong, K.H.; Jensen, A.E.; Hammond, P.T. Enhanced isolation and release of circulating tumor cells using nanoparticle binding and ligand exchange in a microfluidic chip. J. Am. Chem. Soc. 2017, 139, 2741–2749. [Google Scholar] [CrossRef] [PubMed]
- Baccelli, I.; Schneeweiss, A.; Riethdorf, S.; Stenzinger, A.; Schillert, A.; Vogel, V.; Trumpp, A. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat. Biotechnol. 2013, 31, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Allard, W.J.; Matera, J.; Miller, M.C.; Repollet, M.; Connelly, M.C.; Rao, C.; Terstappen, L.W. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 2004, 10, 6897–6904. [Google Scholar] [CrossRef] [PubMed]
- García-Flores, M.; Sánchez-López, C.M.; Ramírez-Calvo, M.; Fernández-Serra, A.; Marcilla, A.; López-Guerrero, J.A. Isolation and characterization of urine microvesicles from prostate cancer patients: Different approaches, different visions. BMC Urol. 2021, 21, 137. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, K.B.; Gudbergsson, J.M.; Andresen, T.L.; Simonsen, J.B. What is the blood concentration of extracellular vesicles? Implications for the use of extracellular vesicles as blood-borne biomarkers of cancer. Biochim. Biophys. Acta 2019, 1871, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yue, Y.; Wu, S.; Liu, W.; Shi, J.; Zhang, Z. Rapid capture and nondestructive release of extracellular vesicles using aptamer-based magnetic isolation. ACS Sens. 2019, 4, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.T.; Purcell, E.; Palacios-Rolston, C.; Lo, T.W.; Ramnath, N.; Jolly, S.; Nagrath, S. Isolation and profiling of circulating tumor-associated exosomes using extracellular vesicular lipid–protein binding affinity based microfluidic device. Small 2019, 15, 1903600. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Zhang, Z.Y.; Li, S.N.; Ma, J.Q.; Zhao, Z. Liquid biopsy: Comprehensive overview of circulating tumor DNA. Oncol. Lett. 2024, 28, 548. [Google Scholar] [CrossRef] [PubMed]
- Urabe, F.; Kosaka, N.; Ito, K.; Kimura, T.; Egawa, S.; Ochiya, T. Extracellular vesicles as biomarkers and therapeutic targets for cancer. Am. J. Physiol. 2020, 318, C29–C39. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.R.C.; Zhou, L.; El-Deiry, W.S. Circulating tumor cells versus circulating tumor DNA in colorectal cancer: Pros and cons. Curr. Color. Cancer Rep. 2016, 12, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Liu, C.H.; Li, J.; Ma, X.P.M.; Gong, P. Clinical significance of circulating tumor cells in patients with small-cell lung cancer. Tumori 2017, 103, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.C.; Doyle, G.V.; Terstappen, L.W. Significance of circulating tumor cells detected by the CellSearch system in patients with metastatic breast colorectal and prostate cancer. J. Oncol. 2010, 2010, 617421. [Google Scholar] [CrossRef] [PubMed]
- Gregory, C.D.; Rimmer, M.P. Extracellular vesicles arising from apoptosis: Forms, functions, and applications. J. Pathol. 2023, 260, 592–608. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Mar, S.; Donoso-Quezada, J.; Gallo-Villanueva, R.C.; Perez-Gonzalez, V.H.; González-Valdez, J. Recent advances and challenges in the recovery and purification of cellular exosomes. Electrophoresis 2019, 40, 3036–3049. [Google Scholar] [CrossRef] [PubMed]
- Santarpia, M.; Liguori, A.; D’Aveni, A.; Karachaliou, N.; Gonzalez-Cao, M.; Daffinà, M.G.; Rosell, R. Liquid biopsy for lung cancer early detection. J. Thorac. Dis. 2018, 10, S882. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Song, Z.; Hu, X.Y.; Wang, H.S. Circulating tumor DNA analysis for tumor diagnosis. Talanta 2021, 228, 122220. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Liu, X.; Zheng, B.; Ke, R.; Tzeng, C.M. Liquid biopsy, ctDNA diagnosis through NGS. Life 2021, 11, 890. [Google Scholar] [CrossRef] [PubMed]
- Souza, V.G.; Forder, A.; Brockley, L.J.; Pewarchuk, M.E.; Telkar, N.; de Araújo, R.P.; Reis, P.P. Liquid biopsy in lung cancer: Biomarkers for the management of recurrence and metastasis. Int. J. Mol. Sci. 2023, 24, 8894. [Google Scholar] [CrossRef] [PubMed]
- de Planell-Saguer, M.; Rodicio, M.C. Analytical aspects of microRNA in diagnostics: A review. Anal. Chim. Acta 2018, 699, 134–152. [Google Scholar] [CrossRef] [PubMed]
- Kiran, N.S.; Yashaswini, C.; Maheshwari, R.; Bhattacharya, S.; Prajapati, B.G. Advances in precision medicine approaches for colorectal cancer: From molecular profiling to targeted therapies. ACS Pharmacol. Transl. Sci. 2024, 7, 967–990. [Google Scholar] [CrossRef] [PubMed]
- Singla, A. Precision medicine: Tailoring treatment to individual genetic profiles. J. Med. Res. Adv. 2024, 1, 27–37. [Google Scholar] [CrossRef]
- Li, W.; Wang, H.; Zhao, Z.; Gao, H.; Liu, C.; Zhu, L.; Yang, Y. Emerging nanotechnologies for liquid biopsy: The detection of circulating tumor cells and extracellular vesicles. Adv. Mater. 2019, 31, 1805344. [Google Scholar] [CrossRef] [PubMed]
- Webber, J.; Clayton, A. How pure are your vesicles? J. Extracell. Vesicles 2013, 2, 19861. [Google Scholar] [CrossRef] [PubMed]
- Jiawei, S.; Zhi, C.; Kewei, T.; Xiaoping, L. Magnetic bead-based adsorption strategy for exosome isolation. Front. Bioeng. Biotechnol. 2022, 10, 942077. [Google Scholar] [CrossRef] [PubMed]
- Van der Pol, E.; Böing, A.N.; Gool, E.L.; Nieuwland, R. Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J. Thromb. Haemost. 2016, 14, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Cell Guidance System. Available online: https://www.cellgs.com/items/exosomes/exospin.html (accessed on 15 April 2025).
- Systems Bioscience. Available online: https://www.who.int/tools (accessed on 15 April 2025).
- Riethdorf, S.; Fritsche, H.; Müller, V.; Rau, T.; Schindlbeck, C.; Rack, B.; Pantel, K. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: A validation study of the CellSearch system. Clin. Cancer Res. 2007, 13, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Lo, T.W.; Zhu, Z.; Purcell, E.; Watza, D.; Wang, J.; Kang, Y.T.; Nagrath, S. Microfluidic device for high-throughput affinity-based isolation of extracellular vesicles. Lab Chip 2020, 20, 1762–1770. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Xiao, Z. Recent achievements in exosomal biomarkers detection by nanomaterials-based optical biosensors-a review. Anal. Chim. Acta 2020, 1114, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Lisowski, P.; Zarzycki, P.K. Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): Development, applications and future trends. Chromatographia 2013, 76, 1201–1214. [Google Scholar] [CrossRef] [PubMed]
- Swennenhuis, J.F.; van Dalum, G.; Zeune, L.L.; Terstappen, L.W.M.M. Improving the CellSearch® system. Expert Rev. Mol. Diagn. 2016, 16, 1291–1305. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, U.; Mego, M.; Scarpi, E.; Giordano, A.; Giuliano, M.; Valero, V.; Reuben, J.M. Association between circulating tumor cells and peripheral blood monocytes in metastatic breast cancer. Ther. Adv. Med. Oncol. 2019, 11, 1758835919866065. [Google Scholar] [CrossRef] [PubMed]
- Cell Search CTC. Available online: https://www.cellsearchctc.com/ (accessed on 28 April 2025).
- Alborelli, I.; Generali, D.; Jermann, P.; Cappelletti, M.R.; Ferrero, G.; Scaggiante, B.; Novelli, G. Cell-free DNA analysis in healthy individuals by next-generation sequencing: A proof of concept and technical validation study. Cell Death Dis. 2019, 10, 534. [Google Scholar] [CrossRef] [PubMed]
- Thangavelu, M.U.; Wouters, B.; Kindt, A.; Reiss, I.K.; Hankemeier, T. Blood microsampling technologies: Innovations and applications in 2022. Anal. Sci. Adv. 2023, 4, 154–180. [Google Scholar] [CrossRef] [PubMed]
- Septa, V.; Ray, P.; Mondal, B.; Shitole, V.; Kumar, P. Bio Sampler Device for Collection and Storage of RNA Samples to Diagnose SARS-CoV-2. Biomed. Mat. Devices 2025, 1–12. [Google Scholar] [CrossRef]
- Hassanpour, S.H.; Dehghani, M. Review of cancer from perspective of molecular. J. Cancer Res. Pract. 2017, 4, 127–129. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Available online: https://gco.iarc.fr/today/en (accessed on 26 October 2024).
- Macklin, M.T. The genetic basis of human mammary cancer. In Proceedings of the Second National Cancer Conference, New York, NY, USA, 3–5 March 1954. [Google Scholar]
- Edwards, B.K.; Noone, A.M.; Mariotto, A.B.; Simard, E.P.; Boscoe, F.P.; Henley, S.J.; Ward, E.M. Annual Report to the Nation on the status of cancer, 1975–2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer 2014, 120, 1290–1314. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Fan, F.; Jiang, X.; Sun, K. Recent advances in liquid biopsy of brain cancers. Front. Genet. 2021, 12, 720270. [Google Scholar] [CrossRef] [PubMed]
- Herbst, J.; Pantel, K.; Effenberger, K.; Wikman, H. Clinical applications and utility of cell-free DNA-based biopsy analyses in cervical cancer and its precursor lesions. Br. J. Cancer 2022, 127, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, H.; Chen, N.; Hao, J.; Jin, H.; Ma, X. Diagnostic value of various liquid biopsy methods for pancreatic cancer: A systematic review and meta-analysis. J. Med. 2020, 99, 18581. [Google Scholar] [CrossRef] [PubMed]
- Palanca-Ballester, C.; Rodriguez-Casanova, A.; Torres, S.; Calabuig-Farinas, S.; Exposito, F.; Serrano, D.; Calvo, A. Cancer epigenetic biomarkers in liquid biopsy for high incidence malignancies. Cancers 2021, 13, 3016. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, P.M.M.; Jucoski, T.S.; Vieira, E.; Carvalho, T.M.; Malheiros, D.; Ribeiro, E.M.D.S.F. Liquid biopsy for breast cancer using extracellular vesicles and cell-free microRNAs as biomarkers. Transl. Res. 2020, 223, 40–60. [Google Scholar] [CrossRef] [PubMed]
- Moon, P.G.; Lee, J.E.; Cho, Y.E.; Lee, S.J.; Chae, Y.S.; Jung, J.H.; Baek, M.C. Fibronectin on circulating extracellular vesicles as a liquid biopsy to detect breast cancer. Oncotarget 2016, 7, 40189. [Google Scholar] [CrossRef] [PubMed]
- Boehm, B.E.; York, M.E.; Petrovics, G.; Kohaar, I.; Chesnut, G.T. Biomarkers of aggressive prostate cancer at diagnosis. Int. J. Mol. Sci. 2023, 24, 2185. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Callejo, D.; Romero, A.; Provencio, M.; Torrente, M. Liquid biopsy based biomarkers in non-small cell lung cancer for diagnosis and treatment monitoring. Transl. Lung Cancer Res. 2016, 5, 455. [Google Scholar] [CrossRef] [PubMed]
- Marrugo-Ramírez, J.; Mir, M.; Samitier, J. Blood-Based Cancer Biomarkers in Liquid Biopsy: A Promising Non-Invasive Alternative to Tissue Biopsy. Int. J. Mol. Sci. 2018, 19, 2877. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent advances in electrochemical biosensors: Applications, challenges, and future scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef] [PubMed]
- Saha, N.; Brunetti, G.; Kumar, A.; Armenise, M.N.; Ciminelli, C. Highly sensitive refractive index sensor based on polymer bragg grating: A case study on extracellular vesicles detection. Biosensors 2022, 12, 415. [Google Scholar] [CrossRef] [PubMed]
- Sadighbayan, D.; Hasanzadeh, M.; Ghafar-Zadeh, E. Biosensing based on field-effect transistors (FET): Recent progress and challenges. TrAC Trends Anal. Chem. 2023, 133, 116067. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, X.; Wei, X.; Xue, Y.; Wan, H.; Wang, P. Recent advances in acoustic wave biosensors for the detection of disease-related biomarkers: A review. Anal. Chim. Acta 2021, 1164, 338321. [Google Scholar] [CrossRef] [PubMed]
- Arlett, J.L.; Myers, E.B.; Roukes, M.L. Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 2011, 6, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Nagdeve, S.N.; Suganthan, B.; Ramasamy, R.P. An electrochemical biosensor for the detection of microRNA-31 as a potential oral cancer biomarker. J Biol Eng. 2025, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Bao, J.; Huo, D.; Zeng, Y.; Wang, X.; Samalo, M.; Hou, C. Au doped poly-thionine and poly-m-Cresol purple: Synthesis and their application in simultaneously electrochemical detection of two lung cancer markers CEA and CYFRA21-1. Talanta 2021, 224, 121816. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Chen, K.T.; Jou, A.F.J. Polydopamine-gold composite-based electrochemical biosensor using dual-amplification strategy for detecting pancreatic cancer-associated microRNA. Biosens. Bioelectron. 2021, 173, 112815. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wu, D.; Tu, S.; Yang, C.; Chen, D.; Xu, Y. CRISPR/Cas9 cleavage triggered ESDR for circulating tumor DNA detection based on a 3D graphene/AuPtPd nanoflower biosensor. Biosens. Bioelectron. 2021, 173, 112821. [Google Scholar] [CrossRef] [PubMed]
- Jarczewska, M.; Trojan, A.; Gągała, M.; Malinowska, E. Studies on the Affinity-based Biosensors for Electrochemical Detection of HER2 Cancer Biomarker. Electroanalysis 2019, 31, 1125–1134. [Google Scholar] [CrossRef]
- Neairat, T.; Al-Gawati, M.; Ain, Q.T.; Assaifan, A.K.; Alshamsan, A.; Alarifi, A.; Albrithen, H. Development of a microcantilever-based biosensor for detecting Programmed Death Ligand 1. Saudi Pharm J. 2024, 32, 102051. [Google Scholar] [CrossRef] [PubMed]
- Wee, K.W.; Kang, G.Y.; Park, J.; Kang, J.Y.; Yoon, D.S.; Park, J.H.; Kim, T.S. Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosens. Bioelectron. 2005, 20, 1932–1938. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Datar, R.H.; Hansen, K.M.; Thundat, T.; Cote, R.J.; Majumdar, A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 2001, 19, 856–860. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.S.; Lee, J.H.; Park, J.; Yoon, D.S.; Park, J.H.; Kim, T.S. In-situ quantitative analysis of a prostate-specific antigen (PSA) using a nanomechanical PZT cantilever. Lab. Chip 2004, 4, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Sypabekova, M.; Amantayeva, A.; Vangelista, L.; González-Vila, Á.; Caucheteur, C.; Tosi, D. Ultralow limit detection of soluble HER2 biomarker in serum with a fiber-optic ball-tip resonator assisted by a tilted FBG. ACS Meas. Sci. Au 2022, 2, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Iftekharul Ferdous, A.H.M.; Islam, M.S.; Noor, K.S.; Bani, M.M.; Badhon, N.U.; Enzamam-Ul-Haque, M. Harnessing THz technology: Biosensor for highly accurate cervical cancer cell detection via refractive index. Cell Biochem. Biophys. 2024, 82, 2095–2106. [Google Scholar] [CrossRef] [PubMed]
- Washburn, A.L.; Luchansky, M.S.; Bowman, A.L.; Bailey, R.C. Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators. Anal. Chem. 2010, 82, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Rich, R.L.; Myszka, D.G. Advances in surface plasmon resonance biosensor analysis. Curr. Opin. Biotechnol. 2000, 11, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Luchansky, M.S.; Bailey, R.C. Silicon photonic microring resonators for quantitative cytokine detection and T-cell secretion analysis. Anal. Chem. 2010, 82, 1975–1981. [Google Scholar] [CrossRef] [PubMed]
- Ciminelli, C.; Dell’Olio, F.; Conteduca, D.; Innone, F.; Tatoli, T.; Armenise, M.N. New microphotonic resonant devices for label-free biosensing. In Proceedings of the 18th International Conference on Transparent Optical Networks (ICTON), Trento, Italy, 10–14 July 2016. [Google Scholar]
- Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, P.; Parihar, A.; Jain, S.; Kumar, N.; Dhand, C.; Murali, S.; Khan, R. Biosensor-based diagnostic approaches for various cellular biomarkers of breast cancer: A comprehensive review. Anal. Biochem. 2020, 610, 113996. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Wang, W.; Gao, L.; Yao, S.Q. Emerging biosensing and transducing techniques for potential applications in point-of-care diagnostics. Chem. Sci. 2022, 13, 2857–2876. [Google Scholar] [CrossRef] [PubMed]
- Ciminelli, C.; Campanella, C.M.; Dell’Olio, F.; Campanella, C.E.; Armenise, M.N. Label-free optical resonant sensors for biochemical applications. Prog. Quantum Electron. 2013, 37, 51–107. [Google Scholar] [CrossRef]
- Soler, M.; Huertas, C.S.; Lechuga, L.M. Label-free plasmonic biosensors for point-of-care diagnostics: A review. Expert Rev. Mol. Diagn. 2019, 19, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Q.; Zeng, S.; Jiang, L.; Hong, L.; Xu, G.; Dinh, X.Q.; Yong, K.T. Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep. 2016, 6, 28190. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Masson, J.F. Plasmonic Biosensors for Health Monitoring: Inflammation Biomarker Detection. ACS Sens. 2025, 10, 577–601. [Google Scholar] [CrossRef] [PubMed]
- Chandra, V. Sensing Performance of Optical Waveguide. In Optical Waveguide Technology and Application, 1st ed.; Kim, K.Y., Ed.; IntechOpen: London, UK, 2024; pp. 41–55. [Google Scholar]
- Wei, Y.; Zhou, W.; Wu, Y.; Zhu, H. High sensitivity label-free quantitative method for detecting tumor biomarkers in human serum by optical microfiber couplers. ACS Sens. 2021, 6, 4304–4314. [Google Scholar] [CrossRef] [PubMed]
- Han, X.Y.; Wu, Z.L.; Yang, S.C.; Shen, F.F.; Liang, Y.X.; Wang, L.H.; Zhao, M.S. Recent progress of imprinted polymer photonic waveguide devices and applications. Polymers 2018, 10, 603. [Google Scholar] [CrossRef] [PubMed]
- Dell’Olio, F.; Conteduca, D.; Ciminelli, C.; Armenise, M.N. New ultrasensitive resonant photonic platform for label-free biosensing. Opt. Express 2015, 23, 28593–28604. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Yang, C.; Zhao, H.; Liang, L.; Zheng, C.; Chen, C.; Tang, H. Optical waveguide refractive index sensor for biochemical sensing. Appl. Sci. 2023, 13, 3829. [Google Scholar] [CrossRef]
- Ikegami, S.; Benirschke, R.C.; Fakhrai-Rad, H.; Motamedi, M.H.; Hockett, R.; David, S.; Gniadek, T.J. Target specific serologic analysis of COVID-19 convalescent plasma. PLoS ONE 2021, 16, e0249938. [Google Scholar] [CrossRef] [PubMed]
- Conteduca, D.; Brunetti, G.; Pitruzzello, G.; Tragni, F.; Dholakia, K.; Krauss, T.F.; Ciminelli, C. Exploring the limit of multiplexed near-field optical trapping. ACS Photonics 2021, 8, 2060–2066. [Google Scholar] [CrossRef]
- Brunetti, G.; Panciera, C.; Ciminelli, C. Versatile Metasurfaces for Liquid Biopsy Applications. In Proceedings of the 24th International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 14–18 July 2024. [Google Scholar]
- Zhang, S.; Wong, C.L.; Zeng, S.; Bi, R.; Tai, K.; Dholakia, K.; Olivo, M. Metasurfaces for biomedical applications: Imaging and sensing from a nanophotonics perspective. Nanophotonics 2020, 10, 259–293. [Google Scholar] [CrossRef]
- Tseng, M.L.; Jahani, Y.; Leitis, A.; Altug, H. Dielectric metasurfaces enabling advanced optical biosensors. ACS Photonics 2020, 8, 47–60. [Google Scholar] [CrossRef]
- Saifullah, Y.; He, Y.; Boag, A.; Yang, G.M.; Xu, F. Recent progress in reconfigurable and intelligent metasurfaces: A comprehensive review of tuning mechanisms, hardware designs, and applications. Adv. Sci. 2022, 9, 2203747. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hu, Z.; Ye, M.; Yu, Z.; Ma, C.; Li, J. On-chip refractive index sensor with ultra-high sensitivity based on sub-wavelength grating racetrack microring resonators and Vernier effect. IEEE Photonics J. 2022, 14, 6849007. [Google Scholar] [CrossRef]
- Brunetti, G.; Saha, N.; Colapietro, P.; Ciminelli, C. Optical slot-assisted metasurface for IgG protein detection. In Proceedings of the Conference on Research and Innovation in Science and Technology of Material (CRISTMAS), Paris, France, 13 December 2023. [Google Scholar]
- Del Villar, I.; Gonzalez-Valencia, E.; Kwietniewski, N.; Burnat, D.; Armas, D.; Pituła, E.; Śmietana, M. Nano-Photonic Crystal D-Shaped Fiber devices for label-free biosensing at the Attomolar Limit of detection. Adv. Sci. 2024, 11, 2310118. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, M.; Wang, Z.; Zhao, K.; Gu, J.; Li, Q.; He, J.J. A Label-Free Optical Biosensor Based on an Array of Microring Resonators for the Detection of Human Serum Albumin. Sensors 2024, 24, 677. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Jeong, D.H.; Lee, H.Y.; Park, J.H.; Lee, S.K. Design and validation of fiber optic localized surface plasmon resonance sensor for thyroglobulin immunoassay with high sensitivity and rapid detection. Sci. Rep. 2021, 11, 15985. [Google Scholar] [CrossRef] [PubMed]
- Favaretto, R.; Ardoino, N.; Pucker, G.; Bellotto, N.; Mancinelli, M.; Piccoli, G.; Pasquardini, L. A ring resonators optical sensor for multiple biomarkers detection. Talanta 2025, 282, 127035. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.H.; Mohamed, B.A.; Al-Dossari, M.; Awasthi, S.K.; Fouad, E.; Amin, A.F. Ultra-high sensitive cancerous cells detection and sensing capabilities of photonic biosensor. Sci. Rep. 2023, 13, 19524. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xia, Y.; Huang, Y.; Li, J.; Ruan, H.; Chen, T.; Wu, A. Improved SERS-active nanoparticles with various shapes for CTC detection without enrichment process with supersensitivity and high specificity. ACS Appl. Mater. Interfaces 2016, 8, 19928–19938. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Liang, W.; Li, Y.; Sun, Y.; Xiang, Y.; Zhang, Y.; Bao, Q. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 2019, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zou, L.; Yang, X.; Liu, X.; Nie, W.; Zheng, Y.; Wang, K. Direct quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification. Biosens. Bioelectron. 2019, 135, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Duan, X.; Zhao, M.; Wei, X.; Wu, J.; Chen, W.; Ding, S. High-sensitive and multiplex biosensing assay of NSCLC-derived exosomes via different recognition sites based on SPRi array. Biosens. Bioelectron. 2020, 154, 112066. [Google Scholar] [CrossRef] [PubMed]
- Raghu, D.; Christodoulides, J.A.; Christophersen, M.; Liu, J.L.; Anderson, G.P.; Robitaille, M.; Raphael, M.P. Nanoplasmonic pillars engineered for single exosome detection. PLoS ONE 2018, 13, e0202773. [Google Scholar] [CrossRef] [PubMed]
- Qavi, A.J.; Kindt, J.T.; Gleeson, M.A.; Bailey, R.C. Anti-DNA: RNA antibodies and silicon photonic microring resonators: Increased sensitivity for multiplexed microRNA detection. Anal. Chem. 2011, 83, 5949–5956. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Chen, G.; Jia, X.; Mao, X.; Chen, T.; Mao, D.; Xiong, W. Exponential amplification reaction and triplex DNA mediated aggregation of gold nanoparticles for sensitive colorimetric detection of microRNA. Anal. Chim. Acta 2020, 1095, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Perrier, A.; Gligorov, J.; Lefèvre, G.; Boissan, M. The extracellular domain of Her2 in serum as a biomarker of breast cancer. Lab. Investig. 2018, 98, 696–707. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; GK, A.V.; Sakorikar, T.; Kamal, A.M.; Vaidya, J.S.; Pandya, H.J. Recent advances in biosensing approaches for point-of-care breast cancer diagnostics: Challenges and future prospects. Nanoscale Adv. 2021, 3, 5542–5564. [Google Scholar] [CrossRef] [PubMed]
- Petrova, I.; Konopsky, V.; Nabiev, I.; Sukhanova, A. Label-free flow multiplex biosensing via photonic crystal surface mode detection. Sci. Rep. 2019, 9, 8745. [Google Scholar] [CrossRef] [PubMed]
- Rahmidar, L.; Gumilar, G.; Septiani, N.L.W.; Wulandari, C.; Iqbal, M.; Wustoni, S.; Yuliarto, B. Label-free and early detection of HER2 breast cancer biomarker based on UiO-66-NH2 modified gold chip (Au/UiO-66-NH2) using surface plasmon resonance technique. Microchem. J. 2024, 199, 109963. [Google Scholar] [CrossRef]
- Guo, W.; Yu, Y.; Xin, C.; Jin, G. Comparative study of optical fiber immunosensors based on traditional antibody or nanobody for detecting HER2. Talanta 2024, 277, 126317. [Google Scholar] [CrossRef] [PubMed]
- Molaei-Yeznabad, A.; Bahador, H. Refractive Index-Based Optimized Ternary Photonic Crystal Biosensor for Ultra Precise Detection of Cancer Cells. Sens. Imaging 2025, 26, 36. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, W.; Lin, S.; Chen, Z.; Zeng, L.; Hu, F. Aptamer HB5 modified terahertz metasurface biosensor used for specific detection of HER2. Sens. Actuators B Chem. 2022, 355, 131337. [Google Scholar] [CrossRef]
- Qayyum, I.; Rehman, F.U.; Zahra, M.; Batool, K.; Shoukat, W.; Arshad, S.; Zada, Z. Progressive innovations in advanced functional materials for emerging bio-electronics, drugs sensing and healthcare. Emerg. Mater. Sci. Eng. 2023, 10, 236244. [Google Scholar]
- Patel, S.K.; Wekalao, J.; Albargi, H.B.; Jalalah, M.; Almawgani, A.H.; Armghan, A. Design and simulation of metasurface-enhanced graphene biosensors for cancer biomarker detection. Plasmonics 2024, 19, 3119–3130. [Google Scholar] [CrossRef]
- Grunnet, M.; Sorensen, J.B. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer 2012, 76, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Lv, X.; Fang, W.; Chen, H.; Pei, W.; Geng, Z. Au nanoparticle-based integrated microfluidic plasmonic chips for the detection of carcinoembryonic antigen in human serum. ACS Appl. Nano Mater. 2022, 5, 17281–17292. [Google Scholar] [CrossRef]
- Li, R.; Feng, F.; Chen, Z.Z.; Bai, Y.F.; Guo, F.F.; Wu, F.Y.; Zhou, G. Sensitive detection of carcinoembryonic antigen using surface plasmon resonance biosensor with gold nanoparticles signal amplification. Talanta 2015, 140, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, A.; Srivastava, S.K. A study on surface plasmon resonance biosensor for the detection of CEA biomarker using 2D materials graphene, Mxene and MoS2. Optik 2022, 258, 168885. [Google Scholar] [CrossRef]
- Mukundan, H.; Kubicek, J.Z.; Holt, A.; Shively, J.E.; Martinez, J.S.; Grace, K.; Swanson, B.I. Planar optical waveguide-based biosensor for the quantitative detection of tumor markers. Sens. Actuators B Chem. 2009, 138, 453–460. [Google Scholar] [CrossRef]
- Guo, W.; Yu, Y.; Xin, C.; Jin, G. Optical fiber immunosensor based on nanobody for the detection of carcinoembryonic antigen. Opt. Fiber Technol. 2024, 84, 103749. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Xie, F.; Tian, J.; Yao, Y. High-sensitivity carcinoembryonic antigen detection using open cavity Fabry-Perot immunosensor based on Vernier effect. J. Light Technol. 2023, 41, 4547–4554. [Google Scholar] [CrossRef]
- Niu, Q.; Fu, L.; Zhong, Y.; Cui, B.; Zhang, G.; Yang, Y. Sensitive and specific detection of carcinoembryonic antigens using toroidal metamaterial biosensors integrated with functionalized gold nanoparticles. Anal. Chem. 2022, 95, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Zhang, X.; Liang, H.; Zheng, Y. Photonic-Metamaterial-Based, Near-Field-Enhanced Biosensing Approach for Early Detection of Lung and Ovarian Cancer. Photonics 2024, 11, 1020. [Google Scholar] [CrossRef]
- Galey, L.; Olanrewaju, A.; Nabi, H.; Paquette, J.S.; Pouliot, F.; Audet-Walsh, É. PSA, an outdated biomarker for prostate cancer: In search of a more specific biomarker, citrate takes the spotlight. J. Steroid Biochem. Mol. Biol. 2024, 243, 106588. [Google Scholar] [CrossRef] [PubMed]
- Mahani, M.; Alimohamadi, F.; Torkzadeh-Mahani, M.; Hassani, Z.; Khakbaz, F.; Divsar, F.; Yoosefian, M. LSPR biosensing for the early-stage prostate cancer detection using hydrogen bonds between PSA and antibody: Molecular dynamic and experimental study. J. Mol. Liq. 2021, 324, 114736. [Google Scholar] [CrossRef]
- Dai, X.; Wang, S.; Wang, Y.; Wang, X.; Wu, X.; Liu, X.; Liu, T. Dual-resonance optical fiber lossy mode resonance immunoprobe for serum PSA detection. Biosens. Bioelectron. 2025, 271, 117049. [Google Scholar] [CrossRef] [PubMed]
- Zamri, A.Z.M.; Mustafa, M.K.; Awang, N.A.; Zalkepali, N.U.H.H.; Mahmud, N.N.H.E.N.; Muhammad, N.A.M. Fiber-laser based on D-shaped fiber biosensor for prostate cancer biomarker detection. Mater. Today Proc. 2024, in press. [CrossRef]
- Shokorlou, Y.M.; Heidarzadeh, H.; Bahador, H. Simulation and analysis of ring shape metal–insulator-metal plasmonic biosensors for the detection of prostate-specific antigen (PSA). Plasmonics 2022, 17, 2197–2204. [Google Scholar] [CrossRef]
- Zhang, T.; He, Y.; Wei, J.; Que, L. Nanostructured optical microchips for cancer biomarker detection. Biosens. Bioelectron. 2012, 38, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Yavas, O.; Svedendahl, M.; Dobosz, P.; Sanz, V.; Quidant, R. On-a-chip biosensing based on all-dielectric nanoresonators. Nano Lett. 2017, 17, 4421–4426. [Google Scholar] [CrossRef] [PubMed]
- Yavas, O.; Svedendahl, M.; Quidant, R. Unravelling the role of electric and magnetic dipoles in biosensing with Si nanoresonators. ACS Nano 2019, 13, 4582–4588. [Google Scholar] [CrossRef] [PubMed]
- Diehl, F.; Schmidt, K.; Choti, M.A.; Romans, K.; Goodman, S.; Li, M.; Diaz, L.A., Jr. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2008, 14, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Ignatiadis, M.; Sledge, G.W.; Jeffrey, S.S. Liquid biopsy enters the clinic—Implementation issues and future challenges. Nat. Rev. Clin. Oncol. 2021, 18, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Lampignano, R.; Neumann, M.H.; Weber, S.; Kloten, V.; Herdean, A.; Voss, T.; Heitzer, E. Multicenter evaluation of circulating cell-free DNA extraction and downstream analyses for the development of standardized (pre) analytical work flows. Clin. Chem. 2020, 66, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Febbo, P.G.; Martin, A.M.; Scher, H.I.; Barrett, J.C.; Beaver, J.A.; Beresford, P.J.; Leiman, L.C. Minimum technical data elements for liquid biopsy data submitted to public databases. Clin. Pharmacol. Ther. 2020, 107, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Foser, S.; Maiese, K.; Digumarthy, S.R.; Puig-Butille, J.A.; Rebhan, C. Looking to the future of early detection in cancer: Liquid biopsies, imaging, and artificial intelligence. Clin. Chem. 2024, 70, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Albaradei, S.; Alganmi, N.; Albaradie, A.; Alharbi, E.; Motwalli, O.; Thafar, M.A.; Gao, X. A deep learning model predicts the presence of diverse cancer types using circulating tumor cells. Sci. Rep. 2023, 13, 21114. [Google Scholar] [CrossRef] [PubMed]
- Chabon, J.J.; Hamilton, E.G.; Kurtz, D.M.; Esfahani, M.S.; Moding, E.J.; Stehr, H.; Diehn, M. Integrating genomic features for non-invasive early lung cancer detection. Nature 2020, 580, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Ciminelli, C.; Dell’Olio, F.; Conteduca, D.; Campanella, C.M.; Armenise, M.N. High performance SOI microring resonator for biochemical sensing. Opt. Laser Technol. 2014, 59, 60–67. [Google Scholar] [CrossRef]
- Kim, E.R.; Joe, C.; Mitchell, R.J.; Gu, M.B. Biosensors for healthcare: Current and future perspectives. Trends Biotechnol. 2023, 41, 374–395. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Podder, P.S.; Russo, M.; Henry, C.; Cinti, S. Tailored point-of-care biosensors for liquid biopsy in the field of oncology. Lab Chip 2023, 23, 44–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, J.; Li, B.; Zhang, J. Photoactivable CRISPR for Biosensing and Cancer Therapy. ChemBioChem 2024, 25, e202400685. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.; Kim, D.E.; Kweon, J.; Jin, C.E.; Kim, S.H.; Kim, Y.; Shin, Y. CRISPR/dCas9-mediated biosensor for detection of tick-borne diseases. Sens. Actuators B Chem. 2018, 273, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.B.; Veigas, B.; Baptista, P.V. Isothermal amplification of nucleic acids: The race for the next “gold standard”. Front. Sens. 2021, 2, 752600. [Google Scholar] [CrossRef]
Advantages | Disadvantages | |
---|---|---|
Liquid biopsy |
| |
Conventional tissue biopsy |
|
|
Biomarker | Technology | Biological Sample | Performance | Notes | Ref. |
---|---|---|---|---|---|
HER | SPR | Blood serum | LoD = 630 fg/mL | Multiplexing, real-time detection | [131] |
SPR | Blood serum | S = ng/mL LoD = 0.457 ng/mL | Multiplexing | [132] | |
Optical fiber/WG | Blood serum | LoD = 0.001 nM | Extremely high S | [133] | |
Optical resonator (photonic crystal) | Suspension of normal and cancerous cells | S = 692.8 nm/RIU | Q-factor = 5870 FOM = 2561.5 RIU−1 Robust and cost-effective platform | [134] | |
Metasurface | HER standard solution | LoD = 0.1 ng/mL | Higher S compared to conventional SRRs, high versatility | [135] | |
CEA | LSPR | Human serum | S = 85 × SNR LoD < 1 ng/mL | Integrated with microfluidics, with the use of GNPs | [139] |
SPR | Human serum | S = 13.8× with respect to std configuration LoD = 1.0 ng/mL | Good selectivity (no interference from other tumor biomarkers) | [140] | |
SPR | CEA standard solution (PBS solution) | S = 144.72 deg./RIU | Integrates MXenes and MoS2 between graphene and silver layers | [141] | |
Optical fiber/WG | Human serum/NAF | LoD < 0.5 pM | High S, reaction time < 15 min, requiring 20 µL of NAF | [142] | |
Optical fiber/WG | Human serum | LoD = 34.6 fg/mL (0.475 fM) | High S and wide dynamic range | [105] | |
Optical fiber/WG | Human serum | S = 20.2 nm/nM (GNPs) S = 15.1 nm/nM (GO) LoD = 0.02 nM (GNPs) LoD = 0.05 nM (GO) | High specificity and rapid response | [143] | |
Optical resonator (photonic crystal) | Suspension of normal and cancerous cells | S = 692.8 nm/RIU | Q-factor = 5870 FOM = 2561.5 RIU−1 Robust and cost-effective platform | [134] | |
Optical resonator (Fabry-Perot) | No real fluid (purified CEA) | LoD = 36.14 fg/mL | Excellent stability, reproducibility, specificity, S, and time response < 30 min | [144] | |
Metasurface | No real fluid (purified CEA) | S = 287.8 GHz/RIU LoD = 0.17 ng | Q-factor = 15.04 Excellent specificity | [145] | |
PSA | LSPR | Human serum | S = 43.75 nm/ng⋅mL−1 LoD = ng/mL | With the use of GNPs | [148] |
Optical fiber/WG | Human serum | S = 206.657 nm/RIU LoD = 52 pg/mL | High precision, 90% diagnostic rate | [149] | |
Optical fiber/WG | Human serum | S = 0.2171 nm/(µg/mL) | Good sensibility | [150] | |
Optical resonator (WGM) | Standard solutions in water | S = 567.23 nm/RIU | FOM = 3.72; compact platform | [151] | |
Metasurface | Human serum | S = 227 nm/RIU LoD = 0.69 ng/mL | High integrability FOM = 5.4 RIU−1 | [153] | |
Metasurface | Human serum | S = 86 nm/RIU | Excellent S and a favorable LoD | [154] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colapietro, P.; Brunetti, G.; Panciera, C.; Elicio, A.; Ciminelli, C. Shining the Path of Precision Diagnostic: Advancements in Photonic Sensors for Liquid Biopsy. Biosensors 2025, 15, 473. https://doi.org/10.3390/bios15080473
Colapietro P, Brunetti G, Panciera C, Elicio A, Ciminelli C. Shining the Path of Precision Diagnostic: Advancements in Photonic Sensors for Liquid Biopsy. Biosensors. 2025; 15(8):473. https://doi.org/10.3390/bios15080473
Chicago/Turabian StyleColapietro, Paola, Giuseppe Brunetti, Carlotta Panciera, Aurora Elicio, and Caterina Ciminelli. 2025. "Shining the Path of Precision Diagnostic: Advancements in Photonic Sensors for Liquid Biopsy" Biosensors 15, no. 8: 473. https://doi.org/10.3390/bios15080473
APA StyleColapietro, P., Brunetti, G., Panciera, C., Elicio, A., & Ciminelli, C. (2025). Shining the Path of Precision Diagnostic: Advancements in Photonic Sensors for Liquid Biopsy. Biosensors, 15(8), 473. https://doi.org/10.3390/bios15080473