Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (970)

Search Parameters:
Keywords = soy proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 958 KiB  
Article
Optimizing Aspergillus oryzae Inoculation Dosage and Fermentation Duration for Enhanced Protein Content in Soybean Meal and Its Influence on Dog Food Extrusion
by Youhan Chen, Thomas Weiss, Donghai Wang, Sajid Alavi and Charles Gregory Aldrich
Processes 2025, 13(8), 2441; https://doi.org/10.3390/pr13082441 - 1 Aug 2025
Viewed by 323
Abstract
This study aimed to optimize the inoculation dosage and fermentation duration to enhance the protein content and reduce soluble oligosaccharides in soybean meal using Aspergillus oryzae and assessed its performance in dog food extrusion. A 3 × 5 factorial design was used to [...] Read more.
This study aimed to optimize the inoculation dosage and fermentation duration to enhance the protein content and reduce soluble oligosaccharides in soybean meal using Aspergillus oryzae and assessed its performance in dog food extrusion. A 3 × 5 factorial design was used to determine the optimal fermentation conditions. These conditions were applied to ferment soybean meal in bulk for nutritional analysis. Finally, the impact of fermentation on extrusion processing was assessed by formulating and extruding four diets: SBM (30% soybean meal), AMF (30% soybean meal with 1% Amaferm®A. oryzae biomass), FSBM (30% fermented soybean meal), and SPI (18% soy protein isolate). Diets were extruded with a single-screw extruder, and physical characteristics of kibbles, particle size distribution, and viscosity of raw mixes were analyzed. The optimal fermentation conditions were 1 × 104 spore/g substrate for 36 h, which increased the crude protein content by 4.63% DM, methionine and cysteine total content by 0.15% DM, and eliminated sucrose, while significantly reducing stachyose, raffinose, and verbascose (95.22, 87.37, and 41.82%, respectively). The extrusion results showed that FSBM had intermediate specific mechanical energy (SME), in-barrel moisture requirements, and sectional expansion index (198.7 kJ/kg, 28.2%, and 1.80, respectively) compared with SBM (83.7 kJ/kg, 34.5%, and 1.30, respectively) and SPI (305.3 kJ/kg, 33.5%, and 2.55, respectively). The FSBM also exhibited intermediate particle size distribution and the least raw mix viscosity. These findings demonstrate that A. oryzae fermentation enhances the nutrient profile of soybean meal while improving extrusion efficiency and kibble quality, supporting its potential use as a sustainable pet food ingredient. Full article
(This article belongs to the Special Issue Feature Papers in the "Food Process Engineering" Section)
Show Figures

Figure 1

19 pages, 3489 KiB  
Article
Impact of Nitrogen Fertilisation and Inoculation on Soybean Nodulation, Nitrogen Status, and Yield in a Central European Climate
by Waldemar Helios, Magdalena Serafin-Andrzejewska, Marcin Kozak and Sylwia Lewandowska
Agriculture 2025, 15(15), 1654; https://doi.org/10.3390/agriculture15151654 - 1 Aug 2025
Viewed by 215
Abstract
Soybean (Glycine max [L.] Merr.) cultivation is expanding in Central Europe due to the development of early-maturing cultivars and growing demand for plant-based protein produced without the use of genetically modified organisms. However, nitrogen (N) management remains a major challenge in temperate [...] Read more.
Soybean (Glycine max [L.] Merr.) cultivation is expanding in Central Europe due to the development of early-maturing cultivars and growing demand for plant-based protein produced without the use of genetically modified organisms. However, nitrogen (N) management remains a major challenge in temperate climates, where variable weather conditions can significantly affect nodulation and yield. This study evaluated the effects of three nitrogen fertilisation doses (0, 30, and 60 kg N·ha−1), applied in the form of ammonium nitrate (34% N) and two commercial rhizobial inoculants—HiStick Soy (containing Bradyrhizobium japonicum strain 532C) and Nitragina (including a Polish strain of B. japonicum)—on nodulation, nitrogen uptake, and seed yield. A three-year field experiment (2017–2019) was conducted in southwestern Poland using a two-factor randomized complete block design. Nodulation varied significantly across years, with the highest values recorded under favourable early-season moisture and reduced during drought. In the first year, inoculation with HiStick Soy significantly increased nodule number and seed yield compared to Nitragina and the uninoculated control. Nitrogen fertilisation consistently improved seed yield, although it had no significant effect on nodulation. The highest nitrogen use efficiency was observed with moderate nitrogen input (30 kg N·ha−1) combined with inoculation. These findings highlight the importance of integrating effective rhizobial inoculants with optimized nitrogen fertilisation to improve soybean productivity and nitrogen efficiency under variable temperate climate conditions. Full article
(This article belongs to the Special Issue Strategies to Enhance Nutrient Use Efficiency and Crop Nutrition)
Show Figures

Figure 1

30 pages, 449 KiB  
Review
Bioactive Compounds and the Performance of Proteins as Wall Materials for Their Encapsulation
by Therys Senna de Castro Oliveira, Jhonathan Valente Ferreira Gusmão, Thaís Caroline Buttow Rigolon, Daiana Wischral, Pedro Henrique Campelo, Evandro Martins and Paulo Cesar Stringheta
Micro 2025, 5(3), 36; https://doi.org/10.3390/micro5030036 - 31 Jul 2025
Viewed by 242
Abstract
The encapsulation of bioactive compounds using proteins as wall materials has emerged as an effective strategy to enhance their stability, bioavailability, and controlled release. Proteins offer unique functional properties, including amphiphilic behavior, gel-forming ability, and interactions with bioactives, making them ideal candidates for [...] Read more.
The encapsulation of bioactive compounds using proteins as wall materials has emerged as an effective strategy to enhance their stability, bioavailability, and controlled release. Proteins offer unique functional properties, including amphiphilic behavior, gel-forming ability, and interactions with bioactives, making them ideal candidates for encapsulation. Animal-derived proteins, such as whey and casein, exhibit superior performance in stabilizing lipophilic compounds, whereas plant proteins, including soy and pea protein, demonstrate greater affinity for hydrophilic bioactives. Advances in protein modification and the formation of protein–polysaccharide complexes have further improved encapsulation efficiency, particularly for heat- and pH-sensitive compounds. This review explores the physicochemical characteristics of proteins used in encapsulation, the interactions between proteins and bioactives, and the main encapsulation techniques, including spray drying, complex coacervation, nanoemulsions, and electrospinning. Furthermore, the potential applications of encapsulated bioactives in functional foods, pharmaceuticals, and nutraceuticals are discussed, highlighting the role of emerging technologies in optimizing delivery systems. Understanding the synergy between proteins, bioactives, and encapsulation methods is essential for developing more stable, bioavailable, and sustainable functional products. Full article
(This article belongs to the Section Microscale Biology and Medicines)
46 pages, 5039 KiB  
Review
Harnessing Insects as Novel Food Ingredients: Nutritional, Functional, and Processing Perspectives
by Hugo M. Lisboa, Rogério Andrade, Janaina Lima, Leonardo Batista, Maria Eduarda Costa, Ana Sarinho and Matheus Bittencourt Pasquali
Insects 2025, 16(8), 783; https://doi.org/10.3390/insects16080783 - 30 Jul 2025
Viewed by 586
Abstract
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, [...] Read more.
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, protein isolates, oils, and chitosan-rich fibers with targeted techno-functional roles. This survey maps how thermal pre-treatments, blanch–dry–mill routes, enzymatic hydrolysis, and isoelectric solubilization–precipitation preserve or enhance the water- and oil-holding capacity, emulsification, foaming, and gelation, while also mitigating off-flavors, allergenicity, and microbial risks. A meta-analysis shows insect flours can absorb up to 3.2 g of water g−1, stabilize oil-in-water emulsions for 14 days at 4 °C, and form gels with 180 kPa strength, outperforming or matching eggs, soy, or whey in specific applications. Case studies demonstrate a successful incorporation at 5–15% into bakery, meat analogs and dairy alternatives without sensory penalties, and chitin-derived chitosan films extend the bread shelf life by three days. Comparative life-cycle data indicate 45–80% lower greenhouse gas emissions and land use than equivalent animal-derived ingredients. Collectively, the evidence positions insect-based ingredients as versatile, safe, and climate-smart tools to enhance food quality and sustainability, while outlining research gaps in allergen mitigation, consumer acceptance, and regulatory harmonization. Full article
(This article belongs to the Special Issue Insects and Their Derivatives for Human Practical Uses 3rd Edition)
Show Figures

Figure 1

16 pages, 2374 KiB  
Article
Soy Isoflavone Supplementation in Sow Diet Enhances Antioxidant Status and Promotes Intestinal Health of Newborn Piglets
by Le Liu, Lizhu Niu, Mengmeng Xu, Qing Yu, Lixin Chen, Hongyu Deng, Wen Chen and Long Che
Animals 2025, 15(15), 2223; https://doi.org/10.3390/ani15152223 - 28 Jul 2025
Viewed by 283
Abstract
This study aimed to explore the effects of dietary supplementation with soy isoflavones (SI) in the later stages of pregnancy on the antioxidant capacity of sows and intestinal health of newborn piglets. Forty sows with similar body weights and parity (average of 1–2 [...] Read more.
This study aimed to explore the effects of dietary supplementation with soy isoflavones (SI) in the later stages of pregnancy on the antioxidant capacity of sows and intestinal health of newborn piglets. Forty sows with similar body weights and parity (average of 1–2 parity) were randomly divided into two groups (n = 20): the control group and SI group (dose: 100 mg/kg of feed). Feeding was started on day 85 of gestation and continued until farrowing. SI supplementation significantly increased the antioxidant levels in the serum of the sows and newborn piglets, placental tissue, and the intestinal tract of the piglets. This observation was indicated by a decreased activity of the oxidative stress marker malondialdehyde (MDA); increased activity of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and catalase; and enhanced total antioxidant capacity. The organ indices of the intestine and liver and the villus height/crypt depth of the jejunum of newborn piglets significantly increased. SI supplementation activated the Nrf2 signaling pathway in the jejunum of neonatal piglets and the expression of placental antioxidant proteins, and it downregulated the expression of the Bax and Caspase 3 apoptotic proteins in the placenta and neonatal piglets. Intestinal and placental barrier integrity was strengthened. For example, ZO-1, Occludin, and Claudin 1 exhibited elevated expression. In conclusion, dietary supplementation with SI enhanced the antioxidant capacity of sows and piglets and improved the health of the placenta and intestinal tract of newborn piglets. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

29 pages, 953 KiB  
Review
Comprehensive Review of Alternative Proteins in Pet Food: Research Publications, Patents, and Product Trends in Plant, Aquatic, Insect, and Cell-Based Sources
by Phatthranit Klinmalai, Pitiya Kamonpatana, Arisara Thongpech, Janenutch Sodsai, Khwanchat Promhuad, Atcharawan Srisa, Yeyen Laorenza, Attawit Kovitvadhi, Sathita Areerat, Anusorn Seubsai, Shyam S. Sablani and Nathdanai Harnkarnsujarit
Foods 2025, 14(15), 2640; https://doi.org/10.3390/foods14152640 - 28 Jul 2025
Viewed by 481
Abstract
The increasing demand for sustainable pet-food solutions has driven interest in alternative protein sources, as researchers seek to avoid allergenic foods while maintaining optimal pet nutrition. This review explores recent scientific publications, patent trends, and market trends relating to various alternative protein sources, [...] Read more.
The increasing demand for sustainable pet-food solutions has driven interest in alternative protein sources, as researchers seek to avoid allergenic foods while maintaining optimal pet nutrition. This review explores recent scientific publications, patent trends, and market trends relating to various alternative protein sources, including plant-based, aquatic, insect-derived, and cell-based sources. Their nutritional composition, functional properties, and potential benefits for pet health were assessed. Plant-based proteins, such as soy, pea, and lentils, provide essential amino acids and functional properties suitable for meat analogues. Microalgae and seaweed offer rich sources of omega-3 fatty acids, antioxidants, and bioactive compounds. Insect-based proteins such as black-soldier-fly larvae and mealworms are highly digestible and rich in essential nutrients, with additional benefits for gut health. Emerging cell-based proteins present a novel, lab-grown alternative with promising sustainability and nutritional advantages. While these protein sources offer significant benefits, challenges related to digestibility, palatability, regulatory approval, and consumer acceptance must be addressed. The emphasis of the present research is on current developments for industry uses and future potential. The analysis sheds light on the contributions of alternative protein sources to the promotion of sustainable and nutrient meals for pets. Full article
Show Figures

Figure 1

24 pages, 1412 KiB  
Article
Arthrospira platensis var. toliarensis: A Local Sustainable Microalga for Food System Resilience
by Antonio Fidinirina Telesphore, Andreea Veronica Botezatu, Daniela Ionela Istrati, Bianca Furdui, Rodica Mihaela Dinica and Valérie Lalao Andriamanamisata Razafindratovo
Foods 2025, 14(15), 2634; https://doi.org/10.3390/foods14152634 - 27 Jul 2025
Viewed by 349
Abstract
The intensifying global demand for sustainable and nutrient-dense food sources necessitates the exploration of underutilized local resources. Arthrospira platensis var. toliarensis, a cyanobacterium endemic to Madagascar, was evaluated for its nutritional, functional, and environmental potential under small-scale, low-input outdoor cultivation. The study [...] Read more.
The intensifying global demand for sustainable and nutrient-dense food sources necessitates the exploration of underutilized local resources. Arthrospira platensis var. toliarensis, a cyanobacterium endemic to Madagascar, was evaluated for its nutritional, functional, and environmental potential under small-scale, low-input outdoor cultivation. The study assessed growth kinetics, physicochemical parameters, and composition during two contrasting seasons. Biomass increased 7.5-fold in 10 days, reaching a productivity of 7.8 ± 0.58 g/m2/day and a protein yield of 4.68 ± 0.35 g/m2/day. The hot-season harvest showed significantly higher protein content (65.1% vs. 44.6%), enriched in essential amino acids. On a dry matter basis, mineral profiling revealed high levels of sodium (2140 ± 35.4 mg/100 g), potassium (1530 ± 21.8 mg/100 g), calcium (968 ± 15.1 mg/100 g), phosphorus (815 ± 13.2 mg/100 g), magnesium (389.28 ± 6.4 mg/100 g), and iron (235 ± 9.1 mg/100 g), underscoring its value as a micronutrient-rich supplement. The hydroethanolic extract had the highest polyphenol content (4.67 g GAE/100 g of dry extract), while the hexanic extract exhibited the strongest antioxidant capacity (IC50 = 101.03 ± 1.37 µg/mL), indicating fat-soluble antioxidants. Aflatoxin levels (B1, B2, G1, and G2) remained below EU safety thresholds. Compared to soy and beef, this strain showed superior protein productivity and water-use efficiency. These findings confirm A. platensis var. toliarensis as a promising, ecologically sound alternative for improving food and nutrition security, and its local production can offer substantial benefits to smallholder livelihoods. Full article
Show Figures

Figure 1

29 pages, 2927 KiB  
Article
Rheological Properties, Textural Properties and Storage Stability of Sauce Enriched with Pomace from Oxheart Tomatoes (Lycopersicon esculentum)
by Dumitrița Flaiș and Mircea Oroian
Foods 2025, 14(15), 2627; https://doi.org/10.3390/foods14152627 - 26 Jul 2025
Viewed by 276
Abstract
The objective of this study was to develop a novel sauce formulation in which egg yolk was substituted with pea and soy proteins, in addition to the incorporation of tomato pomace as a functional ingredient. Nine experimental samples (E1–E3, S1–S3, and P1–P3) and [...] Read more.
The objective of this study was to develop a novel sauce formulation in which egg yolk was substituted with pea and soy proteins, in addition to the incorporation of tomato pomace as a functional ingredient. Nine experimental samples (E1–E3, S1–S3, and P1–P3) and three control samples (E0, S0, and P0) were prepared, corresponding to three protein sources (E: egg yolk, S: soy, P: pea), with increasing concentrations of tomato pomace (0, 2, 4, and 6%). The formulations were adjusted proportionally in terms of water and oil to maintain the desired consistency. The analyses performed included: physico-chemical analysis of the sauce (fat content, peroxide value, and CIE L* a* b* color determination), quality assessment using Fourier Transform Infrared Spectroscopy (FT-IR, rheological measurements, and microstructural evaluation. The sample designated P2 demonstrated a notable correlation with favourable parameters, exhibiting intense colouration, elevated protein content, and consistent rheological properties. However, at higher levels of tomato pomace (notably 6%), microstructural instability was observed, which may limit the formulation’s robustness over time. These findings demonstrate that tomato pomace can enhance the functional and structural characteristics of sauce, while also highlighting the importance of optimizing concentration levels to avoid negative impacts on emulsion stability. Overall, the results support the use of tomato pomace and plant proteins in the formulation of sustainable and innovative food products. Full article
Show Figures

Figure 1

19 pages, 3780 KiB  
Article
Effects of Soy Protein on Liver and Adipose Tissue Inflammation and Gut Microbiota in Mice Fed with Ketogenic Diets
by Wen-Keng Li, I-Ting Wu, Wan-Ju Yeh, Wen-Chih Huang and Hsin-Yi Yang
Nutrients 2025, 17(15), 2428; https://doi.org/10.3390/nu17152428 - 25 Jul 2025
Viewed by 341
Abstract
Background: Studies on ketogenic diets with a higher percentage of fat composition have revealed conflicting results regarding the modulation of lipid metabolism and tissue inflammation. Furthermore, studies on soy protein consumption in ketogenic diets remain limited. In this study, the effects of [...] Read more.
Background: Studies on ketogenic diets with a higher percentage of fat composition have revealed conflicting results regarding the modulation of lipid metabolism and tissue inflammation. Furthermore, studies on soy protein consumption in ketogenic diets remain limited. In this study, the effects of ketogenic diets on hepatic and adipose tissue inflammation and of soy protein replacement in ketogenic diets were investigated. Methods: Mice were randomly assigned to a control diet (C), ketogenic diet (KD), or ketogenic with soy protein (KS) groups for an 18-week experiment. Both ketogenic diet groups were fed a low-carbohydrate, high-fat diet during the first 12 weeks and a ketogenic diet during the last 6 weeks of the experiment. The KS group was fed the same diet as the KD group, but soy protein was substituted for casein during the last 6 weeks. Results: The KD and KS groups exhibited higher plasma β-hydroxybutyrate levels; a higher incidence of hyperlipidemia; and lower blood glucose, mesenteric fat mass, adipose tissue TNF-α, IL-1β levels, and NLRP3 protein expression compared with the C group. In the gut microbiota analysis, the KD group had a higher F-B ratio than the C group. Greater A. muciniphila abundance and a lower F-B ratio were noted in the KS group compared with the KD group. Conclusions: Although ketogenic diets decreased mesenteric fat mass and adipose tissue inflammation and modulated NLRP3 expression, they were associated with hepatic inflammation and gut dysbiosis. Soy protein consumption in a ketogenic diet did not differ from casein consumption regarding diet-induced tissue inflammation, but it may have altered the gut microbiota. Full article
Show Figures

Graphical abstract

12 pages, 244 KiB  
Article
Shaping Goose Meat Quality: The Role of Genotype and Soy-Free Diets
by Patrycja Dobrzyńska, Łukasz Tomczyk, Jerzy Stangierski, Marcin Hejdysz and Tomasz Szwaczkowski
Appl. Sci. 2025, 15(15), 8230; https://doi.org/10.3390/app15158230 - 24 Jul 2025
Viewed by 264
Abstract
The aim of this study was to evaluate the influence of genotype and diet on geese from crossbreeding meat lines Tapphorn (T) and Eskildsen (E). This study was conducted on 240 crossbred geese assigned to two dietary groups: an SBM diet group fed [...] Read more.
The aim of this study was to evaluate the influence of genotype and diet on geese from crossbreeding meat lines Tapphorn (T) and Eskildsen (E). This study was conducted on 240 crossbred geese assigned to two dietary groups: an SBM diet group fed a standard soybean-based diet and an LPS diet group fed a yellow lupin-based diet. Birds were reared under identical management conditions and slaughtered at 17 weeks of age. The following traits were recorded: meat colour (CIELab), pH24, cooking loss, breast and thigh muscle texture (shear force and energy), and sensory traits. The results showed a significant effect of both genotype and diet on meat quality. The LPS diet lowered shear force and energy (by ~11%, p < 0.001), reduced cooking loss in breast muscles (by ~5%, p < 0.001), and improved the juiciness and flavour of thigh muscles. The ET genotype positively influenced the meat colour intensity (lower L*, higher a*), while the lupin-based diet improved technological parameters, especially the water-holding capacity. The results confirm that replacing soybean meal with yellow lupin protein is an effective nutritional strategy that can improve goose meat quality and sustainability without compromising the sensory quality. These outcomes support developing soy-free feeding strategies in goose production to meet consumer expectations and reduce reliance on imported feed. Full article
(This article belongs to the Section Food Science and Technology)
20 pages, 1056 KiB  
Article
Dual Production of Full-Fat Soy and Expanded Soybean Cake from Non-GMO Soybeans: Agronomic and Nutritional Insights Under Semi-Organic Cultivation
by Krystian Ambroziak and Anna Wenda-Piesik
Appl. Sci. 2025, 15(15), 8154; https://doi.org/10.3390/app15158154 - 22 Jul 2025
Viewed by 254
Abstract
The diversification of plant protein sources is a strategic priority for European food systems, particularly under the EU Green Deal and Farm to Fork strategies. In this study, dual production of full-fat soy (FFS) and expanded soybean cake (ESC) was evaluated using non-GMO [...] Read more.
The diversification of plant protein sources is a strategic priority for European food systems, particularly under the EU Green Deal and Farm to Fork strategies. In this study, dual production of full-fat soy (FFS) and expanded soybean cake (ESC) was evaluated using non-GMO soybeans cultivated under semi-organic conditions in Central Poland. Two agronomic systems—post-emergence mechanical weeding with rotary harrow weed control (P1) and conventional herbicide-based control (P2)—were compared over a four-year period. The P1 system produced consistently higher yields (e.g., 35.6 dt/ha in 2024 vs. 33.4 dt/ha in P2) and larger seed size (TSW: up to 223 g). Barothermal and press-assisted processing yielded FFS with protein content of 32.4–34.5% and oil content of 20.8–22.4%, while ESC exhibited enhanced characteristics: higher protein (37.4–39.0%), lower oil (11.6–13.3%), and elevated dietary fiber (15.8–16.3%). ESC also showed reduced anti-nutritional factors (e.g., trypsin inhibitors and phytic acid) and remained microbiologically and oxidatively stable over six months. The semi-organic P1 system offers a scalable, low-input approach to local soy production, while the dual-product model supports circular, zero-waste protein systems aligned with EU sustainability targets. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

24 pages, 2758 KiB  
Article
A Techno-Economic Analysis of Integrating an Urban Biorefinery Process Within a Wastewater Treatment Plant to Produce Sustainable Wood Adhesives
by Blake Foret, William M. Chirdon, Rafael Hernandez, Dhan Lord B. Fortela, Emmanuel Revellame, Daniel Gang, Jalel Ben Hmida, William E. Holmes and Mark E. Zappi
Sustainability 2025, 17(15), 6679; https://doi.org/10.3390/su17156679 - 22 Jul 2025
Viewed by 404
Abstract
Societies are aiming to have a higher ecological consciousness in wastewater treatment operations and achieve a more sustainable future. With this said, global demands for larger quantities of resources and the consequent waste generated will inevitably lead to the exhaustion of current municipal [...] Read more.
Societies are aiming to have a higher ecological consciousness in wastewater treatment operations and achieve a more sustainable future. With this said, global demands for larger quantities of resources and the consequent waste generated will inevitably lead to the exhaustion of current municipal wastewater treatment works. The utilization of biosolids (particularly microbial proteins) from wastewater treatment operations could generate a sustainable bio-adhesive for the wood industry, reduce carbon footprint, mitigate health concerns related to the use of carcinogenic components, and support a more circular economic option for wastewater treatment. A techno-economic analysis for three 10 MGD wastewater treatment operations producing roughly 11,300 dry pounds of biosolids per day, in conjunction with co-feedstock defatted soy flour protein at varying ratios (i.e., 0%, 15%, and 50% wet weight), was conducted. Aspen Capital Cost Estimator V12 was used to design and estimate installed equipment additions for wastewater treatment plant integration into an urban biorefinery process. Due to the mechanical attributes and market competition, the chosen selling prices of each adhesive per pound were set for analysis as USD 0.75 for Plant Option P1, USD 0.85 for Plant Option P2, and USD 1.00 for Plant Option P3. Over a 20-year life, each plant option demonstrated economic viability with high NPVs of USD 107.9M, USD 178.7M, and USD 502.2M and internal rates of return (IRRs) of 24.0%, 29.0%, and 44.2% respectively. The options examined have low production costs of USD 0.14 and USD 0.19 per pound, minimum selling prices of USD 0.42–USD 0.51 per pound, resulting in between 2- and 4-year payback periods. Sensitivity analysis shows the effects biosolid production fluctuations, raw material market price, and adhesive selling price have on economics. The results proved profitable even with large variations in the feedstock and raw material prices, requiring low market selling prices to reach the hurdle rate of examination. This technology is economically enticing, and the positive environmental impact of waste utilization encourages further development and analysis of the bio-adhesive process. Full article
Show Figures

Figure 1

25 pages, 5464 KiB  
Article
Dihydromyricetin/Protein Pickering Emulsions: Interfacial Behavior, Rheology, and In Vitro Bioaccessibility
by Shengqi Mei, Lei Dou, Kaixuan Cheng, Guangqian Hou, Chi Zhang, Jianhui An, Yexing Tao, Lingli Deng and Longchen Shang
Foods 2025, 14(14), 2520; https://doi.org/10.3390/foods14142520 - 18 Jul 2025
Viewed by 335
Abstract
Protein-polyphenol-based delivery vehicles are effective strategies for encapsulating bioactive compounds, thereby enhancing their solubility and bioaccessibility. In this study, dihydromyricetin/soy protein isolate (DHM/SPI) complexes were used as emulsifiers to prepare Pickering emulsions for DHM delivery. The results show that DHM and SPI form [...] Read more.
Protein-polyphenol-based delivery vehicles are effective strategies for encapsulating bioactive compounds, thereby enhancing their solubility and bioaccessibility. In this study, dihydromyricetin/soy protein isolate (DHM/SPI) complexes were used as emulsifiers to prepare Pickering emulsions for DHM delivery. The results show that DHM and SPI form negatively charged complexes through hydrogen bonding, and the complex size decreases and stabilizes with increasing DHM addition. The size of the emulsion droplets was inversely related to the concentration of DHM addition (c), particle concentration (w), and ionic strength (i). Conversely, the increasing oil phase concentration (φ) was positively correlated with droplet size. The CLSM results confirmed the expected oil-in-water emulsion, while the rheological behavior of the Pickering emulsion highlighted its elastic, gel-like network structure and non-Newtonian fluid properties. Moreover, DHM effectively slowed lipid oxidation in the emulsion, and the bioaccessibility of DHM reached 33.51 ± 0.31% after in vitro simulated digestion. In conclusion, this emulsion system shows promising potential for delivering DHM and harnessing its bioactive effects. Full article
(This article belongs to the Special Issue Advanced Technology to Improve Plant Protein Functionality)
Show Figures

Graphical abstract

19 pages, 1318 KiB  
Article
Decoding Plant-Based Beverages: An Integrated Study Combining ATR-FTIR Spectroscopy and Microscopic Image Analysis with Chemometrics
by Paris Christodoulou, Stratoniki Athanasopoulou, Georgia Ladika, Spyros J. Konteles, Dionisis Cavouras, Vassilia J. Sinanoglou and Eftichia Kritsi
AppliedChem 2025, 5(3), 16; https://doi.org/10.3390/appliedchem5030016 - 16 Jul 2025
Viewed by 923
Abstract
As demand for plant-based beverages grows, analytical tools are needed to classify and understand their structural and compositional diversity. This study applied a multi-analytical approach to characterize 41 commercial almond-, oat-, rice- and soy-based beverages, evaluating attenuated total reflectance Fourier transform infrared (ATR-FTIR) [...] Read more.
As demand for plant-based beverages grows, analytical tools are needed to classify and understand their structural and compositional diversity. This study applied a multi-analytical approach to characterize 41 commercial almond-, oat-, rice- and soy-based beverages, evaluating attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, protein secondary structure proportions, colorimetry, and microscopic image texture analysis. A total of 26 variables, derived from ATR-FTIR and protein secondary structure assessment, were employed in multivariate models, using partial least squares discriminant analysis (PLS-DA) and orthogonal PLS-DA (OPLS-DA) to evaluate classification performance. The results indicated clear group separation, with soy and rice beverages forming distinct clusters while almond and oat samples showing partial overlap. Variable importance in projection (VIP) scores revealed that β-turn and α-helix protein structures, along with carbohydrate-associated spectral bands, were the key features for beverages’ classification. Textural features derived from microscopy images correlated with sugar and carbohydrate content and color parameters were also employed to describe beverages’ differences related to sugar content and visual appearance in terms of homogeneity. These findings demonstrate that combining ATR-FTIR spectral data with protein secondary structure data enables the effective classification of plant-based beverages, while microscopic image textural and color parameters offer additional extended product characterization. Full article
Show Figures

Figure 1

15 pages, 2695 KiB  
Article
Gelling Characteristics and Mechanisms of Heat-Triggered Soy Protein Isolated Gels Incorporating Curdlan with Different Helical Conformations
by Pei-Wen Long, Shi-Yong Liu, Yi-Xin Lin, Lin-Feng Mo, Yu Wu, Long-Qing Li, Le-Yi Pan, Ming-Yu Jin and Jing-Kun Yan
Foods 2025, 14(14), 2484; https://doi.org/10.3390/foods14142484 - 16 Jul 2025
Viewed by 235
Abstract
This study investigated the effects of curdlan (CUR) with different helical conformations on the gelling behavior and mechanisms of heat-induced soy protein isolate (SPI) gels. The results demonstrated that CUR significantly improved the functional properties of SPI gels, including water-holding capacity (0.31–5.06% increase), [...] Read more.
This study investigated the effects of curdlan (CUR) with different helical conformations on the gelling behavior and mechanisms of heat-induced soy protein isolate (SPI) gels. The results demonstrated that CUR significantly improved the functional properties of SPI gels, including water-holding capacity (0.31–5.06% increase), gel strength (7.01–240.51% enhancement), textural properties, viscoelasticity, and thermal stability. The incorporation of CUR facilitated the unfolding and cross-linking of SPI molecules, leading to enhanced network formation. Notably, SPI composite gels containing CUR with an ordered triple-helix bundled structure exhibited superior gelling performance compared to other helical conformations, characterized by a more compact and uniform microstructure. This improvement was attributed to stronger hydrogen bonding interactions between the triple-helix CUR and SPI molecules. Furthermore, the entanglement of triple-helix CUR with SPI promoted the formation of a denser and more homogeneous interpenetrating polymer network. These findings indicate that triple-helix CUR is highly effective in optimizing the gelling characteristics of heat-induced SPI gels. This study provides new insights into the structure–function relationship of CUR in SPI-based gel systems, offering potential strategies for designing high-performance protein–polysaccharide composite gels. The findings establish a theoretical foundation for applications in the food industry. Full article
(This article belongs to the Special Issue Natural Polysaccharides: Structure and Health Functions)
Show Figures

Figure 1

Back to TopTop